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ProOJECT 3
Things to explain in your notebook:

(i) How can Lévy’s martingale characterization of Brownian motion be
derived from a martingale central limit theorem?

(ii)) What advantages are there to treating a stochastic processes with
continuous sample paths as a random element of a space of continuous
functions?

(iii) What is the strong Markov property for Brownian motion? Maybe
sketch some sort of proof.

(iv) The completion of the filtration generated by a Brownian motion is
standard.

Fixed probability space (2, F, P). Negligible sets N := {N € F : PN = 0}.

Assume the probability space is complete, that is, forall A € Q,if AC N eN
then A € N. From now on, unless indicated otherwise, also assume that all

filtrations {F; : t € T} are standard, that is, N C F, = F,, for each t.

<1> Theorem. (McLeish 1974) For each n in N let {§,; : j =0,...,k,} be a
martingale difference array, with respect to a filtration {J,;}, for which:
(i) 3 f,%j — 1 in probability;
(ii) max; |&,;| — O in probability;
(iii) sup, P max; é. < o0.
Then Zj &, ~ N(0,1) as n — oo.

REMARK. In the last right-hand side on line 5 page 202 of UGMTP
a factor X, is missing. We need the fact that X, = O,(1) to prove that
Y, — 0 in probability.
<2> Lévy’s martingale characterization of Brownian motion. Suppose
{X; : 0 <t < 1} is a martingale with continuous sample paths and X, = 0.
Suppose also that th — t is a martingale. Then X is a Brownian motion.

Rigorous proof that X; ~ N(0,1). Use stopping times to cut the path
into increments corresponding to the nth row of martingale differences in
Theorem <1>. Omit most of the subscript n’s. Take tp = 0 and
T;41 = min (n’l + 1, inf{t >1:|X0@)—X(1)| > n’l)
For j =1,2,... define
& == X(7j) — X(zj-1)
8j =T = Tj-i
Vi =& =5
Write P;(...) for P(... | I(1;)).
e Check that P;,_1&; = 0 and P;_; (V;) = 0, almost surely.
e Show that max; |§;| < n~? and max; §; <n~".

e Show that there exist {k,} such that P{>_

i<k, 0j 71} = 0 as n — oo.
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For fixed t € RT, T (x) =
x(t) for x € C[0, 00).

Note: “at least” is an invitation
for you to extend the result to
a larger set of functions
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Show that Py ., V; =0 and

2
P ( stk,, V’) = ijkn HDV./’2
= 'PY 1Vl

J=<kn

<n'P stkn (Vi+28)—>0  asn— oo.

Deduce that )_,_, &’ — 1 in probability.

e Deduce that X (t,) ~ N(0, 1).

Deduce that X; ~ N(0, 1).

e For enthusiasts: Extend the argument to show that X is a Brownian motion.

Random elements of a function space

Suppose {X; : t € R} is a process with continuous sample paths. That is,
for each fixed w the sample path X (-, ) is a member of C[0, co), the set of
all continuous real functions (not necessarily bounded) on R*. Equip C[0, co)
with its cylinder sigma-field C, which is defined as the smallest sigma-field
on C[0, co) for which each coordinate map 7, is C\B(R)-measurable. Then
w +— X (-, w) is an F\ C-measurable map from 2 into C[0, co). See Problem [2].

e Find some nontrivial examples of sets in C. For example, is the set

{x € C[0,00) : sup, x(¢) < 6} in C? How about the set {x € C[0, c0) :

x has a finite derivative at 1 }?

The distribution of X is a probability measure defined on C, the image
of P under the map w — X (-, w). For example, for a standard Brownian
motion, the distribution is called Wiener measure, which 1 will denote by the
symbol W. In other words, if B is a standard Brownian motion, and at least if
f:CJ0,00) — RT is a @\B(R")-measurable function, then

PYf(X(, ) = W* f(x).

Sometimes I will slip into old-fashioned terminology and call a real-valued
(or extended-real-valued) function a functional if it is defined on a space of
functions.

To each stochastic process {X; : t € R"} there is a natural filtration
(sometimes called a raw filtration),

Fi=0{X;:0<s <t} fort e R
with F3 := o{X, : s € RT}. A generating class argument (compare with
Problem [1]) shows that each JJ -measurable random variable on € can
be expressed as a composition 2 (X (-, w)) with & a C-measurable functional
on C[0, co). Moreover, if for each fixed T € Rt we define the stopping operator
K. : C[0, 00) — C[0, c0) by

(K:x)(@) =x(t A1) for t € RT,

then (Problem [4]) each J7-measurable random variable on €2 can be expressed
as a composition A (K; X (-, w)) with h a C-measurable functional on C[0, c0).

Decomposition of Brownian motion sample paths

Think of a standard Brownian motion {B; : t € R*} as a random element
of C[0, c0). For a fixed T € RY, the process

Z(t) := B(t +1t) — B(1) for t € R
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Compare with the Brownian
motion chapter of UGMTP.

cf. UGMTP §9.3
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is also a Brownian motion (with respect to which filtration?). Moreover the
process Z, as a random element of (C[0, 00), ©), is independent of F,. What
does this assertion mean and how would you prove it? The assertion can be
reexpressed in several useful ways.

You might try your skills at generating-class arguments to establish some
of the following. You might also give some special cases as examples. Define
the shift operator S; by

0 forO<t <t
x(t—1) fort>rt

(Sex)(@) = {
Then:

(i) B has the same distribution as K. B + S; E where B is a new standard
Brownian motion that is independent of B.

(ii) At least for each @-measurable functional 4 : C[0, c0) — R,
P (h(B) | F;) = W'h(K.B + S;x)  almost surely.

Notice that K, B is F;-measurable. It is unaffected by the integral with

respect to W.
(iii) For each F € F; and each h as in (ii),

PFh(B) =P* ({w € FYW*h(K.B(:, ®) + S:x))

(iv) At least for each B(R) ® C-measurable map f : R x C[0, c0) — R,

and each J;-measurable random variable Y,

Pf(Y, B) =P°W*f(Y,K;B + S;x)

The strong Markov property for Brownian motion asserts that proper-
ties (i) to (iv) also hold for stopping times 7, provided we handle contributions
from {t = oo} appropriately. For example, with f and Y as in (iv),

Pf(Y, B){t < oo} =P*W* f(Y, K. B+ S;x){t < o0}
REMARK.  Notice the several ways in which o affects the sample path
of K;B + S,x: at time ¢ it takes the value

B(t, w) if 0 <t < t(w)
B(t(w), ) + x(t — t(w)) if t > t(w)

The Brownian filtration

If we regard a Brownian motion {B, : t € R*} as just a Gaussian process
with continuus paths and a specific covariance structure, we need not explicitly
mention the filtration. However, there is an implicit choice: the natural
filtration defined by the process itself,

F :=0{B;:0<s <t}
= sigma-field generated by K,B see Problem [4].
The process B is adapted to the natural filtration and {(B;,37) : 0 <t < 1} is
a Brownian motion in the sense defined by Project 2.
We augment the filtration by adding the negligible sets to the generating

class,
F =0 (S"f U N) .

It should be easy for you to check that {(B;, F;) : t € R*} is still a Brownian
motion.
In fact, B is also a Brownian motion with respect to the standard filtration

F, =Ty = Nymso (FTUN)
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Proof.
e Suppose s <t and F € ?x. Explain why it is enough to show that
PFf (B, — By) = (PF) (Pf(Z))  where Z ~ N(0,1 —s)
for each bounded continuous f.
e Choose a sequence with # > s, || s. Show that F € JF, and
PFf (B, — By,) = (PF) (Pf(Z,)  where Z, ~ N(0,1 — s,).
O e Pass to the limit.

<3> Corollary. The filtration {F, : t € R"} is standard. That is, f:'} =5 =
o (2 UN) for each t.
Proof. Suppose F € f}t. Then F € F; for each s > ¢. Fix one such s.
e Show there is an F° € JF7 for which FAF°® e N.

e Explain why there exists a {0, 1}-valued, C-measurable functional &
on C[0, oo) for which F° = h(B).

e Show that
F=P (F | 5’:) —P (h(B) | :?",) — WR(K,B + S,x)  almost surely.

e Explain why W*A(K;B + S;x) is a C-measurable function of K;B and
hence it is J7-measurable.

Conclude that F e c(NU J7) = J;.

Problems

[1] (Taken from UGMTP) Suppose T is a function from a set X into a set Y, and
suppose that Y is equipped with a o-field B. Define A as the sigma-field of
sets of the form T~'B, with B in B. Suppose f € MT(X, A). Show that
there exists a B\B[0, oo]-measurable function g from Y into [0, oo] such that
f(x) = g(T(x)), for all x in X, by following these steps.

(i) Show that A is a o-field on X. (It is called the o-field generated by
the map 7. It is often denoted by o (T).)

(ii) Show that {f > i/2"} = T~'B;, for some B;, in B. Define

4n

”
fr=2"3(f=i/2"}  and g =2T") B,
i=1

i=1
Show that f,(x) = g,(T (x)) for all x.
(iii) Define g(y) = limsup g,(y) for each y in Y. Show that g has the
desired property. (Question: Why can’t we define g(y) = lim g, (y)?)
[2] Let ¢ be a map from (2, F) to C[0, 00).
(i) Show that v is F\C-measurable if and only if 7, o ¥ is F\B(R)-
measurable for each t € R*.

(ii) Deduce that a stochastic process {X; : ¢ € R™} with continuous
sample paths defines an F\ C-measurable map from 2 into C[0, c0).

[3] One metric for uniform convergence on compacta of function in C[0, c0) is
defined by

d(x,y):= Y 27" min (1, sup |x(r) — y(t)l)

neN O=r=n
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Show that the Borel sigma-field, generated by the open sets for this metric, is
the same as the cylinder sigma-field C.

[4] Suppose X is a stochastic process with sample paths in C[0, co). For each
fixed ¢, define I7 := o {X, : 0 < s <1t}.

(i) Show that 37 is the smallest sigma-field for which the map w —
K: X (-, w) is F7\C-measurable.

(ii) Deduce (via Problem [1]) that each J7-measurable random variable can
be factorized_as h(K,X (-, w)) for some C-measurable functional 4 :

C[0, 00) — R.
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