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Doléans measures

Notation

• T1 = the set of all [0, 1]-valued stopping times
• for σ, τ ∈ T1,

((σ, τ ]] := {(t, ω) ∈ (0, 1] × � : σ(ω) < t ≤ τ(ω)}
[[σ, τ ]] := {(t, ω) ∈ (0, 1] × � : σ(ω) ≤ t ≤ τ(ω)}

and so on.

1. Introduction

The construction (Project 4) of the isometric stochastic integral H • M with respect
to a martingale M ∈ M2[0, 1], at least for bounded, predictable H , depended on the
existence of the Doléans measure µ on the predictable sigma-field P on (0, 1] × �.
To make the map H �→ H • M1 an isometry between Hsimple and a subset of
L2(�, F1, P) we needed

<1> µ(a, b] × F = P{ω ∈ F}(Mb − Ma)
2 for all 0 ≤ a < b ≤ 1 and F ∈ Fa .

This property characterizes the measure µ because the collection of all predictable�
sets of the form (a, b] × F is ∩ f -stable and it generates P.

The sigma-field P is also generated by the set of all stochastic intervals ((0, τ ]]
for τ ∈ T1. The Doléans measure is also characterized by the property�

µ((0, τ ]] = P(Mτ − M0)
2 for all τ ∈ T1.

Notice that µ depends on M only through the submartingale St := (
Mt − M0

)2
:

PF(Mb − Ma)
2 = PF(Sb − Sa) for F ∈ Fa .

In fact, analogous measures can be defined for a large class of submartingales.

<2> Definition. Let {St : 0 ≤ t ≤ 1} be a cadlag submartingale. Say that a finite
(countably-additive) measure µS, defined on the predictable sigma-field of (0, 1]×�,
is the Doléans measure for S if µ((0, τ ]] = P

(
Sτ − S0

)
for every τ in T1.

Remark.
If µS exists then Sτ − S0 must be integrable for every τ in T1. Note also

that the definition is not affected if we replace St by St − S0. Thus there is no
loss of generality in assuming that S0 ≡ 0.

I mentioned explicitly that µS must be countably-additive to draw attention to a
subtle requirement on S for µS to exist, known somewhat cryptically as property [D]:

[D] {Sτ : τ ∈ T1} is uniformly integrable.
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<3> Example. If M ∈ M2[0, 1] then the submartingale St = (Mt − M0)
2 has

property [D]. Indeed, we know from Project 2 that Mτ = P(M1 | Fτ ) for all τ ∈ T1.
Thus

0 ≤ (
Mτ − M0

)2 ≤ P

((
M1 − M0

)2 | Fτ

)
for each τ in T1.

Use the fact that {P(ξ | G) : G ⊆ F} is uniformly integrable for each integrable�
random variable ξ to complete the argument.�

<4> Example. Let {Bt : 0 ≤ t ≤ 1} be a standard Brownian motion. The submartin-
gale St := B2

t has a very simple Doléans measure, characterized by

µS(a, b] ⊗ F = PF
(
B2

b − B2
a

) = PF(b − a) for F ∈ Fa .

That is, µS = m ⊗ P, with m equal to Lebesgue measure on B[0, 1]. Of course µS

has a further extension to the product sigma-field B[0, 1] ⊗ F.
A Poisson process {Nt : 0 ≤ t ≤ 1} with intensity 1 shares with Brownian

motion the independent increment property, but the increment Nt − Ns has a
Poisson(t − s) distribution. The sample paths are constant, except for jumps of
size 1 corresponding to points of the process. The process {Nt : 0 ≤ t ≤ 1} is a
submartingale with respect to its natural filtration, with Doléans measure m ⊗ P, the�
same as the square of Brownian motion.

Clearly the Doléans measure does not uniquely determine the submartingale:
both squared Brownian motion and the Poisson process have Doléans measure
m ⊗ P. But the only square integrable martingale M with continuous sample paths
and Doléans measure µM = m ⊗ P is Brownian motion: if F ∈ Fs and s < t then
PF(M2

t − M2
s ) = µM(s, t] ⊗ F = (t − s)PF , from which it follows that M2

t − t is
a martingale with respect to {Ft }. It follows from Lévy’s characterization that M is
a Brownian motion.�

Problem [2] shows that if there exists a (countably-additive) Doléans measure µS

then S has property [D]. The proof of the converse assertion is the main subject of
this handout.

<5> Theorem. Every cadlag submartingale {St : 0 ≤ t ≤ 1} with property [D] has a
countably additive Doléans measure µS.

There are several ways to prove this assertion For example:

(i) Invoke an approximation by compact sets (Métivier 1982, Chapter 3).

(ii) For the square of a continuous M2
0[0, 1]-martingale M , prove directly the

existence of an increasing process A (the quadratic variation process) for
which M2

t − At is a martingale (Chung & Williams 1990, Section 4.4).

(iii) Do something very general, as in Dellacherie & Meyer (1982, §7.1).
I will present a different method, based on the identification of measures on P

with a certain kind of linear functional defined on the vector space HBddLip of
all adapted, continuous processes H on [0, 1] × � for which there exists a finite
constant CH such that

(i) |H(t, ω)| ≤ CH for all (t, ω).
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(ii) |H(s, ω) − H(t, ω)| ≤ CH |t − s| for all s, t , and ω.

It is easy to show that HBddLip generates a sigma-field P0 on [0, 1] × � for which�
P = {D ∩ (

(0, 1] × �
)

: D ∈ P0}.
As a consequence of the Theorem stated in Section 3, an increasing linear

functional µ : HBddLip → R is defined by the integral with respect to a finite,
countably additive measure on P0 if and only if it is sigma-smooth at 0, that is,

µ(hn) ↓ 0 for each {hn : n ∈ N} ⊆ HBddLip with hn ↓ 0 pointwise.

If µ
({0} × �

) = 0 then µ can also be thought of as a measure on P.

2. The Doléans measure as a linear functional

Let {St : 0 ≤ t ≤ 1} be a cadlag submartingale with respect to a standard filtration
{Ft : 0 ≤ t ≤ 1} on a probability space (�, F, P). Suppose S has property [D]. To
prove Theorem <5> we need to construct an increasing linear functional on H+

BddLip
that is sigma-smooth at 0.

Without loss of generality assume S0 ≡ 0.
Construct µ as a limit of simpler increasing linear functionals on H+

BddLip. For
each n in N and i = 0, 1, . . . , 2n define ti,n := i/2n and �i,n := S(ti+1,n) − S(ti,n)
and write Pi,n(· · ·) for expectations conditional on F(ti,n). Note that Pi,n�i,n ≥ 0
almost surely, by the submartingale property.

For each H in H+
BddLip, define linear functionals

µn H :=
∑

0≤i<2n

P
(
H(ti,n)�i,n

) =
∑

0≤i<2n

P
(
H(ti,n)Pi,n�i,n

)
.

The second form ensures that µn is an increasing functional on H+
BddLip.

Existence of the limit

To prove that µH := limn→∞ µn H exists for each H ∈ H+, I will show that the
sequence {µn H : n ∈ N} is Cauchy. Fix n and m with n < m. Define

Ji = { j : ti,n ≤ tj,m < ti+1,n}.
Then

|
( ∑

j∈Ji
PH(tj,m)�j,m

)
− PH(ti,n)�i,n|
= |

∑
j∈Ji

P
(
H(tj,m) − H(ti,n)

)
�j,m |

≤
∑

j∈Ji
P

(|H(tj,m) − H(ti,n)|Pj,m�j,m
)

≤
∑

j∈Ji
CH 2−n

P�j,m

= CH 2−n
∑

j∈Ji
P�i,n

Sum over i to deduce that |µm H − µn H | ≤ CH 2−n
PS1, which tends to zero as n

tends to infinity.
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A useful upper bound

The functional µ inherits linearity and the increasing property from the {µn}. For
each fixed ε > 0, property [D] will give an upper bound for µH in terms of the
stopping time

<6> τ(H, ε) := inf{t : H(t, ω) ≥ ε} ∧ 1.

Temporarily write τn for the discretized stopping time obtained by rounding τ(H, ε)

up to the next integer multiple of 2−n . Then

µn H ≤
∑

0≤i<2n
P

(
ε{ti,n < τn} + CH {ti,n ≥ τn}

)
Pi,n�i,n

≤ ε
∑

0≤i<2n
P�i,n + CH

∑
0≤i<2n

P{ti,n ≥ τn}�i,n

≤ εPS1 + CH P
(
S1 − Sτn

)
.

Let n tend to infinity. Uniform integrability of the sequence {Sτn } together with
right-continuity of the sample paths of S lets us deduce in the limit that

<7> µH ≤ εPS1 + CH P
(
S1 − Sτ(H,ε)

)
.

Sigma-smoothness

Now suppose {Hk : k ∈ N} is a sequence from H+
BddLip for which 1 ≥ Hk ↓ 0

pointwise. For a fixed ε > 0, temporarily write σk for τ(Hk, ε). By compactness
of [0, 1], the pointwise convergence of the continuous functions, Hk(·, ω) ↓ 0,
is actually uniform. For each ω, the sequence {σk(ω)} not only increases to 1, it
actually achieves the value 1 at some finite k (depending on ω). Uniform integrability
of {Sσk : k ∈ N} and the analog of <7> for each Hk then give

µHk ≤ εPS1 + CH P
(
S1 − Sσk

) → εPS1 as k → ∞.

The sigma-smoothness of µ follows. The functional corresponds to the integral with
respect to a finite measure on P, with total mass µ[[0, 1]] = limn µn[[0, 1]] = PS1.

Identification as a Doléans measure

It remains to prove that

(a) µ{0} × � = 0

(b) µ[[0, τ ]] = PSτ for τ ∈ T1.

Consider first the proof of (b). For given ε > 0, approximate [[0, τ ]] by the
continuous process

Hε(t, ω) = min
(
1, (τ (ω) + ε − t)+ /ε

)
for 0 ≤ t ≤ 1.

0 1τ τ+ε

Hε 1–Hε

ε
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It is adapted because {Hε(t, ω) ≤ c} = {τ ≤ t − ε(1 − c)} ∈ Ft , for each
fixed t and constant 0 ≤ c < 1. It belongs to H+

BddLip, with CHε
= 1/ε, and

[[0, τ ]] ≤ Hε ≤ [[0, τ + ε]].
When 2−n < ε, direct calculation shows that µn Hε ≤ PSτ+2ε , which in the

limit implies µHε ≤ PSτ+2ε . By Dominated Convergence,

µ[[0, τ ]] = limε→0 µHε ≤ PSτ .

Inequality <7> applied with τε := τ(1 − Hε, ε) gives

µ((τ + ε, 1]] ≤ µ
(
1 − Hε

) ≤ εPS1 + P
(
S1 − Sτε

)
,

which, in the limit as ε tends to zero, implies µ(τ, 1]] ≤ P
(
S1 − Sτ

)
. From the fact

that
PS1 = µ[[0, 1]] = µ[[0, τ ]] + µ((τ, 1]] ≤ PSτ + P

(
S1 − Sτ

)
,

conclude that µ[[0, τ ]] = PSτ .
Specialize to the case τ ≡ 0 to get (a).�

3. Measures as linear functionals

The following material on the Daniell construction of integrals is taken almost
verbatim from Pollard (2001, Appendix A), where proofs are given.

<8> Definition. Call a class H+ of nonnegative real functions on a set X a lattice
cone if it has the following properties. If h, h1 and h2 belong to H+, and α1 and
α2 are nonegative real numbers, then:

(H1) α1h1 + α2h2 belongs to H+;

(H2) h1\h2 := (h1 − h2)
+ belongs to H+;

(H3) the pointwise minimum h1 ∧ h2 and maximum h1 ∨ h2 belong to H+;

(H4) h ∧ 1 belongs to H+.

For a lattice cone H+, let K0 denote the class of all sets of the form
K = {h ≥ α}, with h ∈ H+ and a constant α > 0. Notice that K = {h′ = 1} and
K ≤ h′ ≤ 1, where h′ = 1 ∧ (h/α). Let K denote the ∩c-closure of K0. That is, a
set K in K has a representation

<9> K =
⋂

i∈N
{hi ≥ αi }.

The sets in K are precisely those whose indicator functions are limits of decreasing
sequences of functions in H+. The class K plays a role similar to that of the
compact sets for measures on B(Rk). In particular, the class

F(K) = {F ⊆ X : F ∩ K ∈ K for all K ∈ K}
has properties analogous to the closed sets, and

B(K) = sigma-field generated by F(K)

is analogous to the Borel sigma-field. Each member of H+ is B(K)-measurable.
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<10> Theorem. Let H+ be a lattice cone, and T : H+ → R
+ be a map for which

(T1) for nonnegative real numbers α1, α2 and functions h1, h2 in H+, T (α1h1 +
α2h2) = α1T h1 + α2T h2;

(T2) if h1 ≤ h2 pointwise then T h1 ≤ T h2.

(T3) T hn ↓ 0 whenever the sequence {hn} in H+ decreases pointwise to zero.

(T4) T (h ∧ n) → T h as n → ∞, for each h in H+.

Then the set function defined by

µK := inf{T h : K ≤ h ∈ H+} for K ∈ K,

µB := sup{µK : B ⊇ K ∈ K}
is a countably additive measure on B(K) for which T h = µh for all h in H+.

4. Problems

[1] Let {Xi : 0 ≤ i ≤ n} be a submartingale with X0 ≡ 0. For a fixed λ ∈ R
+, define

stopping times σ := min{i : Xi ≤ −λ} ∧ 1 and τ := min{i : Xi ≥ λ} ∧ 1.

(i) Show that

λP{maxi Xi > λ} ≤ PXτ {Xτ ≥ λ} ≤ PX1{Xτ ≥ λ} ≤ P|Xn|.
(ii) Show that

λP{mini Xi < −λ} ≤ P(−Xσ ){Xσ ≤ −λ}
≤ −PXσ + PXn{Xσ > −λ} ≤ P|Xn|.

(iii) Suppose {Yt : 0 ≤ t ≤ 1} is a cadlag submartingale with Y0 ≡ 0. Show
that λP{supt |Yt | > λ} ≤ 2P|Y1|.

[2] Suppose a cadlag martingale {St : 0 ≤ t ≤ 1}, with S0 ≡ 0, has a Doléans measure µ

in the sense of Definition <2>, that is, µ((0, τ ]] = PSτ for every τ ∈ T1. Show that
S has property [D] by following these steps.

(i) For a given τ ∈ T1, let τn be the stopping time obtained by rounding up
to the next integer multiple of 2−n .

(ii) Invoke the Stopping Time Lemma to show that 0 ≤ PSτn and PS+
τn

≤ PS+
1

for each τ ∈ T1. Deduce that P|Sτn | ≤ κ := 2PS+
1 < ∞.

(iii) Invoke Fatou’s lemma to show that supτ∈T1
P|Sτ | ≤ κ .

(iv) For each C ∈ R
+, show that

PSτn {Sτn > C} ≤ PS1{Sτn > C} ≤ PS1{S1 >
√

C} + κ/
√

C .

Invoke Fatou, then deduce that supτ∈T1
PSτ {Sτ > C} → 0 as C → ∞.

(v) Show that every cadlag function on [0, 1] is bounded in absolute value.
Deduce that the stopping time σC := inf{t : St < −C} ∧ 1 has σC(ω) = 1
for all C large enough (depending on ω). Deduce that µ((σC , 1]] → 0 as
C → ∞.
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(vi) For a given τ ∈ T1 and C ∈ R
+, define Fτ := {Sτ < −C}. Show that

τ ′ := τ Fc
τ + Fτ is a stopping time for which

P
(
S1 − Sτ

)
Fτ = P

(
Sτ ′ − Sτ

) = µ((τ, τ ′]] ≤ µ((σC , 1]],

Hint: Show that if ω ∈ Fτ then σC(ω) ≤ τ(ω) and if ω ∈ Fc
τ then

τ(ω) = τ ′(ω).

(vii) Deduce that supτ∈T1
P

( − Sτ

) {Sτ < −C} → 0 as C → ∞.

[3] Let {St : t ∈ R
+} be a submartingale of class [D]. Show that there exists an

integrable random variable S∞ for which P
(
S∞ | Ft

) ≥ St → S∞ almost surely and
in L1 by following these steps.

(i) Show that the uniformly integrable submartingale {Sn : n ∈ N} converges
almost surely and in L1 to an S∞ for which P

(
S∞ | Fn

) ≥ Sn .

(ii) For t ≤ n, show that St ≤ P
(
P(S∞ | Fn) | Ft

) = P
(
S∞ | Ft

)
.

(iii) For t ≥ n, show that

P(St − Sn)
− ≤ P(St − Sn)

+ ≤ P(S∞ − Sn)
+ → 0 as n → ∞.

(iv) For each k ∈ N, choose n(k) for which P|S∞ − Sn(k)| ≤ 4−k . Invoke
Problem [1] to show that

∑
k P{supt≥n(k) |St − Sn(k)| > 2−k} < ∞.

(v) Deduce that St → S∞ almost surely.

5. Notes

My exposition in this Chapter is based on ideas drawn from a study of Métivier (1982,
§13), Dellacherie & Meyer (1982, Chapter VII), and Chung & Williams (1990,
Chapter 2). The construction in Section 2 appears new, although it is clearly closely
related to existing methods.
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