DOLÉANS MEASURES

Notation

- T_1 = the set of all [0, 1]-valued stopping times
- for $\sigma, \tau \in \mathfrak{T}_1$,

$$\begin{split} ((\sigma, \tau]] &:= \{(t, \omega) \in (0, 1] \times \Omega : \sigma(\omega) < t \le \tau(\omega)\} \\ [[\sigma, \tau]] &:= \{(t, \omega) \in (0, 1] \times \Omega : \sigma(\omega) \le t \le \tau(\omega)\} \end{split}$$

and so on.

1. Introduction

The construction (Project 4) of the isometric stochastic integral $H \bullet M$ with respect to a martingale $M \in \mathcal{M}^2[0, 1]$, at least for bounded, predictable H, depended on the existence of the Doléans measure μ on the predictable sigma-field \mathcal{P} on $(0, 1] \times \Omega$. To make the map $H \mapsto H \bullet M_1$ an isometry between \mathcal{H}_{simple} and a subset of $\mathcal{L}^2(\Omega, \mathcal{F}_1, \mathbb{P})$ we needed

 $\mu(a, b] \times F = \mathbb{P}\{\omega \in F\}(M_b - M_a)^2 \quad \text{for all } 0 \le a < b \le 1 \text{ and } F \in \mathcal{F}_a.$

This property characterizes the measure μ because the collection of all predictable sets of the form $(a, b] \times F$ is $\cap f$ -stable and it generates \mathcal{P} .

The sigma-field \mathcal{P} is also generated by the set of all stochastic intervals ((0, τ]] for $\tau \in \mathcal{T}_1$. The Doléans measure is also characterized by the property

 $\mu((0, \tau]] = \mathbb{P}(M_{\tau} - M_0)^2 \quad \text{for all } \tau \in \mathcal{T}_1.$

Notice that μ depends on *M* only through the submartingale $S_t := (M_t - M_0)^2$:

$$\mathbb{P}F(M_b - M_a)^2 = \mathbb{P}F(S_b - S_a) \quad \text{for } F \in \mathcal{F}_a.$$

In fact, analogous measures can be defined for a large class of submartingales.

<2> **Definition.** Let $\{S_t : 0 \le t \le 1\}$ be a cadlag submartingale. Say that a finite (countably-additive) measure μ_S , defined on the predictable sigma-field of $(0, 1] \times \Omega$, is the **Doléans measure** for S if $\mu((0, \tau)] = \mathbb{P}(S_{\tau} - S_0)$ for every τ in \mathcal{T}_1 .

Remark.

If μ_s exists then $S_{\tau} - S_0$ must be integrable for every τ in \mathcal{T}_1 . Note also that the definition is not affected if we replace S_t by $S_t - S_0$. Thus there is no loss of generality in assuming that $S_0 \equiv 0$.

I mentioned explicitly that μ_S must be countably-additive to draw attention to a subtle requirement on S for μ_S to exist, known somewhat cryptically as property [D]:

[D] $\{S_{\tau} : \tau \in \mathcal{T}_1\}$ is uniformly integrable.

Statistics 603a: 7 October 2004

⇒

 \Rightarrow

Example. If $M \in \mathcal{M}^2[0,1]$ then the submartingale $S_t = (M_t - M_0)^2$ has <3> property [D]. Indeed, we know from Project 2 that $M_{\tau} = \mathbb{P}(M_1 \mid \mathcal{F}_{\tau})$ for all $\tau \in \mathcal{T}_1$. Thus

$$0 \leq \left(M_{\tau} - M_{0}\right)^{2} \leq \mathbb{P}\left(\left(M_{1} - M_{0}\right)^{2} \mid \mathcal{F}_{\tau}\right) \quad \text{for each } \tau \text{ in } \mathcal{T}_{1}.$$

Use the fact that $\{\mathbb{P}(\xi \mid \mathcal{G}) : \mathcal{G} \subseteq \mathcal{F}\}$ is uniformly integrable for each integrable random variable ξ to complete the argument.

Example. Let $\{B_t : 0 \le t \le 1\}$ be a standard Brownian motion. The submartin-<4> gale $S_t := B_t^2$ has a very simple Doléans measure, characterized by

$$\mu_{S}(a,b] \otimes F = \mathbb{P}F\left(B_{b}^{2} - B_{a}^{2}\right) = \mathbb{P}F(b-a) \quad \text{for } F \in \mathfrak{F}_{a}.$$

That is, $\mu_S = \mathfrak{m} \otimes \mathbb{P}$, with \mathfrak{m} equal to Lebesgue measure on $\mathcal{B}[0, 1]$. Of course μ_S has a further extension to the product sigma-field $\mathcal{B}[0,1] \otimes \mathcal{F}$.

A Poisson process $\{N_t : 0 \le t \le 1\}$ with intensity 1 shares with Brownian motion the independent increment property, but the increment $N_t - N_s$ has a Poisson(t - s) distribution. The sample paths are constant, except for jumps of size 1 corresponding to points of the process. The process $\{N_t : 0 \le t \le 1\}$ is a submartingale with respect to its natural filtration, with Doléans measure $\mathfrak{m} \otimes \mathbb{P}$, the same as the square of Brownian motion.

Clearly the Doléans measure does not uniquely determine the submartingale: both squared Brownian motion and the Poisson process have Doléans measure $\mathfrak{m} \otimes \mathbb{P}$. But the only square integrable martingale M with continuous sample paths and Doléans measure $\mu_M = \mathfrak{m} \otimes \mathbb{P}$ is Brownian motion: if $F \in \mathfrak{F}_s$ and s < t then $\mathbb{P}F(M_t^2 - M_s^2) = \mu_M(s, t] \otimes F = (t - s)\mathbb{P}F$, from which it follows that $M_t^2 - t$ is a martingale with respect to $\{\mathcal{F}_t\}$. It follows from Lévy's characterization that M is

a Brownian motion.

> Problem [2] shows that if there exists a (countably-additive) Doléans measure μ_s then S has property [D]. The proof of the converse assertion is the main subject of this handout.

Theorem. Every cadlag submartingale $\{S_t : 0 \le t \le 1\}$ with property [D] has a <5> countably additive Doléans measure μ_s .

There are several ways to prove this assertion For example:

- (i) Invoke an approximation by compact sets (Métivier 1982, Chapter 3).
- (ii) For the square of a continuous $\mathcal{M}_0^2[0, 1]$ -martingale M, prove directly the existence of an increasing process A (the quadratic variation process) for which $M_t^2 - A_t$ is a martingale (Chung & Williams 1990, Section 4.4).
- (iii) Do something very general, as in Dellacherie & Meyer (1982, §7.1).

I will present a different method, based on the identification of measures on \mathcal{P} with a certain kind of linear functional defined on the vector space \mathcal{H}_{BddLip} of all adapted, continuous processes H on $[0, 1] \times \Omega$ for which there exists a finite constant C_H such that

(i) $|H(t, \omega)| \leq C_H$ for all (t, ω) .

 \Rightarrow

 \Rightarrow

(ii) $|H(s, \omega) - H(t, \omega)| \le C_H |t - s|$ for all s, t, and ω .

It is easy to show that \mathcal{H}_{BddLip} generates a sigma-field \mathcal{P}_0 on $[0, 1] \times \Omega$ for which

 $\mathcal{P} = \{ D \cap ((0, 1] \times \Omega) : D \in \mathcal{P}_0 \}.$

As a consequence of the Theorem stated in Section 3, an increasing linear functional $\mu : \mathcal{H}_{BddLip} \to \mathbb{R}$ is defined by the integral with respect to a finite, countably additive measure on \mathcal{P}_0 if and only if it is *sigma-smooth at* 0, that is,

 $\mu(h_n) \downarrow 0$ for each $\{h_n : n \in \mathbb{N}\} \subseteq \mathcal{H}_{\text{BddLip}}$ with $h_n \downarrow 0$ pointwise.

If $\mu(\{0\} \times \Omega) = 0$ then μ can also be thought of as a measure on \mathcal{P} .

2. The Doléans measure as a linear functional

Let { $S_t : 0 \le t \le 1$ } be a cadlag submartingale with respect to a standard filtration { $\mathcal{F}_t : 0 \le t \le 1$ } on a probability space ($\Omega, \mathcal{F}, \mathbb{P}$). Suppose *S* has property [D]. To prove Theorem <5> we need to construct an increasing linear functional on $\mathcal{H}^+_{\text{BddLip}}$ that is sigma-smooth at 0.

Without loss of generality assume $S_0 \equiv 0$.

Construct μ as a limit of simpler increasing linear functionals on $\mathcal{H}^+_{\text{BddLip}}$. For each *n* in \mathbb{N} and $i = 0, 1, ..., 2^n$ define $t_{i,n} := i/2^n$ and $\Delta_{i,n} := S(t_{i+1,n}) - S(t_{i,n})$ and write $\mathbb{P}_{i,n}(\cdots)$ for expectations conditional on $\mathcal{F}(t_{i,n})$. Note that $\mathbb{P}_{i,n}\Delta_{i,n} \ge 0$ almost surely, by the submartingale property.

For each H in $\mathcal{H}^+_{\text{BddLip}}$, define linear functionals

$$\mu_n H := \sum_{0 \le i < 2^n} \mathbb{P}\left(H(t_{i,n})\Delta_{i,n}\right) = \sum_{0 \le i < 2^n} \mathbb{P}\left(H(t_{i,n})\mathbb{P}_{i,n}\Delta_{i,n}\right).$$

The second form ensures that μ_n is an increasing functional on $\mathcal{H}^+_{\text{BddLin}}$.

Existence of the limit

To prove that $\mu H := \lim_{n \to \infty} \mu_n H$ exists for each $H \in \mathcal{H}^+$, I will show that the sequence $\{\mu_n H : n \in \mathbb{N}\}$ is Cauchy. Fix *n* and *m* with n < m. Define

$$J_i = \{j : t_{i,n} \le t_{j,m} < t_{i+1,n}\}.$$

Then

$$\begin{split} |\left(\sum_{j\in J_i} \mathbb{P}H(t_{j,m})\Delta_{j,m}\right) - \mathbb{P}H(t_{i,n})\Delta_{i,n}| \\ &= |\sum_{j\in J_i} \mathbb{P}\left(H(t_{j,m}) - H(t_{i,n})\right)\Delta_{j,m}| \\ &\leq \sum_{j\in J_i} \mathbb{P}\left(|H(t_{j,m}) - H(t_{i,n})|\mathbb{P}_{j,m}\Delta_{j,m}\right) \\ &\leq \sum_{j\in J_i} C_H 2^{-n} \mathbb{P}\Delta_{j,m} \\ &= C_H 2^{-n} \sum_{j\in J_i} \mathbb{P}\Delta_{i,n} \end{split}$$

Sum over *i* to deduce that $|\mu_m H - \mu_n H| \le C_H 2^{-n} \mathbb{P}S_1$, which tends to zero as *n* tends to infinity.

Statistics 603a: 7 October 2004

©David Pollard

 \Rightarrow

A useful upper bound

The functional μ inherits linearity and the increasing property from the { μ_n }. For each fixed $\epsilon > 0$, property [D] will give an upper bound for μH in terms of the stopping time

<6>

$$\tau(H,\epsilon) := \inf\{t : H(t,\omega) \ge \epsilon\} \land 1.$$

Temporarily write τ_n for the discretized stopping time obtained by rounding $\tau(H, \epsilon)$ up to the next integer multiple of 2^{-n} . Then

$$\mu_{n}H \leq \sum_{0 \leq i < 2^{n}} \mathbb{P}\left(\epsilon\{t_{i,n} < \tau_{n}\} + C_{H}\{t_{i,n} \geq \tau_{n}\}\right) \mathbb{P}_{i,n}\Delta_{i,n}$$

$$\leq \epsilon \sum_{0 \leq i < 2^{n}} \mathbb{P}\Delta_{i,n} + C_{H} \sum_{0 \leq i < 2^{n}} \mathbb{P}\{t_{i,n} \geq \tau_{n}\}\Delta_{i,n}$$

$$\leq \epsilon \mathbb{P}S_{1} + C_{H}\mathbb{P}\left(S_{1} - S_{\tau_{n}}\right).$$

Let *n* tend to infinity. Uniform integrability of the sequence $\{S_{\tau_n}\}$ together with right-continuity of the sample paths of *S* lets us deduce in the limit that

< 7 >

$$\mu H \leq \epsilon \mathbb{P}S_1 + C_H \mathbb{P}\left(S_1 - S_{\tau(H,\epsilon)}\right).$$

Sigma-smoothness

Now suppose $\{H_k : k \in \mathbb{N}\}$ is a sequence from $\mathcal{H}^+_{\text{BddLip}}$ for which $1 \ge H_k \downarrow 0$ pointwise. For a fixed $\epsilon > 0$, temporarily write σ_k for $\tau(H_k, \epsilon)$. By compactness of [0, 1], the pointwise convergence of the continuous functions, $H_k(\cdot, \omega) \downarrow 0$, is actually uniform. For each ω , the sequence $\{\sigma_k(\omega)\}$ not only increases to 1, it actually achieves the value 1 at some finite k (depending on ω). Uniform integrability of $\{S_{\sigma_k} : k \in \mathbb{N}\}$ and the analog of <7> for each H_k then give

$$\mu H_k \leq \epsilon \mathbb{P}S_1 + C_H \mathbb{P}\left(S_1 - S_{\sigma_k}\right) \to \epsilon \mathbb{P}S_1 \qquad \text{as } k \to \infty.$$

The sigma-smoothness of μ follows. The functional corresponds to the integral with respect to a finite measure on \mathcal{P} , with total mass $\mu[[0, 1]] = \lim_{n \to \infty} \mu_n[[0, 1]] = \mathbb{P}S_1$.

Identification as a Doléans measure

It remains to prove that

- (a) $\mu\{0\} \times \Omega = 0$
- (b) $\mu[[0, \tau]] = \mathbb{P}S_{\tau}$ for $\tau \in \mathfrak{T}_1$.

Consider first the proof of (b). For given $\epsilon > 0$, approximate [[0, τ]] by the continuous process

$$H_{\epsilon}(t,\omega) = \min\left(1, (\tau(\omega) + \epsilon - t)^{+}/\epsilon\right) \quad \text{for } 0 \le t \le 1.$$

Statistics 603a: 7 October 2004

©David Pollard

It is adapted because $\{H_{\epsilon}(t, \omega) \leq c\} = \{\tau \leq t - \epsilon(1 - c)\} \in \mathcal{F}_t$, for each fixed t and constant $0 \leq c < 1$. It belongs to $\mathcal{H}^+_{\text{BddLip}}$, with $C_{H_{\epsilon}} = 1/\epsilon$, and $[[0, \tau]] \leq H_{\epsilon} \leq [[0, \tau + \epsilon]]$.

When $2^{-n} < \epsilon$, direct calculation shows that $\mu_n H_{\epsilon} \leq \mathbb{P}S_{\tau+2\epsilon}$, which in the limit implies $\mu H_{\epsilon} \leq \mathbb{P}S_{\tau+2\epsilon}$. By Dominated Convergence,

 $\mu[[0, \tau]] = \lim_{\epsilon \to 0} \mu H_{\epsilon} \leq \mathbb{P}S_{\tau}.$

Inequality <7> applied with $\tau_{\epsilon} := \tau(1 - H_{\epsilon}, \epsilon)$ gives

$$\mu((\tau + \epsilon, 1]] \le \mu \left(1 - H_{\epsilon}\right) \le \epsilon \mathbb{P}S_1 + \mathbb{P}\left(S_1 - S_{\tau_{\epsilon}}\right),$$

which, in the limit as ϵ tends to zero, implies $\mu(\tau, 1] \leq \mathbb{P}(S_1 - S_{\tau})$. From the fact that

$$\mathbb{P}S_1 = \mu[[0, 1]] = \mu[[0, \tau]] + \mu((\tau, 1)] \le \mathbb{P}S_\tau + \mathbb{P}(S_1 - S_\tau),$$

conclude that $\mu[[0, \tau]] = \mathbb{P}S_{\tau}$.

 \Box Specialize to the case $\tau \equiv 0$ to get (a).

3. Measures as linear functionals

The following material on the Daniell construction of integrals is taken almost verbatim from Pollard (2001, Appendix A), where proofs are given.

<8> **Definition.** Call a class \mathcal{H}^+ of nonnegative real functions on a set \mathcal{X} a **lattice cone** if it has the following properties. If h, h_1 and h_2 belong to \mathcal{H}^+ , and α_1 and α_2 are nonegative real numbers, then:

- (H1) $\alpha_1 h_1 + \alpha_2 h_2$ belongs to \mathcal{H}^+ ;
- (H2) $h_1 \setminus h_2 := (h_1 h_2)^+$ belongs to \mathcal{H}^+ ;
- (H3) the pointwise minimum $h_1 \wedge h_2$ and maximum $h_1 \vee h_2$ belong to \mathcal{H}^+ ;
- (H4) $h \wedge 1$ belongs to \mathcal{H}^+ .

For a lattice cone \mathcal{H}^+ , let \mathcal{K}_0 denote the class of all sets of the form $K = \{h \ge \alpha\}$, with $h \in \mathcal{H}^+$ and a constant $\alpha > 0$. Notice that $K = \{h' = 1\}$ and $K \le h' \le 1$, where $h' = 1 \land (h/\alpha)$. Let \mathcal{K} denote the $\cap c$ -closure of \mathcal{K}_0 . That is, a set K in \mathcal{K} has a representation

$$K = \bigcap_{i \in \mathbb{N}} \{h_i \ge \alpha_i\}.$$

The sets in \mathcal{K} are precisely those whose indicator functions are limits of decreasing sequences of functions in \mathcal{H}^+ . The class \mathcal{K} plays a role similar to that of the compact sets for measures on $\mathcal{B}(\mathbb{R}^k)$. In particular, the class

$$\mathcal{F}(\mathcal{K}) = \{ F \subseteq \mathcal{X} : F \cap K \in \mathcal{K} \text{ for all } K \in \mathcal{K} \}$$

has properties analogous to the closed sets, and

 $\mathcal{B}(\mathcal{K}) =$ sigma-field generated by $\mathcal{F}(\mathcal{K})$

is analogous to the Borel sigma-field. Each member of \mathcal{H}^+ is $\mathcal{B}(\mathcal{K})$ -measurable.

Statistics 603a: 7 October 2004

©David Pollard

<10> **Theorem.** Let \mathcal{H}^+ be a lattice cone, and $T : \mathcal{H}^+ \to \mathbb{R}^+$ be a map for which

(T1) for nonnegative real numbers α_1 , α_2 and functions h_1 , h_2 in \mathcal{H}^+ , $T(\alpha_1h_1 + \alpha_2h_2) = \alpha_1Th_1 + \alpha_2Th_2$;

- (T2) if $h_1 \leq h_2$ pointwise then $Th_1 \leq Th_2$.
- (T3) $Th_n \downarrow 0$ whenever the sequence $\{h_n\}$ in \mathcal{H}^+ decreases pointwise to zero.
- (T4) $T(h \wedge n) \rightarrow Th$ as $n \rightarrow \infty$, for each h in \mathcal{H}^+ .

Then the set function defined by

$$\mu K := \inf\{Th : K \le h \in \mathcal{H}^+\} \quad \text{for } K \in \mathcal{K},$$

$$\mu B := \sup\{\mu K : B \supseteq K \in \mathcal{K}\}$$

is a countably additive measure on $\mathbb{B}(\mathcal{K})$ for which $Th = \mu h$ for all h in \mathcal{H}^+ .

4. Problems

- [1] Let $\{X_i : 0 \le i \le n\}$ be a submartingale with $X_0 \equiv 0$. For a fixed $\lambda \in \mathbb{R}^+$, define stopping times $\sigma := \min\{i : X_i \le -\lambda\} \land 1$ and $\tau := \min\{i : X_i \ge \lambda\} \land 1$.
 - (i) Show that

$$\lambda \mathbb{P}\{\max_i X_i > \lambda\} \le \mathbb{P}X_\tau \{X_\tau \ge \lambda\} \le \mathbb{P}X_1 \{X_\tau \ge \lambda\} \le \mathbb{P}|X_n|.$$

(ii) Show that

$$\lambda \mathbb{P}\{\min_i X_i < -\lambda\} \le \mathbb{P}(-X_{\sigma})\{X_{\sigma} \le -\lambda\}$$
$$\le -\mathbb{P}X_{\sigma} + \mathbb{P}X_n\{X_{\sigma} > -\lambda\} \le \mathbb{P}|X_n|.$$

- (iii) Suppose $\{Y_t : 0 \le t \le 1\}$ is a cadlag submartingale with $Y_0 \equiv 0$. Show that $\lambda \mathbb{P}\{\sup_t | Y_t| > \lambda\} \le 2\mathbb{P}|Y_1|$.
- [2] Suppose a cadlag martingale { $S_t : 0 \le t \le 1$ }, with $S_0 \equiv 0$, has a Doléans measure μ in the sense of Definition <2>, that is, $\mu((0, \tau)] = \mathbb{P}S_{\tau}$ for every $\tau \in \mathcal{T}_1$. Show that *S* has property [D] by following these steps.
 - (i) For a given $\tau \in \mathcal{T}_1$, let τ_n be the stopping time obtained by rounding up to the next integer multiple of 2^{-n} .
 - (ii) Invoke the Stopping Time Lemma to show that $0 \leq \mathbb{P}S_{\tau_n}$ and $\mathbb{P}S_{\tau_n}^+ \leq \mathbb{P}S_1^+$ for each $\tau \in \mathcal{T}_1$. Deduce that $\mathbb{P}|S_{\tau_n}| \leq \kappa := 2\mathbb{P}S_1^+ < \infty$.
 - (iii) Invoke Fatou's lemma to show that $\sup_{\tau \in \mathcal{T}_1} \mathbb{P}|S_{\tau}| \leq \kappa$.
 - (iv) For each $C \in \mathbb{R}^+$, show that

 $\mathbb{P}S_{\tau_n}\{S_{\tau_n}>C\} \leq \mathbb{P}S_1\{S_{\tau_n}>C\} \leq \mathbb{P}S_1\{S_1>\sqrt{C}\} + \kappa/\sqrt{C}.$

Invoke Fatou, then deduce that $\sup_{\tau \in \mathcal{T}_1} \mathbb{P}S_{\tau} \{S_{\tau} > C\} \to 0$ as $C \to \infty$.

(v) Show that every cadlag function on [0, 1] is bounded in absolute value. Deduce that the stopping time $\sigma_C := \inf\{t : S_t < -C\} \land 1$ has $\sigma_C(\omega) = 1$ for all *C* large enough (depending on ω). Deduce that $\mu((\sigma_C, 1]] \to 0$ as $C \to \infty$.

Statistics 603a: 7 October 2004

(vi) For a given $\tau \in \mathcal{T}_1$ and $C \in \mathbb{R}^+$, define $F_\tau := \{S_\tau < -C\}$. Show that $\tau' := \tau F_\tau^c + F_\tau$ is a stopping time for which

$$\mathbb{P}\left(S_1 - S_{\tau}\right) F_{\tau} = \mathbb{P}\left(S_{\tau'} - S_{\tau}\right) = \mu((\tau, \tau']] \le \mu((\sigma_C, 1]],$$

Hint: Show that if $\omega \in F_{\tau}$ then $\sigma_C(\omega) \leq \tau(\omega)$ and if $\omega \in F_{\tau}^c$ then $\tau(\omega) = \tau'(\omega)$.

- (vii) Deduce that $\sup_{\tau \in \mathcal{T}_1} \mathbb{P}(-S_{\tau}) \{S_{\tau} < -C\} \to 0 \text{ as } C \to \infty$.
- [3] Let $\{S_t : t \in \mathbb{R}^+\}$ be a submartingale of class [D]. Show that there exists an integrable random variable S_{∞} for which $\mathbb{P}(S_{\infty} | \mathcal{F}_t) \ge S_t \to S_{\infty}$ almost surely and in L^1 by following these steps.
 - (i) Show that the uniformly integrable submartingale $\{S_n : n \in \mathbb{N}\}$ converges almost surely and in L^1 to an S_{∞} for which $\mathbb{P}(S_{\infty} | \mathcal{F}_n) \geq S_n$.
 - (ii) For $t \leq n$, show that $S_t \leq \mathbb{P}(\mathbb{P}(S_{\infty} | \mathcal{F}_n) | \mathcal{F}_t) = \mathbb{P}(S_{\infty} | \mathcal{F}_t)$.
 - (iii) For $t \ge n$, show that

$$\mathbb{P}(S_t - S_n)^- \le \mathbb{P}(S_t - S_n)^+ \le \mathbb{P}(S_\infty - S_n)^+ \to 0 \quad \text{as } n \to \infty.$$

- (iv) For each $k \in \mathbb{N}$, choose n(k) for which $\mathbb{P}|S_{\infty} S_{n(k)}| \le 4^{-k}$. Invoke Problem [1] to show that $\sum_{k} \mathbb{P}\{\sup_{t \ge n(k)} |S_t S_{n(k)}| > 2^{-k}\} < \infty$.
- (v) Deduce that $S_t \to S_\infty$ almost surely.

5. Notes

My exposition in this Chapter is based on ideas drawn from a study of Métivier (1982, §13), Dellacherie & Meyer (1982, Chapter VII), and Chung & Williams (1990, Chapter 2). The construction in Section 2 appears new, although it is clearly closely related to existing methods.

References

- Chung, K. L. & Williams, R. J. (1990), *Introduction to Stochastic Integration*, Birkhäuser, Boston.
- Dellacherie, C. & Meyer, P. A. (1982), *Probabilities and Potential B: Theory of Martingales*, North-Holland, Amsterdam.
- Métivier, M. (1982), Semimartingales: A Course on Stochastic Processes, De Gruyter, Berlin.
- Pollard, D. (2001), A User's Guide to Measure Theoretic Probability, Cambridge University Press.

Statistics 603a: 7 October 2004