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DOLEANS MEASURES

Notation

e T = the set of all [0, 1]-valued stopping times

e foro, 7 €7y,
(o, 7] ={(t,w) € (0, 1] x L:0(w) <t < (W)}
[o,t]] ={(t,w) € (0,11 x L:0(w) <t < t(w)}

and so on.

Introduction

The construction (Project 4) of the isometric stochastic integral H ¢ M with respect
to a martingale M € M?2[0, 1], at least for bounded, predictable H, depended on the
existence of the Doléans measure u on the predictable sigma-field P on (0, 1] x €.
To make the map H + H e M, an isometry between Hgmpe and a subset of
L2(R2, F;, P) we needed

pu(a, bl x F =Plw e FY(M, — M,)*> forall0<a<b<1and F € ,.

This property characterizes the measure u because the collection of all predictable
sets of the form (a, b] x F is N f-stable and it generates P.

The sigma-field P is also generated by the set of all stochastic intervals ((0, t]]
for t € T;. The Doléans measure is also characterized by the property

w(©, Tl = P(M, — My)>  forall T € 7.
Notice that u depends on M only through the submartingale S, := (M, - Mo)z:
PF(M, — M,)* =PF(S, —S,)  for F € F,.

In fact, analogous measures can be defined for a large class of submartingales.

Definition. Ler {S; : 0 <t < 1} be a cadlag submartingale. Say that a finite
(countably-additive) measure [Lg, defined on the predictable sigma-field of (0, 1] x 2,
is the Doléans measure for S if u((0,t]] =P (S, - So) Sor every T in T.

REMARK.

If s exists then S, — Sy must be integrable for every t in 7). Note also
that the definition is not affected if we replace S, by S, — Sp. Thus there is no
loss of generality in assuming that S, = 0.

I mentioned explicitly that g must be countably-additive to draw attention to a
subtle requirement on S for g to exist, known somewhat cryptically as property [D]:

[D] {S; : T € 71} is uniformly integrable.
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<3> Example. If M e M?[0, 1] then the submartingale S, = (M, — M,)* has
property [D]. Indeed, we know from Project 2 that M, = P(M, | F;) for all T € T;.
Thus
2 2 .
0< (M, — M) <P ((Ml — M)~ | fﬂ) for each 7 in 7.

Use the fact that {P(§ | §) : § € JF} is uniformly integrable for each integrable
0 random variable £ to complete the argument.

<4> Example. Let {B; : 0 <t < 1} be a standard Brownian motion. The submartin-
gale S; := B,2 has a very simple Doléans measure, characterized by

ps(a,bl® F =PF (B; — B}) =PF(b—a)  for F € F,.

That is, us = m ® P, with m equal to Lebesgue measure on B[0, 1]. Of course ug
has a further extension to the product sigma-field B[0, 1] ® F.

A Poisson process {N; : 0 < t < 1} with intensity 1 shares with Brownian
motion the independent increment property, but the increment N, — N, has a
Poisson(t — s) distribution. The sample paths are constant, except for jumps of
size 1 corresponding to points of the process. The process {N; : 0 <t < 1} is a
submartingale with respect to its natural filtration, with Doléans measure m ® [P, the
same as the square of Brownian motion.

Clearly the Doléans measure does not uniquely determine the submartingale:
both squared Brownian motion and the Poisson process have Doléans measure
m @ P. But the only square integrable martingale M with continuous sample paths
and Doléans measure (1), = m ® P is Brownian motion: if F € ¥ and s < ¢ then
PF(M? — M?) = uu(s,t]® F = (t — s)PF, from which it follows that M? — ¢ is
a martingale with respect to {&,}. It follows from Lévy’s characterization that M is

[0 a Brownian motion.

Problem [2] shows that if there exists a (countably-additive) Doléans measure (g
then S has property [D]. The proof of the converse assertion is the main subject of
this handout.

<5> Theorem. Every cadlag submartingale {S; : 0 <t < 1} with property [D] has a
countably additive Doléans measure jLg.

There are several ways to prove this assertion For example:
(i) Invoke an approximation by compact sets (Métivier 1982, Chapter 3).

(ii) For the square of a continuous M3[0, 1]-martingale M, prove directly the
existence of an increasing process A (the quadratic variation process) for
which M? — A, is a martingale (Chung & Williams 1990, Section 4.4).

(ili) Do something very general, as in Dellacherie & Meyer (1982, §7.1).

I will present a different method, based on the identification of measures on P
with a certain kind of linear functional defined on the vector space Hpaqrip Of
all adapted, continuous processes H on [0, 1] x € for which there exists a finite
constant Cy such that

() |H(t, ®)| < Cy for all (¢, w).
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(i) |H(s,w) — H(t,w)| < Cylt —s| for all s, ¢, and w.
It is easy to show that Hpgaip generates a sigma-field Py on [0, 1] x € for which
P={DN (0,11 x Q) : D e Py}.

As a consequence of the Theorem stated in Section 3, an increasing linear
functional p : Hpaarip — R is defined by the integral with respect to a finite,
countably additive measure on Py if and only if it is sigma-smooth at 0, that is,

wChy,) 10 for each {4, : n € N} C Hgpqqrip With &, | O pointwise.
If u ({0} X Q) =0 then w can also be thought of as a measure on P.

The Doléans measure as a linear functional

Let {S; : 0 <t < 1} be a cadlag submartingale with respect to a standard filtration
{F, : 0 <t < 1} on a probability space (2, F, P). Suppose S has property [D]. To
prove Theorem <5> we need to construct an increasing linear functional on ngddLip
that is sigma-smooth at 0.

Without loss of generality assume Sp = 0.

Construct p as a limit of simpler increasing linear functionals on i]-fgddup. For
eachninNandi =0,1,...,2" define ;,, :=i/2" and A, , := SWty1.,) — SWi.n)
and write P; ,(---) for expectations conditional on F(#,). Note that P; ,A;, > 0
almost surely, by the submartingale property.

For each H in ﬂ-fgddup, define linear functionals

unH == Y P(Ht)AL) = Y P(HWw)PinlAin)-

0<i<2" 0<i<2n

. . . . +
The second form ensures that j, is an increasing functional on Hgyyy ;-

Existence of the limit

To prove that wH := lim, .o u, H exists for each H € H™", I will show that the
sequence {u, H : n € N} is Cauchy. Fix n and m with n < m. Define

Ji = {.] : ti,n =< tj,m < ti+l,n}-

Then
(X0 BH@Gm)Arn) = PH (6. Al
= | ngi P (H(tjm) — H(ti0)) Ajml
<oy BUH@Gm) — H)IPjn &)
<D o, Cu2"PA
=Cp2" ) PAL

Sum over i to deduce that |u,,H — u,H| < Cy27"PS;, which tends to zero as n
tends to infinity.
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A useful upper bound

The functional p inherits linearity and the increasing property from the {u,}. For
each fixed € > 0, property [D] will give an upper bound for wH in terms of the
stopping time

t(H,e) :=inf{t : H(t,w) > €} A 1.
Temporarily write 7, for the discretized stopping time obtained by rounding 7 (H, €)
up to the next integer multiple of 27". Then

/LnH =< ZO<1’<2” ]P)(E{ti,n < Tn} + CH{ti,n > Tn}) ]Pi,nAi,n

=€ ZO§i<2” PAi’" +Cu ZO§i<2n ]P){ti,n = Tn}Ai,n
< €PS; + CyP (S1 — an) .

Let n tend to infinity. Uniform integrability of the sequence {S;,} together with
right-continuity of the sample paths of § lets us deduce in the limit that

(H < €PS; + CyP (S — Seqne) -

Sigma-smoothness

Now suppose {H; : k € N} is a sequence from ngddLip for which 1 > H; | 0
pointwise. For a fixed € > 0, temporarily write o for T(Hy, €). By compactness
of [0, 1], the pointwise convergence of the continuous functions, H;(-, w) | O,

is actually uniform. For each w, the sequence {o;(w)} not only increases to 1, it
actually achieves the value 1 at some finite k (depending on w). Uniform integrability
of {Ss, : k € N} and the analog of <7> for each H; then give

wHe < €PS; + CyP (S1 — S5,) — €PS; as k — oo.

The sigma-smoothness of p follows. The functional corresponds to the integral with
respect to a finite measure on P, with total mass u[[0, 1]] = lim, «,[[0, 1]] = PS;.

Identification as a Doléans measure

It remains to prove that
(@) u{0} x2=0
(b) u[[0, ]] = PS; for T € T;.

Consider first the proof of (b). For given € > 0, approximate [[0, t]] by the
continuous process

H.(t,w) = min (1, (t(w) + € — 1) /¢) for0 <t < 1.

HSJ L 1-H,
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It is adapted because {H.(f,w) < ¢} = {t <t — €(l — ¢)} € F, for each
fixed ¢ and constant 0 < ¢ < 1. It belongs to i}ngdLip, with Cy = 1/€, and
[0, 7]l < He < [[0, T + €]].
When 27" < €, direct calculation shows that u, H. < PS;,2, which in the
limit implies uH, < PS;;2.. By Dominated Convergence,
M[[O’ T]] = 1ime—>0 /LHe = ]P)Sr
Inequality <7> applied with 7. := t(1 — H,, €) gives
n(@+e M <pu(l—He) <ePS +P (S —S.),

which, in the limit as € tends to zero, implies u(z, 1]] <P (S1 — St). From the fact
that

PS; = ull0, 1] = ll0, <1l + p((x, 11 < PS, + P (S — ),

conclude that u[[0, t]] = PS;.
Specialize to the case T = 0 to get (a).

Measures as linear functionals

The following material on the Daniell construction of integrals is taken almost
verbatim from Pollard (2001, Appendix A), where proofs are given.

Definition. Call a class Ht of nonnegative real functions on a set X a lattice
cone if it has the following properties. If h, hy and h, belong to H*, and a; and
oy are nonegative real numbers, then:

(HI1) ajhi + azhy belongs to H™;
(H2) hi\hy :== (hy — hy)" belongs to H™;
(H3) the pointwise minimum hy A hy and maximum hy Vv h, belong to H*;
(H4) h A1 belongs to Ht.
For a lattice cone H*, let K, denote the class of all sets of the form
K =1{h > a}, with h € H" and a constant & > 0. Notice that K = {h’ = 1} and

K <h' <1,where " = 1A (h/a). Let X denote the Nc-closure of Ky. That is, a
set K in X has a representation

K =), ylhi = a).

The sets in K are precisely those whose indicator functions are limits of decreasing
sequences of functions in H*. The class X plays a role similar to that of the
compact sets for measures on B(R¥). In particular, the class

FX)={FCX:FNK eX forall K € X}
has properties analogous to the closed sets, and
B(K) = sigma-field generated by F(K)

is analogous to the Borel sigma-field. Each member of H* is B(XK)-measurable.
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<10> Theorem. Let H*' be a lattice cone, and T : Ht — Rt be a map for which

(T1) for nonnegative real numbers ay, oy and functions hy, hy in Y, T(ajh;+
achy) = a1 Thy 4+ o Thy;

(T2) if hy < hy pointwise then Thy < Th.
(T3) Thy, | 0 whenever the sequence {h,} in H™ decreases pointwise to zero.
(T4) T(h An) — Th as n — oo, for each h in HT.
Then the set function defined by
wK :=inf{Th: K <heH"} for K € X,
uB :=sup{uK : B2 K € X}
is a countably additive measure on B(XK) for which Th = wh for all h in H*.

4. Problems

[1] Let {X; :0 <i < n} be a submartingale with Xo = 0. For a fixed A € R™, define
stopping times ¢ :=min{i : X; < —A} Al and 7 :=min{i : X; > A} A 1.

(i) Show that
AP{max; X; > A} < PX {X. > A} < PX|{X; > A} < P|X,|.
(ii)) Show that
AP{min; X; < —A} < P(—X,){X, < —A}
< —PX, + PXu{Xo > =2} = P|X,|.
(iii) Suppose {Y; : 0 <t < 1} is a cadlag submartingale with ¥y = 0. Show
that AP{sup, |Y;| > A} < 2P|Y;|.

[2] Suppose a cadlag martingale {S, : 0 <t < 1}, with Sp = 0, has a Doléans measure
in the sense of Definition <2>, that is, u((0, t]] = PS; for every 7 € J;. Show that
S has property [D] by following these steps.

(i) For a given T € 71, let 7, be the stopping time obtained by rounding up
to the next integer multiple of 27".

(ii) Invoke the Stopping Time Lemma to show that 0 < PS; and PS; < Ps;
for each T € T;. Deduce that P|S,,| < k := 2PS; < oo.

(iii) Invoke Fatou’s lemma to show that sup, .y P[S;| < k.
(iv) For each C € R™, show that
PS, {S; > C} < PS|{S;, > C} < PS{S; > /C} +«/+/C.
Invoke Fatou, then deduce that sup, .y, PS;{S; > C} — 0 as C — oo.

(v) Show that every cadlag function on [0, 1] is bounded in absolute value.
Deduce that the stopping time o¢ :=inf{t : S; < —C} A 1 has o¢c(w) =1
for all C large enough (depending on w). Deduce that pu((o¢, 1]] — O as
C — o0.
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(vi) For a given T € 7} and C € R*, define F, := {S; < —C}. Show that
T’ = tFf{ 4 F, is a stopping time for which
P(Si—8;) F, =P(Se — S:) = u((z, 'l < n((oc, 111,
Hint: Show that if w € F; then oc(w) < t(w) and if @ € F{ then
T(w) = v/ (w).
(vii) Deduce that sup, g, P (— ;) {S; < —=C} - 0 as C — oc.
[3] Let {S; : t € Rt} be a submartingale of class [D]. Show that there exists an

integrable random variable S, for which P (Soo | ?,) > §; = S almost surely and
in L' by following these steps.

(1) Show that the uniformly integrable submartingale {S, : n € N} converges

almost surely and in L' to an S for which P (Sx | F,) = S,.

(ii) For t < n, show that S, <P (P(Sx | 1) | F1) =P (S | F).

(ii1) For t > n, show that

PSS, — S,)” <P(S, — S)T <P(Seo — Sy))T — 0 as n — 00.

(iv) For each k € N, choose n(k) for which P|Se — Sy < 47% Invoke
Problem [1] to show that Y, P{sup,.,q) |S: — S| > 27F} < oo.

(v) Deduce that S, — S, almost surely.

5. Notes

My exposition in this Chapter is based on ideas drawn from a study of Métivier (1982,
§13), Dellacherie & Meyer (1982, Chapter VII), and Chung & Williams (1990,

Chapter 2). The construction in Section 2 appears new, although it is clearly closely
related to existing methods.
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