Project 10

1. Change of measure for Brownian motion

Let $\{B_t : 0 \le t \le 1\}$ be a Brownian motion with respect to a (standard) filtration $\{\mathcal{F}_t\}$ on $(\Omega, \mathcal{F}, \mathbb{P})$. Write \mathcal{U} for its quadratic variation process, $\mathcal{U}_t = t$. For each $\alpha \in \mathbb{R}$, the process

$$q_t = \exp\left(\alpha B_t - \frac{1}{2}\alpha^2 t\right)$$
 for $0 \le t \le 1$

is a nonnegative martingale, with $\mathbb{P}q_t = \mathbb{P}q_0 = 1$. Define a new probability measure \mathbb{Q}_{α} on \mathcal{F}_1 by specifying q_1 to be its density with respect to \mathbb{P} . That is,

$$\mathbb{Q}_{\alpha}X = \mathbb{P}(Xq_1)$$

at least for all bounded random variables X.

- Show that Q_α is equivalent to P, in the sense that both measures have the same collection N of negligible sets.
- Show that $\mathbb{Q}_{\alpha}X = \mathbb{P}(Xq_t)$ if X is \mathcal{F}_t -measurable. Explain why q_t is a Radon-Nikodym density for \mathbb{Q}_{α} with respect to \mathbb{P} when both measures are restricted to \mathcal{F}_t .
- For fixed s and $t = s + \delta$, a fixed F in \mathcal{F}_s , and a bounded measurable f, show that

$$\mathbb{Q}_{\alpha}Ff(B_t - B_s) = \mathbb{P}(Fq_s)\mathbb{P}\left(f(B_t - B_s)\exp\left(\alpha(B_t - B_s) - \frac{1}{2}\alpha^2\delta\right)\right)$$
$$= \mathbb{Q}_{\alpha}F\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi\delta}}f(z)\exp\left(-\frac{1}{2}(z - \alpha\delta)^2/\delta\right)dz$$

• Deduce that, under \mathbb{Q}_{α} , the process $B_t - \alpha t$ is a standard Brownian motion.

2. The Black-Scholes formula

Stock prices (in units so that $S_0 \equiv 1$) are sometimes modeled by a continuous process driven by a Brownian motion, *B*, on [0, 1];

$$S_t = \exp((\mu - \frac{1}{2}\sigma^2)t + \sigma B_t) \quad \text{for } 0 \le t \le 1$$

= $\exp(\sigma \widetilde{B}_t - \frac{1}{2}\sigma^2 t) \quad \text{where } \widetilde{B}_t = B_t + (\mu/\sigma)t$

for constants $\sigma > 0$ (assumed known) and μ (unknown). That is,

 $S_t = \psi(B_t, \mathcal{U}_t)$ where $\psi(x, y) = \exp(\sigma x + (\mu - 1/2\sigma^2)y)$.

Suppose Y = f(S), with f a C-measurable functional on C[0, 1]. How much should one pay at time 0 in order to receive the amount Y at time 1?

• Use the Itô formula to show that

I am ignoring inflation. cf.

expression of value of stock as a multiple of a bond price.

$$S_t = 1 + \sigma S \bullet B_t + \mu S \bullet \mathcal{U}_t,$$

In more traditional notation,

$$dS_t = \sigma S_t dB_t + \mu S_t dt$$
, or $\frac{dS_t}{S_t} = \sigma dB_t + \mu dt$.

Roughly speaking, the relative increments of *S* behave like the increments of a Brownian motion with drift μ . The process $\sigma S \bullet B$ is the loc $\mathcal{M}_0^2[0, 1]$ part of the semimartingale decomposition of *S*.

Statistics 603a: 11 November 2004

- Similarly, show that $S_t = 1 + \sigma S \bullet \widetilde{B}_t$.
- Show that Y can be written as a C-measurable functional of the \tilde{B} sample path.
- Temporarily suppose that μ = 0, so that B̃ is a standard Brownian motion.
 (i) Use stochastic calculus to show that

$$\widetilde{B} = \frac{1}{\sigma S} \bullet S$$

Hint: What do you know about the increments of the process that takes a constant value?

(ii) Suppose $\mathbb{P}Y^2 < \infty$. Invoke results from Project 9 to show that there exists a predictable *H* such that

<2>

$$Y = \mathbb{P}Y + H \bullet \widetilde{B}_1 = \mathbb{P}Y + K \bullet S_1 \quad \text{where } K := \frac{H}{\sigma S}$$

- (iii) Interpret the last equality as an assertion that there exists an (idealized?) hedging stategy that returns $Y \mathbb{P}Y$. Deduce that the arbitrage price for Y equals $\mathbb{P}Y$ in the special case where $\mu = 0$.
- Now consider the case where μ is unknown, possibly nonzero. Let \mathbb{Q}_{α} be the probability measure with density $\exp(\alpha B_1 \frac{1}{2}\alpha^2)$ with respect to \mathbb{P} , where $\alpha = -\mu/\sigma$. Show that \widetilde{B} is a standard Brownian motion under \mathbb{Q}_{α} .
- Assume that $\mathbb{Q}_{\alpha}Y^2 < \infty$. Show that there exists some predictable process K_{α} (in some apppropriate \mathcal{L}^2 space) for which

$$Y = \mathbb{Q}_{\alpha}Y + K_{\alpha} \bullet S_1 \qquad \text{almost surely } [\mathbb{Q}_{\alpha}].$$

- I believe that the threat of the trading scheme that delivers a return $K_{\alpha} \bullet S_1$ now forces $\mathbb{Q}_{\alpha} Y$ to be the amount one should pay at time 0 to receive the amount *Y* at time 1. What do you think? Should the fact that K_{α} seems to depend on the unknown μ invalidate the arbitrage argument?
- Suppose *Y* actually depends only on the stock price at time 1, that is, $Y = f_1(S_1)$ for some measurable function f_1 . Show that

$$\mathbb{Q}_{\alpha}Y = \mathbb{Q}f_1\left(\exp(\sigma W - \frac{1}{2}\sigma^2)\right)$$
 where $W \sim N(0, 1)$ under \mathbb{Q} .

Deduce that $\mathbb{Q}_{\alpha}Y$ does not depend on μ .

• Specialize even further, to the case where $f_1(x) = (x - C)^+$, for some constant *C*, to derive the famous Black-Scholes formula for the price of a European option.

3. Does K_{α} actually depend on μ ?

As I type this Project late at night, I find myself in the embarrassing position of not really understanding how the question is handled for a general Y. However, when $Y = f_1(S_1)$ there is another approach that avoids the difficulty by constructing an explicit strategy via the solution to a partial differential equation. Look for a smooth function f(x, t) for which $f(x, 1) = f_1(x)$ and

$$\sigma^2 x^2 f_{xx}(x,t) + f_t(x,t) = 0$$

$$J_{XX}(x,t) + J_t(x,t)$$

• Use Itô to show that

$$f(S_t, t) = f(1, 0) + F_x \bullet S_t$$
 almost surely [P].

• Show that, under \mathbb{Q}_{α} , the stock price process is a martingale. Deduce that

$$f(S_t, t) = \mathbb{Q}_{\alpha} \left(f(S_1, 1) \mid \mathcal{F}_t \right) = \mathbb{Q}_{\alpha} (Y \mid \mathcal{F}_t)$$

Statistics 603a: 11 November 2004

©David Pollard

I should reread Harrison & Pliska (1981).

P10-3

and, in particular, $f(1, 0) = \mathbb{Q}_{\alpha}(Y \mid \mathfrak{F}_0) = \mathbb{Q}_{\alpha}Y$.

I hope I can sort through my confusion before the lecture. I will reread the final section of Chung & Williams (1990).

4. Change of measure for semimartingales

The key fact about the change from \mathbb{P} to an equivalent measure \mathbb{Q} is the preservation of the semimartingale property. It is not at all an obvious fact. For suppose that *X* is a \mathbb{P} -semimartingale that has decomposition $X_0 + M + A$, where *M* is a locally square integrable \mathbb{P} -martingale and $A \in \mathcal{FV}_0$. Under \mathbb{Q} the *A* process is still in \mathcal{FV}_0 , but we will have to subtract another \mathcal{FV}_0 process A^* from *M* to make it a locally square integrable \mathbb{Q} -martingale, leading to the \mathbb{Q} -semimartingale decomposition $X = X_0 + (M - A^*) + (A + A^*)$.

To establish these facts in the general case I would need some theory about processes with jumps—things like the Doob-Meyer decomposition. Using only tools developed in the course, I can show you how to treat a special case.

Consider only a process $M \in \text{loc}\mathcal{M}_0^2([0, 1], \mathbb{P})$ with continuous sample paths. Here I have added the \mathbb{P} to emphasize that the martingale properties hold under the \mathbb{P} distribution. Suppose that \mathbb{P} and \mathbb{Q} are equivalent measures, with $q_1 := d\mathbb{Q}/d\mathbb{P}$ and $d\mathbb{P}/d\mathbb{Q} = p_1 = 1/q_1$. Assume that the cadlag versions of the \mathbb{P} -martingale $q_t := \mathbb{P}(q_1 | \mathcal{F}_t)$ and the \mathbb{Q} -martingale $p_t := \mathbb{Q}(p_1 | \mathcal{F}_t)$ actually have continuous sample paths.

- Show that $p_{\sigma} = \mathbb{Q}(p_1 \mid \mathcal{F}_{\sigma})$ for each [0, 1]-valued stopping time σ .
- Explain why we can assume $p_t q_t \equiv 1$. More specifically, explain why p_t can be thought of as the density of \mathbb{P} with respect to \mathbb{Q} when both measures are restricted to \mathcal{F}_t .

Define

 $\tau_k := 1 \wedge \inf\{t : p_t \ge k \text{ or } p_t \le 1/k\} \wedge \inf\{t : |M_t| \ge k\}.$

Without loss of generality, we may also assume that $M_{\wedge \tau_k} \in \mathcal{M}^2_0([0, 1], \mathbb{P})$.

- Show that $pM \in loc \mathcal{M}_0^2([0, 1], \mathbb{Q})$. Hint: For s < t and $F \in \mathcal{F}_s$ show that $\mathbb{Q}F\left(p_{t \wedge \tau_k}M_{t \wedge \tau_k} - p_{s \wedge \tau_k}M_{s \wedge \tau_k}\right) = \mathbb{Q}F\left(p_{t \wedge \tau_k}M_{t \wedge \tau_k} - p_{s \wedge \tau_k}M_{s \wedge \tau_k}\right) \{\tau_k > s\}$ Argue that $F\{\tau_k > s\} \in \mathcal{F}_{s \wedge \tau_k}$ then deduce that the right-hand side of the last equality equals $\mathbb{P}F\left(M_{t \wedge \tau_k} - M_{s \wedge \tau_k}\right) \{\tau_k > s\} = 0$.
- Use the fact that q and M are both in $loc \mathcal{M}_0^2([0, 1], \mathbb{P})$ to explain why the process Y := qM - V, where $V := [q, M] \in \mathcal{FV}_0$, is also in $loc \mathcal{M}_0^2([0, 1], \mathbb{P})$. Hint: First explain why $Y_{t \wedge \tau_k} = q \bullet M_{t \wedge \tau_k} + M \bullet q_{t \wedge \tau_k}$.
- Explain why both Y and V have continuous sample paths.
- Explain why $pY \in \text{loc}\mathcal{M}_0^2([0, 1], \mathbb{Q})$.
- Explain why $[p, V] \equiv 0$. Hint: V is a \mathcal{FV}_0 process with continuous sample paths.
- Deduce that $p_t V_t = p \bullet V_t + V \bullet p_t$.
- Deduce that $M p \bullet V V \bullet p \in \text{loc}\mathcal{M}_0^2([0, 1], \mathbb{Q}).$

- Explain why $V \bullet p \in \text{loc}\mathcal{M}_0^2([0, 1], \mathbb{Q})$. Hint: p is a \mathbb{Q} -martingale.
- Explain why $A := p \bullet V$ is in \mathcal{FV}_0 .
- Conclude that $M A \in \text{loc}\mathcal{M}_0^2([0, 1], \mathbb{Q})$.

You should check that this recipe works for the Brownian motion example in Section 1.

5. Things I could show if I had more time

(Actually I would also need some facts about processes with jumps.)

- (i) Every local-martingale is a semimartingale.
- (ii) Suppose P and Q are equivalent probability measures. If X is a P-semimartingale then it is also a Q-semimartingale. Moreover, for H ∈ locH_{Bdd}, the stochastic integral H X when calculated using the methods from Project 7 under P is the same as the stochastic integral when calculated under Q. The last assertion can be proved using the characterization of the stochastic integral given in Project 7.

References

- Chung, K. L. & Williams, R. J. (1990), *Introduction to Stochastic Integration*, Birkhäuser, Boston.
- Harrison, J. M. & Pliska, S. R. (1981), 'Martingales and stochastic integrals in the theory of continuous trading', *Stochastic Processes and their Applications* 11, 215–260.