1.

<l>

<2>

<3>

Note that 02(X) is adapted
and has continuous paths

Compare with the argument
in Stroock & Varadhan (1979,

Section 4.5) <4>

<5>

<6>

P11-1

Project 11

Notation: Write P;(...) for P(... | ;) and var,(...) for the corresponding
conditional variance.

Diffusion heuristics

The rough idea of an Ito diffusion is: {X, : # € R*} is adapted with continuous
sample paths; and for small § > 0, with AX = X,1s — X;,
P, (AX) ~ 8b(X,)
var, (AX) ~ 80*(X,)
where b(-) and o (-) are deterministic functions. In what follows, both b and o

will be continuous functions.
Interpret <1> to mean that

t
P,(AZ) =0 where Z, = X, —/ b(Xy)ds.
0

More precisely, interpret <1> to mean that Z is a martingale with continuous
sample paths and Z, = 0. Similarly, interpret <2> to mean P,(AZ)?> ~
sa2(X,), or

t
W, :=1[2Z,7Z], — / oX(X,)ds is a martingale.
0

Note that W has continuous paths of finite variation. From the Problems to
Project 9, we must have W, = Wy = 0. That is, [Z, Z], = [; 0*(X,) ds.
Put another way, we could interpret <1> and <2> to mean that
X, =x0+Z, +b(X)e U, where Xy = x¢

with Z a (local?) martingale for which [Z, Z] = o2(X) e U. Here, and
subsequently, I am abusing notation by writing b(X) for the process that takes
the value b(X;) at time s, and so on.

Suppose there exist processes X and Z with the properties just described.
If o(x) # O for all x then 1/0(X) is locally bounded and predictable. The
process B := (1/0(X)) e Z is a local martingale, with continuous sample paths,
By =0, and

[B, Bl = (1/c%(X))e[Z,Z] = U.

That is, by the Lévy characterization, B is a Brownian motion for which
X, =xo+o0(X)e B, +b(X)el,;
Many authors would write the last representation as
dX, =0(X,)dB, +b(X,)dt

and call it a stochastic differential equation for X with initial condition Xy = x;.
If the representation <3> were valid, and if f were twice continuously
differentiable, 1t6’s formula would give

F(X) = fxo)+ f/(X) e (Z+b(X)oW), + 11 (X)e[Z, Z],
= f(xo) + £/ (X) @ Z + (367X f/(X) + b(X) f/(X)) o Uy
This representation would imply that

f(X) — (%U(X)zf”(X) + b(X)f/(X)) e U; is a martingale
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equation
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bounds.

2.

<7>

P11-2

for each suitably smooth f.

The question of whether an X satisfying <4> or <6>actually exists, and
to what extent it is uniquely determined, is the subject of a huge literature. The
small sampling that follows is based mostly on

(1) Stroock & Varadhan (1979, Chapters 4 and 5),
(i) Durrett (1984, Chapter 9)
(iii)) Chung & Williams (1990, Chapter 10).

Existence and uniqueness of a solution to a SDE

Seek a solution for the SDE <5> with initial condition Xy = x¢, for a fixed
xo € R. Suppose the functions b and o satisfy the following conditions for
some finite constant C:

[b(x)| < C, lo(x)] < C for all x
b(x) =b()| =Clx —yl, lo(x)—o()| =Clx—y| for all x and y

Assume a standard Brownian motion B is given. Start by building the solution
on a fixed interval [0, T]. Define X©@ = x, and, for n > 0,

X" =xo +0(X™) e B, + b(X™) o U,

Define
A1 (1) = Psup,, [X{"D — X%

e Show that A (T) < ¢y := 8C?T +2C?T?, or something like that.
e For n > 1 show that

Api1(T) < 2Psup,_y [0(X™) o B, — (X" V) o B,|?
t
+ 2P sup,_r |/ b(X"™) —b(X"Vyds|?
0

< 8Plo(X™) e By — o (X" V) e By|?

1 T
+27°P (7 / [b(X™M) — b(X"~1)] ds)
0

2

T
<8 [ Flo) o )P
0
e ?
+27T°P <? f X"y —b(X" ) ds)
0
T
<kr [ Bu)as
0

where K7 is a constant that depends on 7.
e Strengthen the previous result to

t
Api(t) < KT[ A, (s)ds for all r € [0, T'].
0

e Show that
A (T) < K?/.../{O <nh<pn=<...<t, <T}A(t))dndt,...dt,
< co(TKp)"/n!

e Deduce that
+1
Pznzl supg_7 | XD — X| < o0
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I am a lttle unsure of these
assertions, because I have not

worked through the whole con-

struction myself. I am relying
on what I think Durret and

Chung&Williams are asserting.

e Deduce that there exists an adapted process {X, : 0 < r < T} with
continuous sample paths, such that

sup,_7 | X" — X,/ —> 0  almost surely.

e Deduce that
sups7 (|b(X§”)) —b(X,)| + |U(X_§”)) — (T(XX)|) -0 almost surely.

e Deduce that
(n) ) ucpc
lo(X")eB—0o(X)eB|+ |b(X")eU—b(X)eUl — 0
e Conclude that {X, : 0 < ¢ < T} satisfies the SDE <5> with initial
condition Xy = xo.
e Suppose {Y; : 0 <t < T} is another solution to the SDE with the same
initial condition. Define

A(t) :=Psup,, | Xy — Y, |2
Show that for some constants ¢; and «, which might depend on T,
A(T) < (c1x"/n') A(T).
Deduce that A(T) = 0 and hence
Plw : 3t < T with X,(w) # Y;(w)} =0.

e Suppose {X; : 0 <t < T} and {Z, : 0 <t < Tp} are solutions to the
SDE over different ranges, [0, 7] and [0, 73], with Xo = Zy = x¢. Show
that almost all paths X (-, w) and Z (-, w) agree on the interval [0, T} A T3].
Explain how this result enables us to find a unique solution (up to almost
sure equivalence) on R™.

Dependence of the solution on B: strong and weak
solutions of the SDE

The solution X constructed in Section 2 depends only on the Brownian motion.
More precisely, we could choose {JF;} as the augmented Brownian filtration and
have X adapted to that filtration.

e Try to make some sense of the last assertion. Perhaps you could argue
inductively that each approximation X is adapted to the augmented
filtration. I would like to show that this means we can choose X;(w) as
f(Ba;(w), t) for some suitably measurable function f : C(RT) x RT — R.
Perhaps we could require ¢ — f(y, t) to be continuous for each fixed y.

The idea is that B can provide both the filtration and the process for the
stochastic integral o (X) e B. I think this is what it means for X to be a strong
solution of SDE. Clearly, if we start from a different Brownian motion then we
get a different solution.

The distribution of X is a probability measure, Q,,, on the cylinder sigma-
field € of C(R"). More formally, if we can regard f as a C\C-measurable
map from C(R™) back into itself, then Q,, is the image of Wiener measure W
under the map f.

I think that for some SDE’s it is possible to prove the existence of a Q,,
on C under which the coordinate map defines a process with continuous paths
started at xo for which the analog of property <6> holds. Slight refinements of
the arguments in Section 1 then show how to construct a Brownian motion B
for which <4> holds.
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For a famous example where there exists a (nonunique) weak solution but
no strong solution see Chung & Williams (1990, Secton 10.4).

4. Relaxation of assumptions on » and o

Localization arguments allow us to relax the conditions <7> on the func-
tions b(-) and o (-) to existence of constants C, for each R > 0 such that

<g>  max (|b(x) — b lo(x) —o () < Crlx —y|  if max(lx], |y)) < R.
Most authors seem also to require a growth condition,
max (lb(x)|, |U(x)|) = O(|x]) as |x| — oo.

Frankly, I do not really understand why the growth condition is needed.
It seems to me that assumption <8> implies existence of finite constants K g
for which
[b(x)| + |o(x)] < Kg when |x| < R.

Define

br(x) := max(—Kg, min(b(x), Kg))

or(x) := max(—Kg, min(o (x), Kg))
An analog of <7> holds for by and og. There exists continuous adapted
processes for which

XP = xg+ og(X®) 0 B, + br(X®) e 1,
Define 7 := inf{r : |X,(R)| > R}. I think that
XN = x04+0(X®) @ Biag, +b(XP) 0 Uy,

It should be possible to paste together the solutions X® for an increasing
sequence of R values, invoking the uniqueness theorem from Section 2 to show
that X®® agrees with X® at least until | X>®| > R. If the corresponding
stopping times Tz were to increase to infinity as R 1 oo then we would get
a solution to the original SDE. I think this is where the growth condition is
needed.

I need to read the last part of Chung & Williams (1990, Secton 10.2) more
carefully.

5. Examples

We should try to establish existence and uniqueness of the solutions to two
simple SDE’s:
(i) (geometric Brownian motion) Using the It6 formula, you showed in
Project 10 that
X, =exp (UB, + (u — %az)t)

is a solution to the equation X, = 1 +0X e B, + uX ¢ U, . Is it the
only solution?

(i1) (Ornstein-Uhlenbeck process) By the It6 formula, the process
X, =e " (xo+ E o B) where E; := e**
is a solution to the SDE dX, = —a X, + d B, with Xy = x, that is,
X, =xo+ B, —aXel,
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Again, is it the only solution? Could we establish both existence and
uniqueness of a (strong) solution by appeal to the general theory?
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