A standard Brownian motion on \mathbb{R}^+ for a filtration $\{\mathcal{F}_t : t \in \mathbb{R}^+\}$ is an adapted process for which

- (i) all sample paths are continuous
- (ii) $X(0, \omega) = 0$ for all ω
- (iii) for each pair s, t with $0 \le s \le t$,

$$X_t - X_s$$
 is $N(0, t - s)$ distributed independent of \mathcal{F}_s

Properties (ii) and (iii) together imply: for each $0 \le t_1 \le t_2 \le ... \le t_k$, the random vector $(X_{t_1}, ..., X_{t_k})$ has a multivariate normal distribution with zero means and covariances given by

$$cov(X_s, X_t) = min(s, t)$$

Abbreviate $\mathbb{P}(\ldots \mid \mathcal{F}_t)$ to $\mathbb{P}_t(\ldots)$.

Useful facts: some rigorous proofs to follow

- (i) For a fixed $\tau \ge 0$ define $Z_t = B_{\tau+t} B_{\tau}$ for $t \ge 0$. Then Z is a standard Brownian motion independent of \mathcal{F}_{τ} .
- (ii) (Strong Markov property) Same assertion as in (i) except that τ is a stopping time.
- (iii) (Time reversal) Define $Z_t = tB_{1/t}$ for t > 0, with $Z_0 = 0$. Then $\{Z_t : t \in \mathbb{R}^+\}$ is a also a standard Brownian motion.
- (iv) Both $\{(B_t, \mathcal{F}_t) : t \in \mathbb{R}^+\}$ and $\{(B_t^2 t, \mathcal{F}_t) : t \in \mathbb{R}^+\}$ are martingales.
- (v) For each real θ , the process $Y_t = \exp(\theta X_t \frac{1}{2}\theta^2 t)$ is a martingale. (For complex θ , would it be a complex martingale?)
- <1> Lévy's martingale characterization of Brownian motion. Suppose $\{X_t : 0 \le t \le 1\}$ is a martingale with continuous sample paths and $X_0 = 0$. Suppose also that $X_t^2 t$ is a martingale. Then X is a Brownian motion.

Heuristics of the proof that $X_1 \sim N(0, 1)$. The two martingale assuptions give two properties of the increment $\Delta X = X_t - X_s$, for s < t:

$$\mathbb{P}_s \Delta X = 0$$
 and $\mathbb{P}_s (\Delta X)^2 = t - s$.

Let f(x,t) be a smooth function of two arguments, $x \in \mathbb{R}$ and $t \in [0,1]$. Define

$$f_x = \frac{\partial f}{\partial x}$$
 and $f_{xx} = \frac{\partial^2 f}{\partial x^2}$ and $f_t = \frac{\partial f}{\partial t}$.

Let h = 1/n for some large positive integer n. Define $t_i = ih$ for i = 0, 1, ..., n. Write $\Delta_i X$ for $X(t_i + h) - X(t_i)$. Then

$$\mathbb{P}f(X_{1}, 1) - \mathbb{P}f(X_{0}, 0) \\
= \sum_{i < n} \left(\mathbb{P}f(X_{t_{i} + h}, t_{i} + h) - \mathbb{E}f(X_{t_{i}}, t_{i}) \right) \\
\approx \sum_{i < n} \mathbb{P}\left((\Delta_{i}X) f_{x}(X_{t_{i}}, t_{i}) + \frac{1}{2} (\Delta_{i}X)^{2} f_{xx}(X_{t_{i}}, t_{i}) + h f_{t}(X_{t_{i}}, t_{i}) \right) \\
= \sum_{i < n} \left(0 + \frac{1}{2} h \mathbb{P}f_{xx}(X_{t_{i}}, t_{i}) + h \mathbb{P}f_{t}(X_{t_{i}}, t_{i}) \right) \\
\approx \int_{0}^{1} \left(\frac{1}{2} \mathbb{P}f_{xx}(X_{s}, s) + \mathbb{P}f_{t}(X_{s}, s) \right) ds \quad \text{if } h \text{ is small} \quad \text{by } <2>.$$

Statistics 603a: 16 September 2004

<2>

We need to formalize the passage to the limit to get

$$\mathbb{P}f(X_1, 1) - \mathbb{P}f(X_0, 0) = \int_0^1 \left(\frac{1}{2} \mathbb{P}f_{xx}(X_s, s) + \mathbb{P}f_t(X_s, s) \right) ds.$$

Specialize to the case $f(x, s) = \exp(\theta x - \frac{1}{2}\theta^2 s)$, with θ a fixed constant. By direct calculation,

$$f_x = \theta f(x, s)$$
 and $f_{xx} = \theta^2 f(x, s)$ and $f_t = -\frac{1}{2}\theta^2 f(x, s)$

Thus

$$\mathbb{P}e^{\theta X_1}e^{-\theta^2/2}-1=\int_0^1 0\,ds=0.$$

That is, X_1 has the moment generating function $\exp(\theta^2/2)$, which identifies it as having a N(0, 1) distribution.

As you will see, we are effectively proving a martingale central limit theorem. Look at the handout *martingaleCLT.pdf* before we start on a rigorous proof.

Statistics 603a: 16 September 2004

© David Pollard