Project 3

Things to explain in your notebook:

- (i) How can Lévy's martingale characterization of Brownian motion be derived from a martingale central limit theorem?
- (ii) What advantages are there to treating a stochastic processes with continuous sample paths as a random element of a space of continuous functions?
- (iii) What is the strong Markov property for Brownian motion? Maybe sketch some sort of proof.
- (iv) The completion of the filtration generated by a Brownian motion is standard.

Fixed probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Negligible sets $\mathcal{N} := \{N \in \mathcal{F} : \mathbb{P}N = 0\}$. Assume the probability space is complete, that is, for all $A \subseteq \Omega$, if $A \subseteq N \in \mathcal{N}$ then $A \in \mathcal{N}$. From now on, unless indicated otherwise, also assume that all filtrations $\{\mathcal{F}_t : t \in T\}$ are standard, that is, $\mathcal{N} \subseteq \mathcal{F}_t = \mathcal{F}_{t+}$ for each t.

- <1> **Theorem.** (*McLeish 1974*) For each n in \mathbb{N} let $\{\xi_{nj} : j = 0, ..., k_n\}$ be a martingale difference array, with respect to a filtration $\{\mathcal{F}_{nj}\}$, for which:
 - (i) $\sum_{i} \xi_{ni}^{2} \rightarrow 1$ in probability;
 - (*ii*) $\max_{j} |\xi_{nj}| \to 0$ in probability;

(*iii*)
$$\sup_n \mathbb{P} \max_j \xi_{nj}^2 < \infty$$
.

Then $\sum_{i} \xi_{nj} \rightsquigarrow N(0, 1)$ as $n \to \infty$.

REMARK. In the last right-hand side on line 5 page 202 of UGMTP a factor X_n is missing. We need the fact that $X_n = O_p(1)$ to prove that $Y_n \to 0$ in probability.

<2> Lévy's martingale characterization of Brownian motion. Suppose $\{X_t : 0 \le t \le 1\}$ is a martingale with continuous sample paths and $X_0 = 0$. Suppose also that $X_t^2 - t$ is a martingale. Then X is a Brownian motion.

Rigorous proof that $X_1 \sim N(0, 1)$. Use stopping times to cut the path into increments corresponding to the *n*th row of martingale differences in Theorem <1>. Omit most of the subscript *n*'s. Take $\tau_0 = 0$ and

 $\tau_{i+1} = \min \left(n^{-1} + \tau_i, \quad \inf\{t \ge \tau_i : |X(t) - X(\tau_i)| \ge n^{-1} \right)$ For $j = 1, 2, \dots$ define

$$\begin{split} \xi_j &:= X(\tau_j) - X(\tau_{j-1}) \\ \delta_j &:= \tau_j - \tau_{j-1} \\ V_j &:= \xi_j^2 - \delta_j \end{split}$$

Write $\mathbb{P}_j(\ldots)$ for $\mathbb{P}(\ldots \mid \mathcal{F}(\tau_j))$.

- Check that $\mathbb{P}_{i-1}\xi_i = 0$ and $\mathbb{P}_{i-1}(V_i) = 0$, almost surely.
- Show that $\max_{i} |\xi_{i}| \le n^{-2}$ and $\max_{i} \delta_{i} \le n^{-1}$.
- Show that there exist $\{k_n\}$ such that $\mathbb{P}\{\sum_{j < k_n} \delta_j \neq 1\} \to 0$ as $n \to \infty$.

• Show that $\mathbb{P}\sum_{j\leq k_n} V_j = 0$ and

$$\mathbb{P}\left(\sum_{j\leq k_n} V_j\right)^2 = \sum_{\substack{j\leq k_n}} \mathbb{P}V_j^2$$

$$\leq n^{-1}\mathbb{P}\sum_{j\leq k_n} |V_j|$$

$$\leq n^{-1}\mathbb{P}\sum_{j\leq k_n} (V_j + 2\delta_j) \to 0 \quad \text{as } n \to \infty.$$

- Deduce that $\sum_{j \le k_n} \xi_j^2 \to 1$ in probability.
- Deduce that $X(\tau_{k_n}) \rightsquigarrow N(0, 1)$.
- Deduce that $X_1 \sim N(0, 1)$.
- For enthusiasts: Extend the argument to show that X is a Brownian motion.

Random elements of a function space

Suppose $\{X_t : t \in \mathbb{R}^+\}$ is a process with continuous sample paths. That is, for each fixed ω the sample path $X(\cdot, \omega)$ is a member of $C[0, \infty)$, the set of all continuous real functions (not necessarily bounded) on \mathbb{R}^+ . Equip $C[0, \infty)$ with its *cylinder sigma-field* \mathbb{C} , which is defined as the smallest sigma-field on $C[0, \infty)$ for which each coordinate map π_t is $\mathbb{C}\backslash\mathcal{B}(\mathbb{R})$ -measurable. Then $\omega \mapsto X(\cdot, \omega)$ is an $\mathcal{F}\backslash\mathbb{C}$ -measurable map from Ω into $C[0, \infty)$. See Problem [2].

• Find some nontrivial examples of sets in C. For example, is the set $\{x \in C[0, \infty) : \sup_t x(t) \le 6\}$ in C? How about the set $\{x \in C[0, \infty) : x \text{ has a finite derivative at } 1\}$?

The distribution of X is a probability measure defined on C, the image of \mathbb{P} under the map $\omega \mapsto X(\cdot, \omega)$. For example, for a standard Brownian motion, the distribution is called **Wiener measure**, which I will denote by the symbol \mathbb{W} . In other words, if B is a standard Brownian motion, and at least if $f : C[0, \infty) \to \mathbb{R}^+$ is a $\mathcal{C} \setminus \mathcal{B}(\mathbb{R}^+)$ -measurable function, then

$$\mathbb{P}^{\omega} f(X(\cdot, \omega)) = \mathbb{W}^{x} f(x).$$

Sometimes I will slip into old-fashioned terminology and call a real-valued (or extended-real-valued) function a *functional* if it is defined on a space of functions.

To each stochastic process $\{X_t : t \in \mathbb{R}^+\}$ there is a *natural filtration* (sometimes called a raw filtration),

$$\mathcal{F}_t^\circ := \sigma\{X_s : 0 \le s \le t\} \qquad \text{for } t \in \mathbb{R}^+$$

with $\mathcal{F}_{\infty}^{\circ} := \sigma\{X_s : s \in \mathbb{R}^+\}$. A generating class argument (compare with Problem [1]) shows that each $\mathcal{F}_{\infty}^{\circ}$ -measurable random variable on Ω can be expressed as a composition $h(X(\cdot, \omega))$ with h a \mathcal{C} -measurable functional on $C[0, \infty)$. Moreover, if for each fixed $\tau \in \mathbb{R}^+$ we define the stopping operator $K_{\tau} : C[0, \infty) \to C[0, \infty)$ by

$$(K_{\tau}x)(t) = x(\tau \wedge t) \quad \text{for } t \in \mathbb{R}^+,$$

then (Problem [4]) each \mathcal{F}_{t}° -measurable random variable on Ω can be expressed as a composition $h(K_{t}X(\cdot, \omega))$ with *h* a \mathcal{C} -measurable functional on $C[0, \infty)$.

Decomposition of Brownian motion sample paths

Think of a standard Brownian motion $\{B_t : t \in \mathbb{R}^+\}$ as a random element of $C[0, \infty)$. For a fixed $\tau \in \mathbb{R}^+$, the process

$$Z(t) := B(\tau + t) - B(\tau) \qquad \text{for } t \in \mathbb{R}^+$$

Statistics 603a: 23 September 2004

©David Pollard

For fixed $t \in \mathbb{R}^+$, $\pi_t(x) := x(t)$ for $x \in C[0, \infty)$.

Note: "at least" is an invitation for you to extend the result to a larger set of functions is also a Brownian motion (with respect to which filtration?). Moreover the process Z, as a random element of $(C[0, \infty), \mathcal{C})$, is independent of \mathcal{F}_{τ} . What does this assertion mean and how would you prove it? The assertion can be reexpressed in several useful ways.

You might try your skills at generating-class arguments to establish some of the following. You might also give some special cases as examples. Define the shift operator S_{τ} by

$$(S_{\tau}x)(t) = \begin{cases} 0 & \text{for } 0 \le t < \tau \\ x(t-\tau) & \text{for } t \ge \tau \end{cases}$$

Then:

- (i) *B* has the same distribution as $K_{\tau}B + S_{\tau}\widetilde{B}$, where \widetilde{B} is a new standard Brownian motion that is independent of *B*.
- (ii) At least for each \mathcal{C} -measurable functional $h: C[0, \infty) \to \mathbb{R}^+$,

 $\mathbb{P}(h(B) \mid \mathcal{F}_{\tau}) = \mathbb{W}^{x} h(K_{\tau}B + S_{\tau}x) \quad \text{almost surely.}$

Notice that $K_{\tau}B$ is \mathcal{F}_{τ} -measurable. It is unaffected by the integral with respect to \mathbb{W} .

(iii) For each $F \in \mathfrak{F}_{\tau}$ and each h as in (ii),

$$\mathbb{P}Fh(B) = \mathbb{P}^{\omega} \left(\{ \omega \in F \} \mathbb{W}^{x} h(K_{\tau} B(\cdot, \omega) + S_{\tau} x) \right)$$

(iv) At least for each $\mathcal{B}(\mathbb{R}) \otimes \mathbb{C}$ -measurable map $f : \mathbb{R} \times C[0, \infty) \to \mathbb{R}^+$, and each \mathcal{F}_{τ} -measurable random variable Y,

$$\mathbb{P}f(Y,B) = \mathbb{P}^{\omega} \mathbb{W}^{x} f(Y, K_{\tau}B + S_{\tau}x)$$

The *strong Markov property* for Brownian motion asserts that properties (i) to (iv) also hold for stopping times τ , provided we handle contributions from $\{\tau = \infty\}$ appropriately. For example, with f and Y as in (iv),

 $\mathbb{P}f(Y,B)\{\tau<\infty\} = \mathbb{P}^{\omega}\mathbb{W}^{x}f(Y,K_{\tau}B+S_{\tau}x)\{\tau<\infty\}$

REMARK. Notice the several ways in which ω affects the sample path of $K_{\tau}B + S_{\tau}x$: at time *t* it takes the value

$$B(t, \omega) \quad \text{if } 0 \le t < \tau(\omega) \\ B(\tau(\omega), \omega) + x(t - \tau(\omega)) \quad \text{if } t \ge \tau(\omega) \end{cases}$$

The Brownian filtration

If we regard a Brownian motion $\{B_t : t \in \mathbb{R}^+\}$ as just a Gaussian process with continuus paths and a specific covariance structure, we need not explicitly mention the filtration. However, there is an implicit choice: the *natural filtration* defined by the process itself,

$$\mathcal{F}_t^{\circ} := \sigma \{ B_s : 0 \le s \le t \}$$

= sigma-field generated by $K_t B$ see Problem [4].

The process *B* is adapted to the natural filtration and $\{(B_t, \mathcal{F}_t^\circ) : 0 \le t \le 1\}$ is a Brownian motion in the sense defined by Project 2.

We augment the filtration by adding the negligible sets to the generating class,

$$\mathfrak{F}_t = \sigma \left(\mathfrak{F}_t^\circ \cup \mathfrak{N} \right)$$

It should be easy for you to check that $\{(B_t, \mathcal{F}_t) : t \in \mathbb{R}^+\}$ is still a Brownian motion.

In fact, B is also a Brownian motion with respect to the standard filtration

$$\mathfrak{F}_t = \mathfrak{F}_{t+} = \bigcap_{s>t} \sigma \left(\mathfrak{F}_t^\circ \cup \mathfrak{N} \right)$$

Statistics 603a: 23 September 2004

©David Pollard

cf. UGMTP §9.3

Compare with the Brownian motion chapter of UGMTP.

Proof.

• Suppose s < t and $F \in \widetilde{\mathcal{F}}_s$. Explain why it is enough to show that

 $\mathbb{P}Ff(B_t - B_s) = (\mathbb{P}F)(\mathbb{P}f(Z))$ where $Z \sim N(0, t - s)$

for each bounded continuous f.

• Choose a sequence with $t > s_n \downarrow \downarrow s$. Show that $F \in \mathfrak{F}_{s_n}$ and

$$\mathbb{P}Ff\left(B_{t}-B_{s_{n}}\right)=\left(\mathbb{P}F\right)\left(\mathbb{P}f(Z_{n})\right)$$
 where $Z_{n}\sim N(0,t-s_{n})$

- \Box Pass to the limit.
- <3> **Corollary.** The filtration $\{\mathfrak{F}_t : t \in \mathbb{R}^+\}$ is standard. That is, $\widetilde{\mathfrak{F}}_t = \mathfrak{F}_t = \sigma(\mathfrak{F}_t^\circ \cup \mathfrak{N})$ for each t.

Proof. Suppose $F \in \widetilde{\mathcal{F}}_t$. Then $F \in \mathcal{F}_s$ for each s > t. Fix one such s.

- Show there is an $F^{\circ} \in \mathfrak{F}_{s}^{\circ}$ for which $F \Delta F^{\circ} \in \mathfrak{N}$.
- Explain why there exists a {0, 1}-valued, C-measurable functional h on C[0,∞) for which F° = h(B).
- Show that

$$F = \mathbb{P}\left(F \mid \widetilde{\mathcal{F}}_t\right) = \mathbb{P}\left(h(B) \mid \widetilde{\mathcal{F}}_t\right) = \mathbb{W}^x h(K_t B + S_t x) \qquad \text{almost surely}$$

- Explain why $\mathbb{W}^{x}h(K_{t}B + S_{t}x)$ is a C-measurable function of $K_{t}B$ and hence it is \mathcal{F}_{t}° -measurable.
- Conclude that $F \in \sigma(\mathcal{N} \cup \mathcal{F}_t^\circ) = \mathcal{F}_t$.

Problems

- [1] (Taken from UGMTP) Suppose T is a function from a set \mathcal{X} into a set \mathcal{Y} , and suppose that \mathcal{Y} is equipped with a σ -field \mathcal{B} . Define \mathcal{A} as the sigma-field of sets of the form $T^{-1}B$, with B in \mathcal{B} . Suppose $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$. Show that there exists a $\mathcal{B} \setminus \mathcal{B}[0, \infty]$ -measurable function g from \mathcal{Y} into $[0, \infty]$ such that f(x) = g(T(x)), for all x in \mathcal{X} , by following these steps.
 - (i) Show that \mathcal{A} is a σ -field on \mathfrak{X} . (It is called the σ -field generated by the map T. It is often denoted by $\sigma(T)$.)
 - (ii) Show that $\{f \ge i/2^n\} = T^{-1}B_{i,n}$ for some $B_{i,n}$ in \mathcal{B} . Define

$$f_n = 2^{-n} \sum_{i=1}^{4^n} \{ f \ge i/2^n \}$$
 and $g_n = 2^{-n} \sum_{i=1}^{4^n} B_{i,n}$.

Show that $f_n(x) = g_n(T(x))$ for all *x*.

- (iii) Define $g(y) = \limsup g_n(y)$ for each y in \mathcal{Y} . Show that g has the desired property. (Question: Why can't we define $g(y) = \lim g_n(y)$?)
- [2] Let ψ be a map from (Ω, \mathcal{F}) to $C[0, \infty)$.
 - (i) Show that ψ is $\mathcal{F}\setminus\mathcal{C}$ -measurable if and only if $\pi_t \circ \psi$ is $\mathcal{F}\setminus\mathcal{B}(\mathbb{R})$ -measurable for each $t \in \mathbb{R}^+$.
 - (ii) Deduce that a stochastic process $\{X_t : t \in \mathbb{R}^+\}$ with continuous sample paths defines an $\mathcal{F}\setminus\mathcal{C}$ -measurable map from Ω into $C[0, \infty)$.
- [3] One metric for uniform convergence on compact of function in $C[0, \infty)$ is defined by

$$d(x, y) := \sum_{n \in \mathbb{N}} 2^{-n} \min\left(1, \sup_{0 \le t \le n} |x(t) - y(t)|\right)$$

Statistics 603a: 23 September 2004

©David Pollard

Show that the Borel sigma-field, generated by the open sets for this metric, is the same as the cylinder sigma-field C.

- [4] Suppose X is a stochastic process with sample paths in $C[0, \infty)$. For each fixed t, define $\mathcal{F}_t^\circ := \sigma \{X_s : 0 \le s \le t\}$.
 - (i) Show that \mathfrak{F}_t° is the smallest sigma-field for which the map $\omega \mapsto K_t X(\cdot, \omega)$ is $\mathfrak{F}_t^{\circ} \setminus \mathcal{C}$ -measurable.
 - (ii) Deduce (via Problem [1]) that each \mathcal{F}_t° -measurable random variable can be factorized as $h(K_t X(\cdot, \omega))$ for some C-measurable functional $h : C[0, \infty) \to \overline{\mathbb{R}}$.

References

McLeish, D. L. (1974), 'Dependent central limit theorems and invariance principles', *Annals of Probability* **2**, 620–628.