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Project 10

1. Change of measure for Brownian motion

Let {Bt : 0 ≤ t ≤ 1} be a Brownian motion with respect to a (standard)
filtration {Ft } on (�, F, P). Write U for its quadratic variation process, Ut = t .

For each α ∈ R, the process

qt = exp
(
αBt − 1

2α2t
)

for 0 ≤ t ≤ 1

is a nonnegative martingale, with Pqt = Pq0 = 1. Define a new probability
measure Qα on F1 by specifying q1 to be its density with respect to P. That is,

Qα X = P(Xq1)

at least for all bounded random variables X .

• Show that Qα is equivalent to P, in the sense that both measures have the
same collection N of negligible sets.

• Show that Qα X = P(Xqt ) if X is Ft -measurable. Explain why qt is a
Radon-Nikodym density for Qα with respect to P when both measures are
restricted to Ft .

• For fixed s and t = s + δ, a fixed F in Fs , and a bounded measurable f ,
show that

Qα F f (Bt − Bs) = P(Fqs) P
(

f (Bt − Bs) exp
(
α(Bt − Bs) − 1

2α2δ
))

= Qα F
∫ ∞

−∞

1√
2πδ

f (z) exp
( − 1

2 (z − αδ)2/δ
)

dz

• Deduce that, under Qα , the process Bt −αt is a standard Brownian motion.

2. The Black-Scholes formula

Stock prices (in units so that S0 ≡ 1) are sometimes modeled by a continuous
process driven by a Brownian motion, B, on [0, 1];

St = exp((µ − 1/2σ
2)t + σ Bt ) for 0 ≤ t ≤ 1

= exp(σ B̃t − 1/2σ
2t) where B̃t = Bt + (µ/σ)t

for constants σ > 0 (assumed known) and µ (unknown). That is,

St = ψ(Bt , Ut ) where ψ(x, y) = exp(σ x + (µ − 1/2σ
2)y).

Suppose Y = f (S), with f a C-measurable functional on C[0, 1]. How much
should one pay at time 0 in order to receive the amount Y at time 1?I am ignoring inflation. cf.

expression of value of stock as
a multiple of a bond price.

• Use the Itô formula to show that

<1> St = 1 + σ S • Bt + µS • Ut ,

In more traditional notation,

d St = σ St d Bt + µSt dt, or
d St

St
= σ d Bt + µ dt.

Roughly speaking, the relative increments of S behave like the increments of
a Brownian motion with drift µ. The process σ S • B is the locM2

0[0, 1] part
of the semimartingale decomposition of S.
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• Similarly, show that St = 1 + σ S • B̃t .

• Show that Y can be written as a C-measurable functional of the B̃ sample
path.

• Temporarily suppose that µ = 0, so that B̃ is a standard Brownian motion.

(i) Use stochastic calculus to show that

B̃ = 1

σ S
• S

Hint: What do you know about the increments of the process that takes
a constant value?

(ii) Suppose PY 2 < ∞. Invoke results from Project 9 to show that there
exists a predictable H such that

<2> Y = PY + H • B̃1 = PY + K • S1 where K := H

σ S
.

(iii) Interpret the last equality as an assertion that there exists an (idealized?)
hedging stategy that returns Y − PY . Deduce that the arbitrage price
for Y equals PY in the special case where µ = 0.

• Now consider the case where µ is unknown, possibly nonzero. Let Qα be
the probability measure with density exp(αB1 − 1

2α2) with respect to P,
where α = −µ/σ . Show that B̃ is a standard Brownian motion under Qα .

• Assume that QαY 2 < ∞. Show that there exists some predictable
process Kα (in some apppropriate L2 space) for which

Y = QαY + Kα • S1 almost surely [Qα].

• I believe that the threat of the trading scheme that delivers a return Kα • S1

now forces QαY to be the amount one should pay at time 0 to receive the
amount Y at time 1. What do you think? Should the fact that Kα seems
to depend on the unknown µ invalidate the arbitrage argument?

• Suppose Y actually depends only on the stock price at time 1, that is,
Y = f1(S1) for some measurable function f1. Show that

QαY = Q f1
(

exp(σ W − 1
2σ 2)

)
where W ∼ N (0, 1) under Q.

Deduce that QαY does not depend on µ.

• Specialize even further, to the case where f1(x) = (x − C)+, for some
constant C , to derive the famous Black-Scholes formula for the price of a
European option.

3. Does Kα actually depend on µ?

As I type this Project late at night, I find myself in the embarrassing position of
not really understanding how the question is handled for a general Y . However,
when Y = f1(S1) there is another approach that avoids the difficulty by
constructing an explicit strategy via the solution to a partial differental equation.I should reread Harrison &

Pliska (1981). Look for a smooth function f (x, t) for which f (x, 1) = f1(x) and

σ 2x2 fxx (x, t) + ft (x, t) = 0

• Use Itô to show that

f (St , t) = f (1, 0) + Fx • St almost surely [P].

• Show that, under Qα , the stock price process is a martingale. Deduce that

f (St , t) = Qα

(
f (S1, 1) | Ft

) = Qα(Y | Ft )
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and, in particular, f (1, 0) = Qα(Y | F0) = QαY .

I hope I can sort through my confusion before the lecture. I will reread
the final section of Chung & Williams (1990).

4. Change of measure for semimartingales

The key fact about the change from P to an equivalent measure Q is the
preservation of the semimartingale property. It is not at all an obvious fact.
For suppose that X is a P-semimartingale that has decomposition X0 + M + A,
where M is a locally square integrable P-martingale and A ∈ FV0. Under Q the
A process is still in FV0, but we will have to subtract another FV0 process A∗

from M to make it a locally square integrable Q-martingale, leading to the
Q-semimartingale decomposition X = X0 + (M − A∗) + (A + A∗).

To establish these facts in the general case I would need some theory about
processes with jumps—things like the Doob-Meyer decomposition. Using only
tools developed in the course, I can show you how to treat a special case.

Consider only a process M ∈ locM2
0([0, 1], P) with continuous sample paths.

Here I have added the P to emphasize that the martingale properties hold
under the P distribution. Suppose that P and Q are equivalent measures, with
q1 := dQ/dP and dP/dQ = p1 = 1/q1. Assume that the cadlag versions
of the P-martingale qt := P(q1 | Ft ) and the Q-martingale pt := Q(p1 | Ft )

actually have continuous sample paths.

• Show that pσ = Q(p1 | Fσ ) for each [0, 1]-valued stopping time σ .

• Explain why we can assume pt qt ≡ 1. More specifically, explain why
pt can be thought of as the density of P with respect to Q when both
measures are restricted to Ft .

Define

τk := 1 ∧ inf{t : pt ≥ k or pt ≤ 1/k} ∧ inf{t : |Mt | ≥ k}.
Without loss of generality, we may also assume that M∧τk ∈ M2

0([0, 1], P) .

• Show that pM ∈ locM2
0([0, 1], Q). Hint: For s < t and F ∈ Fs show that

QF
(

pt∧τk Mt∧τk − ps∧τk Ms∧τk

) = QF
(

pt∧τk Mt∧τk − ps∧τk Ms∧τk

) {τk > s}
Argue that F{τk > s} ∈ Fs∧τk then deduce that the right-hand side of the
last equality equals PF

(
Mt∧τk − Ms∧τk

) {τk > s} = 0.

• Use the fact that q and M are both in locM2
0([0, 1], P) to explain

why the process Y := q M − V , where V := [q, M] ∈ FV0, is also
in locM2

0([0, 1], P). Hint: First explain why Yt∧τk = q • Mt∧τk + M • qt∧τk .

• Explain why both Y and V have continuous sample paths.

• Explain why pY ∈ locM2
0([0, 1], Q).

• Explain why [p, V ] ≡ 0. Hint: V is a FV0 process with continuous
sample paths.

• Deduce that pt Vt = p • Vt + V • pt .

• Deduce that M − p • V − V • p ∈ locM2
0([0, 1], Q).
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• Explain why V • p ∈ locM2
0([0, 1], Q). Hint: p is a Q-martingale.

• Explain why A := p • V is in FV0.

• Conclude that M − A ∈ locM2
0([0, 1], Q).

You should check that this recipe works for the Brownian motion example
in Section 1.

5. Things I could show if I had more time

(Actually I would also need some facts about processes with jumps.)

(i) Every local-martingale is a semimartingale.

(ii) Suppose P and Q are equivalent probability measures. If X is a
P-semimartingale then it is also a Q-semimartingale. Moreover, for
H ∈ locHBdd, the stochastic integral H • X when calculated using the
methods from Project 7 under P is the same as the stochastic integral
when calculated under Q. The last assertion can be proved using the
characterization of the stochastic integral given in Project 7.
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