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Analytic sets

For a discrete-time process {Xn} adapted to a filtration {Fn : n ∈ N},
the prime example of a stopping time is τ = inf{n ∈ N : Xn ∈ B}, the first
time the process enters some Borel set B. For a continuous-time process {Xt }
adapted to a filtration {Ft : t ∈ R

+}, it is less obvious whether the analogously
defined random variable τ = inf{t : Xt ∈ B} is a stopping time. (Also it is not
necessarily true that Xτ is a point of B.) The most satisfactory resolution of
the underlying measure-theoretic problem requires some theory about analytic
sets. What follows is adapted from Dellacherie & Meyer (1978, Chapter III,
paras 1–33, 44–45). The following key result will be proved in this handout.

<1> Theorem. Let A be a B(R+) ⊗ F-measurable subset of R
+ × � and let

(�, F, P) be a complete probability space. Then:

(i) The projection π� A := {ω ∈ � : (t, ω) ∈ A for some t in R
+} belongs

to F.

(ii) There exists an F-measurable random variable ψ : � → R
+ ∪ {∞}

such that ψ(ω) < ∞ and (ψ(ω), ω) ∈ A for almost all ω in the
projection π� A, and ψ(ω) = ∞ for ω /∈ π� A.

Remark. The map ψ in (ii) is called a measurable cross-section
of the set A. Note that the cross-section Aω := {t ∈ R+ : (t, ω) ∈ A} is
empty when ω /∈ π� A. It would be impossible to have (ψ(ω), ω) ∈ A for
such an ω.

The proofs will exploit the properties of the collection of analytic subsets
of [0, ∞] × �. As you will see, the analytic sets have properties analogous to
those of sigma-fields—stability under the formation of countable unions and
intersections. They are not necessarily stable under complements, but they do
have an extra stability property for projections that is not shared by measurable
sets. The Theorem is made possible by the fact that the product-measurable
subsets of R

+ × � are all analytic.

1. Notation

A collection D of subsets of a set X with ∅ ∈ D is called a paving on X. A
paving that is closed under the formation of unions of countable subcollections
is said to be a ∪c-paving. For example, the set Dσ of all unions of countable
subcollections of D is a ∪c-paving. Similarly, the set Dδ of all intersections
of countable subcollections of D is a ∩c-paving. Note that Dσδ := (Dσ )δ is a
∩c-paving but it need not be stable under ∪c.

Let T be a compact metric space equipped with the paving K(T ) of
compact subsets and its Borel sigma-field B(T ), which is generated by K(T ).

Remark. In fact, K(T ) is also the class of closed subsets of the
compact T .

For Theorem <1>, the appropriate space will be T = [0, ∞]. The sets in
B(R+)⊗F can be identified with sets in B(T )⊗F. The compactness of T will
be needed to derive good properties for the projection map π� : T × � → �.

An important role will be played by the ∩ f -paving

K(T ) × F := {K × F : K ∈ K(T ), F ∈ F} on T × �

and by the paving R that consists of all finite unions of sets from K(T ) × F.
That is, R is the ∪ f -closure of K(T ) × F. Note (Problem [1]) that R is a
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(∪ f, ∩ f )-paving on T × �. Also, if R = ∪i Ki × Fi then, assuming we have
discarded any terms for which Ki = ∅,

π�(R) = ∪iπ�

(
Ki × Fi

) = ∪i Fi ∈ F.

Remark. If E and F are sigma-fields, note the distinction between

E × F = {E × F : E ∈ E, F ∈ F}
and E ⊗ F := σ(E × F).

2. Why compact sets are needed

Many of the measurability difficulties regarding projections stem from the fact
that they do not “preserve set-theoretic operations” in the way that inverse
images do: π�

( ∪i Ai
) = ∪iπ� Ai but π�

( ∩i Ai
) ⊆ ∩iπ� Ai . Compactness of

cross-sections will allow us to strengthen the last inclusion to an equality.

<2> Lemma. [Finite intersection property] Suppose K0 is a collection of compact
subsets of a metric space X for which each finite subcollection has a nonemptyalso works for any Hausdorff

topological space intersection. Then ∩K0 
= ∅.

Proof. Arbitrarily choose a K0 from K0. If ∩K0 were empty then the sets
{K c : K ∈ K0} would be an open cover of K0. Extract a finite subcover
∪m

i=1 K c
i . Then ∩m

i=0 Ki = ∅, a contradiction.�
<3> Corollary. Suppose {Ai : i ∈ N} is a decreasing sequence of subsets

of T × � for which each ω-cross-section Ki (ω) := {t ∈ T : (t, ω) ∈ Ai } is
compact. Then π�

( ∩i∈N Ai
) = ∩i∈Nπ� Ai .

Proof. Suppose ω ∈ ∩i∈Nπ� Ai . Then {Ki (ω) : i ∈ N} is a decreasing
sequence of compact, nonempty (because ω ∈ π� Ai ) subsets of T . The finite
intersection property of compact sets ensures that there is a t in ∩i∈NKi (ω).
The point (t, ω) belongs to ∩i∈N Ai and ω ∈ π�

( ∩i Ai
)
.�

Remark. For our applications, we will be dealing only with sequences,
but the argument also works for more general collections of sets with
compact cross-sections.

<4> Corollary. If B = ∩i∈N Ri with Ri ∈ R then π� B = ∩i∈Nπ� Ri ∈ F.

Proof. Note that the cross-section of each R-set is a finite union of compact
sets, which is compact. Without loss of generality, we may assume that
R1 ⊇ R2 ⊇ . . .. Invoke Corollary <3>.�

3. Measurability of some projections

For which B ∈ B(T ) ⊗ F is it true that π�(B) ∈ F? From Corollary <4>,
we know that it is true if B belongs to Rδ . The following properties of outer
measures (see Problem [2]) will allow us to extend this nice behavior to sets
in Rσδ:

(i) If A1 ⊆ A2 then P
∗(A1) ≤ P

∗(A2)

(ii) If {Ai : i ∈ N} is an increasing sequence then P
∗ (

Ai
) ↑ P

∗ ( ∪i∈N Ai
)
.

(iii) If {Fi : i ∈ N} ⊆ F is a decreasing sequence then

P
∗ (

Fi
) = PFi ↓ P

( ∩i∈N Fi
) = P

∗ ( ∩i∈N Fi
)
.

For each subset D of T × � define �∗(D) := P
∗π� D, the outer measure

of the projection of D onto �. If Di ↑ D then π� Di ↑ π� D. If Ri ∈ R and
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Ri ↓ B then π� Ri ∈ F and π� Ri ↓ π� B ∈ F. The properties for P
∗ carry over

to analogous properties for �∗:

(i) If D1 ⊆ D2 then �∗(D1) ≤ �∗(D2)

(ii) If {Di : i ∈ N} is an increasing sequence then �∗ (
Di

) ↑ �∗ ( ∪i∈N Di
)
.

(iii) If {Ri : i ∈ N} ⊆ R is a decreasing sequence then �∗ (
Ri

) ↓
�∗ ( ∩i∈N Ri

)
.

With just these properties, we can show that π� behaves well on a much larger
collection of sets than R.

<5> Lemma. If A ∈ Rσδ then �∗(B) = sup{�∗(B) : B ∈ Rδ}. Consequently,
the set π� A belongs to F.

Proof. Write A as ∩i∈N Di with Di = ∪j∈N Ri j ∈ Rσ . As R is ∪ f -stable, we
may assume that Ri j is increasing in j for each fixed i .

Suppose �∗(A) > M for some constant M . Invoke (ii) for the sequence
{AR1 j }, which increases to AD1 = A, to find an index j1 for which the
set R1 := R1 j1 has �∗ (

AR1
)

> M .
The sequence {AR1 R2 j } increases to AR1 D2 = AR1. Again by (ii), there

exists an index j2 for which the set R2 = R2 j2 has �∗(AR1 R2) > M . And so
on. In this way we construct sets Ri in R for which

�∗(R1 R2 . . . Rn) ≥ �∗(AR1 R2 . . . Rn) > M

for every n. The set BM := ∩i∈N Ri belongs to Rδ; it is a subset of ∩i∈N Di = A;
and, by (iii), �∗(B) ≥ M .

By Corollary <4>, the set BM projects to a set FM := π� BM in F and
hence PFM = �∗ B ≥ M . The set π� A is inner regular, in the sense that

P
∗π� A = �∗ A = sup{PF : π� A ⊇ F ∈ F}

It follows (Problem [2]) that the set π� A belongs to F.�
The properties shared by P

∗ and �∗ are so useful that they are given a
name.

<6> Definition. Suppose S is a paving on a set S. A function � defined for all
subsets of S and taking values in [−∞, ∞] is said to be a Choquet S-capacity
if it satisfies the following three properties.

(i) If D1 ⊆ D2 then �(D1) ≤ �(D2)

(ii) If {Di : i ∈ N} is an increasing sequence then �
(
Di

) ↑ �
( ∪i∈N Di

)
.

(iii) If {Si : i ∈ N} ⊆ S is a decreasing sequence then �
(
Si

) ↓ �
( ∩i∈N Si

)
.

The outer measure P
∗ is a Choquet F-capacity defined for the subsets

of �. Moreover, if � is any Choquet F-capacity defined for the subsets of �

then �∗(D) := �(π� D) is a Choquet R-capacity defined for the subsets
of T × �. The argument from Lemma <5> essentially shows that if A ∈ Rσδ

then �∗(B) = sup{�∗(B) : B ∈ Rδ} for every such �∗, whether defined via P
∗

or not.

4. Analytic sets

The paving of S-analytic sets can be defined for any paving S on a set S. For
our purposes, the most important case will be S = T × � with S = R.
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<7> Definition. Suppose S is a paving on a set S. A subset A of S is said
to be S-analytic if there exists a compact metric space E and a subset D
in

(
K(E) × S

)
σδ

for which A = πS D. Write A(S) for the set of all S-analytic
subsets of S.

Remark. Note that Rσδ = (K(T ) × F)σδ . The σ takes care of the ∪ f
operation needed to generate R from K(T ) × F. The R-analytic sets are
also called K(T ) × F-analytic sets.

In fact, it is possible to find a single E that defines all the S-analytic
subsets, but that possibility is not important for my purposes. What is important
is the fact that A(S) is a (∪c, ∩c)-paving: see Problem [3].

When E is another compact metric space, Tychonoff’s theorem (see
Dudley 1989, Section 2.2, for example) ensures not only that the product space
E × T is a compact metric space but also that K(E) × K(T ) ⊆ K(E × T ).

Lemma <5>, applied to T̃ := E × T instead of T and with R̃ the
∪ f -closure of K(E × T ) × F, implies that

<8> π̃� D ∈ F for each D in R̃σδ.

Here π̃� projects E × T × � onto �. We also have

R̃σδ ⊇ (
K(E) × K(T ) × F

)
σδ

= (
K(E) × R

)
σδ

where R is the ∪ f -closure of K(T ) × F, as in Section 3. As a special case of
property <8> we have

<9> π̃� D ∈ F for each D in
(
K(E) × R

)
σδ

.

Write π̃� as a composition of projection π� ◦ π̃T ×�, where π̃T ×� projects
E × T × � onto T × �. As E ranges over all compact metric spaces and D
ranges over all the

(
K(E) × R

)
σδ

sets, the projections A := π̃T ×� D range over
all R-analytic subsets of T × �. Property <9> is equivalent to the assertion

<10> π� A ∈ F for all A ∈ A(R).

In fact, the method used to prove Lemma <5> together with an analogue
of the argument just outlined establishes an approximation theorem for analytic
sets and general Choquet capacities.

<11> Theorem. Suppose S is a (∪ f, ∩ f )-paving on a set S and Let � is a
Choquet S-capacity on S. Then �(A) = sup{�(B) : A ⊇ B ∈ Sδ}. for each A
in A(S).

To prove assertion (i) of Theorem <1>, we have only to check that

B(T ) ⊗ F ⊆ A(R)

for the special case where T = [0, ∞]. By Problem [3], A(R) is a (∪c, ∩c)-
paving. It follows easily that

H := {H ∈ B(T ) ⊗ F : H ∈ A(R) and H c ∈ A(R) }
is a sigma-field on T × �. Each K × F with K ∈ K(T ) and F ∈ F belongs
to H because K(T ) × F ⊆ R ⊆ A(R) and

(K × F)c = (
K × Fc

) + (
K c × �

)
K c = ∪i∈N{t : d(t, K ) ≥ 1/ i} ∈ K(T )σ

It follows that H = σ(K(T ) × F) = B(T ) ⊗ F and B(T ) ⊗ F ⊆ A(R).
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5. Existence of measurable cross-sections

The general Theorem <11> is exactly what we need to prove part (ii) of
Theorem <1>.

Once again identify A with an R-analytic subset of T × �, where
T = [0, ∞]. The result is trivial if α1 := Pπ� A = 0, so assume α1 > 0.

Invoke Theorem <11> for the R-capacity defined by �∗(D) = P
∗(π� D).

Find a subset with A ⊇ B1 ∈ Rδ and P
(
π� B1

) = �∗(B1) ≥ α1/2. Define

ψ1(ω) := inf{t ∈ R
+ : (t, ω) ∈ B1}.

Because the set B1 has compact cross-sections, the infimum is actually achieved
for each ω in π� B1. For ω /∈ π� B1 the infimum equals ∞. Define

A2 := {(t, ω) ∈ A : ω /∈ π� B1} = A ∩ (
T × (π� B1)

c
)

Note that A2 ∈ A(R) and α2 := Pπ� A2 ≤ α1/2. Without loss of generality
suppose α2 > 0. Find a subset with A2 ⊇ B2 ∈ Rδ and P

(
π� B2

) = �∗(B2) ≥
α2/2. Define ψ2(ω) as the first hitting time on B2.

T

πΩA

A

B1

B2
πΩA2

And so on. The sets {π� Bi : i ∈ N} are disjoint, with F := ∪i∈Nπ� Bi a
subset of π� A. By construction αi ↓ 0, which ensures that P

(
(π� A)\F

) = 0.If αi = 0 for some i , the con-
struction requires only finitely
many steps. Define ψ := infi∈N ψi . On B we have (ψ(ω), ω) ∈ A.�

6. Problems

[1] Suppose S is a paving (on a set S), which is ∩ f -stable. Let S∪ f consists of
the set of all unions of finite collections of sets from S. Show that S∪ f is a
(∪ f, ∩ f )-paving. Hint: Show that (∪i Si ) ∩ (∪j Tj ) = ∪i, j (Si ∩ Tj ).

[2] The outer measure of a set A ⊆ � is defined as PA := inf{PF : A ⊆ F ∈ F}.
(i) Show that the infimum is achieved, that is, there exists an F ∈ F for

which A ⊆ F and P
∗ A = PF . Hint: Consider the intersection of a

sequence of sets for which PFn ↓ P
∗ A.

(ii) Suppose {Dn : n ∈ N} is an increasing sequence of sets (not
necessarily F-measurable) with union D. Show that P

∗ Dn ↑ P
∗ D.

Hint: Find sets with Di ⊆ Fi ∈ F and P
∗ Di = PFi . Show that

∩i≥n Fi ↑ F ⊇ D and PF ≤ supi∈N
P

∗ Di .

(iii) Suppose D is a subset of � for which P
∗ D = sup{PF0 : D ⊇ F0 ∈ F}.

Show that D belongs to the P-completion of F (or to F itself if F is
P-complete). Hint: Find sets F and Fi in F for which Fi ⊆ D ⊆ F
and PFi ↑ P

∗ D = PF . Show that F\ ( ∪i∈N Fi
)

has zero P-measure.

[3] Suppose {Aα : α ∈ N} ⊆ A(S). Show that ∪α Aa ∈ A(S) and ∩α Aa ∈ A(S), by
the following steps. Recall that there exist compact metric spaces {Eα : α ∈ N},
each equipped with its paving Kα of compact subsets, and sets Dα ∈ (

Kα × S
)
σδ

for which Aα = πS Dα .D&M Theorem 3.8

Statistics 603a: 3 October 2004 c©David Pollard



AN-6

(i) Define E := ×α∈N Eα and E−β = ×α∈N\{β}Eα . Show that E is a
compact metric space.

(ii) Define D̃ := Dα × E−α . Show that D̃α ∈ (
K(E) × S

)
σδ

and that
Aα = π̃S D̃α , where π̃S denotes the projection map from E × S to S.

(iii) Show that ∩α Aα = π̃S
( ∩α D̃α

)
and ∩α D̃α ∈ (

K(E) × S
)
σδ

.

(iv) Without loss of generality suppose the Eα spaces are disjoint—
otherwise replace Eα by {α} × Eα . Define H = ∪α∈N Eα and
E∗ := H ∪ {∞}. Without loss of generality suppose the metric dα

on Eα is bounded by 2−α . Define

d(x, y) = d(y, x) :=
{ dα(x, y) if x, y ∈ Eα

2−α + 2−β if x ∈ Eα , y ∈ Eβ with α 
= β

2−α if y = ∞ and x ∈ Eα

Show that E∗ is a compact metric space under d.

(v) Suppose Dα = ∩i∈N Bαi with Bαi ∈ (Kα × S)σ . Show that ∪α Dα =
∩i ∪α Bα,i . Hint: Consider the intersection with Eα × S.

(vi) Deduce that ∪α Dα ∈ (K(E∗) × S)σδ .

(vii) Conclude that ∪α Aα = πS ∪α Dα ∈ A(S).
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