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Project 3

Things to explain in your notebook:

(i) How can Lévy’s martingale characterization of Brownian motion be
derived from a martingale central limit theorem?

(ii) What advantages are there to treating a stochastic processes with
continuous sample paths as a random element of a space of continuous
functions?

(iii) What is the strong Markov property for Brownian motion? Maybe
sketch some sort of proof.

(iv) The completion of the filtration generated by a Brownian motion is
standard.

Fixed probability space (�, F, P). Negligible sets N := {N ∈ F : PN = 0}.
Assume the probability space is complete, that is, for all A ⊆ �, if A ⊆ N ∈ N

then A ∈ N. From now on, unless indicated otherwise, also assume that all
filtrations {Ft : t ∈ T } are standard, that is, N ⊆ Ft = Ft+ for each t.

<1> Theorem. (McLeish 1974) For each n in N let {ξnj : j = 0, . . . , kn} be a
martingale difference array, with respect to a filtration {Fnj }, for which:

(i)
∑

j ξ 2
nj → 1 in probability;

(ii) maxj |ξnj | → 0 in probability;

(iii) supn P maxj ξ 2
nj < ∞.

Then
∑

j ξnj � N (0, 1) as n → ∞.

Remark. In the last right-hand side on line 5 page 202 of UGMTP
a factor Xn is missing. We need the fact that Xn = Op(1) to prove that
Yn → 0 in probability.

<2> Lévy’s martingale characterization of Brownian motion. Suppose
{Xt : 0 ≤ t ≤ 1} is a martingale with continuous sample paths and X0 = 0.
Suppose also that X2

t − t is a martingale. Then X is a Brownian motion.

Rigorous proof that X1 ∼ N (0, 1). Use stopping times to cut the path
into increments corresponding to the nth row of martingale differences in
Theorem <1>. Omit most of the subscript n’s. Take τ0 = 0 and

τi+1 = min
(
n−1 + τi , inf{t ≥ τi : |X (t) − X (τi )| ≥ n−1

)
For j = 1, 2, . . . define

ξj := X (τj ) − X (τj−1)

δj := τj − τj−1

Vj := ξ 2
j − δj

Write Pj (. . .) for P(. . . | F(τj )).

• Check that Pj−1ξj = 0 and Pj−1
(
Vj

) = 0, almost surely.

• Show that maxj |ξj | ≤ n−2 and maxj δj ≤ n−1.

• Show that there exist {kn} such that P{∑j≤kn
δj �= 1} → 0 as n → ∞.
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• Show that P
∑

j≤kn
Vj = 0 and

P

( ∑
j≤kn

Vj

)2
=

∑
j≤kn

PV 2
j

≤ n−1
P

∑
j≤kn

|Vj |

≤ n−1
P

∑
j≤kn

(
Vj + 2δj

) → 0 as n → ∞.

• Deduce that
∑

j≤kn
ξ 2

j → 1 in probability.

• Deduce that X (τkn ) � N (0, 1).

• Deduce that X1 ∼ N (0, 1).

• For enthusiasts: Extend the argument to show that X is a Brownian motion.
�

Random elements of a function space

Suppose {Xt : t ∈ R
+} is a process with continuous sample paths. That is,

for each fixed ω the sample path X (·, ω) is a member of C[0, ∞), the set of
all continuous real functions (not necessarily bounded) on R

+. Equip C[0, ∞)

with its cylinder sigma-field C, which is defined as the smallest sigma-field
on C[0, ∞) for which each coordinate map πt is C\B(R)-measurable. ThenFor fixed t ∈ R

+, πt (x) :=
x(t) for x ∈ C[0, ∞). ω 
→ X (·, ω) is an F\C-measurable map from � into C[0, ∞). See Problem [2].

• Find some nontrivial examples of sets in C. For example, is the set
{x ∈ C[0, ∞) : supt x(t) ≤ 6} in C? How about the set {x ∈ C[0, ∞) :
x has a finite derivative at 1 }?
The distribution of X is a probability measure defined on C, the image

of P under the map ω 
→ X (·, ω). For example, for a standard Brownian
motion, the distribution is called Wiener measure, which I will denote by the
symbol W. In other words, if B is a standard Brownian motion, and at least ifNote: “at least” is an invitation

for you to extend the result to
a larger set of functions f : C[0, ∞) → R

+ is a C\B(R+)-measurable function, then

P
ω f (X (·, ω)) = W

x f (x).

Sometimes I will slip into old-fashioned terminology and call a real-valued
(or extended-real-valued) function a functional if it is defined on a space of
functions.

To each stochastic process {Xt : t ∈ R
+} there is a natural filtration

(sometimes called a raw filtration),

F◦
t := σ {Xs : 0 ≤ s ≤ t} for t ∈ R

+

with F◦
∞ := σ {Xs : s ∈ R

+}. A generating class argument (compare with
Problem [1]) shows that each F◦

∞-measurable random variable on � can
be expressed as a composition h(X (·, ω)) with h a C-measurable functional
on C[0, ∞). Moreover, if for each fixed τ ∈ R

+ we define the stopping operator
Kτ : C[0, ∞) → C[0, ∞) by

(Kτ x)(t) = x(τ ∧ t) for t ∈ R
+,

then (Problem [4]) each F◦
t -measurable random variable on � can be expressed

as a composition h(Kt X (·, ω)) with h a C-measurable functional on C[0, ∞).

Decomposition of Brownian motion sample paths

Think of a standard Brownian motion {Bt : t ∈ R
+} as a random element

of C[0, ∞). For a fixed τ ∈ R
+, the process

Z(t) := B(τ + t) − B(τ ) for t ∈ R
+
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is also a Brownian motion (with respect to which filtration?). Moreover the
process Z , as a random element of (C[0, ∞), C), is independent of Fτ . What
does this assertion mean and how would you prove it? The assertion can be
reexpressed in several useful ways.

You might try your skills at generating-class arguments to establish some
of the following. You might also give some special cases as examples. DefineCompare with the Brownian

motion chapter of UGMTP. the shift operator Sτ by

(Sτ x)(t) =
{

0 for 0 ≤ t < τ

x(t − τ) for t ≥ τ

Then:

(i) B has the same distribution as Kτ B + Sτ B̃, where B̃ is a new standard
Brownian motion that is independent of B.

(ii) At least for each C-measurable functional h : C[0, ∞) → R
+,

P
(
h(B) | Fτ

) = W
x h(Kτ B + Sτ x) almost surely.

Notice that Kτ B is Fτ -measurable. It is unaffected by the integral with
respect to W.

(iii) For each F ∈ Fτ and each h as in (ii),

PFh(B) = P
ω

({ω ∈ F}Wx h(Kτ B(·, ω) + Sτ x)
)

(iv) At least for each B(R) ⊗ C-measurable map f : R × C[0, ∞) → R
+,

and each Fτ -measurable random variable Y ,

P f (Y, B) = P
ω
W

x f (Y, Kτ B + Sτ x)

The strong Markov property for Brownian motion asserts that proper-
ties (i) to (iv) also hold for stopping times τ , provided we handle contributions
from {τ = ∞} appropriately. For example, with f and Y as in (iv),

P f (Y, B){τ < ∞} = P
ω
W

x f (Y, Kτ B + Sτ x){τ < ∞}
Remark. Notice the several ways in which ω affects the sample path
of Kτ B + Sτ x : at time t it takes the value

B(t, ω) if 0 ≤ t < τ(ω)

B(τ (ω), ω) + x(t − τ(ω)) if t ≥ τ(ω)

The Brownian filtration

If we regard a Brownian motion {Bt : t ∈ R
+} as just a Gaussian process

with continuus paths and a specific covariance structure, we need not explicitly
cf. UGMTP §9.3

mention the filtration. However, there is an implicit choice: the natural
filtration defined by the process itself,

F◦
t := σ {Bs : 0 ≤ s ≤ t}

= sigma-field generated by Kt B see Problem [4].

The process B is adapted to the natural filtration and {(Bt , F
◦
t ) : 0 ≤ t ≤ 1} is

a Brownian motion in the sense defined by Project 2.
We augment the filtration by adding the negligible sets to the generating

class,
Ft = σ

(
F◦

t ∪ N
)
.

It should be easy for you to check that {(Bt , Ft ) : t ∈ R
+} is still a Brownian

motion.
In fact, B is also a Brownian motion with respect to the standard filtration

F̃t = Ft+ = ∩s>tσ
(
F◦

t ∪ N
)
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Proof.

• Suppose s < t and F ∈ F̃s . Explain why it is enough to show that

PF f
(
Bt − Bs

) = (
PF

) (
P f (Z)

)
where Z ∼ N (0, t − s)

for each bounded continuous f .

• Choose a sequence with t > sn ↓↓ s. Show that F ∈ Fsn and

PF f
(
Bt − Bsn

) = (
PF

) (
P f (Zn)

)
where Zn ∼ N (0, t − sn).

• Pass to the limit.�

<3> Corollary. The filtration {Ft : t ∈ R
+} is standard. That is, F̃t = Ft =

σ
(
F◦

t ∪ N
)

for each t.

Proof. Suppose F ∈ F̃t . Then F ∈ Fs for each s > t . Fix one such s.

• Show there is an F◦ ∈ F◦
s for which F�F◦ ∈ N.

• Explain why there exists a {0, 1}-valued, C-measurable functional h
on C[0, ∞) for which F◦ = h(B).

• Show that

F = P

(
F | F̃t

)
= P

(
h(B) | F̃t

)
= W

x h(Kt B + St x) almost surely.

• Explain why W
x h(Kt B + St x) is a C-measurable function of Kt B and

hence it is F◦
t -measurable.

• Conclude that F ∈ σ(N ∪ F◦
t ) = Ft .

�

Problems

[1] (Taken from UGMTP) Suppose T is a function from a set X into a set Y, and
suppose that Y is equipped with a σ -field B. Define A as the sigma-field of
sets of the form T −1 B, with B in B. Suppose f ∈ M+(X, A). Show that
there exists a B\B[0, ∞]-measurable function g from Y into [0, ∞] such that
f (x) = g(T (x)), for all x in X, by following these steps.

(i) Show that A is a σ -field on X. (It is called the σ -field generated by
the map T . It is often denoted by σ(T ).)

(ii) Show that { f ≥ i/2n} = T −1 Bi,n for some Bi,n in B. Define

fn = 2−n
4n∑

i=1

{ f ≥ i/2n} and gn = 2−n
4n∑

i=1

Bi,n.

Show that fn(x) = gn(T (x)) for all x .

(iii) Define g(y) = lim sup gn(y) for each y in Y. Show that g has the
desired property. (Question: Why can’t we define g(y) = lim gn(y)?)

[2] Let ψ be a map from (�, F) to C[0, ∞).

(i) Show that ψ is F\C-measurable if and only if πt ◦ ψ is F\B(R)-
measurable for each t ∈ R

+.

(ii) Deduce that a stochastic process {Xt : t ∈ R
+} with continuous

sample paths defines an F\C-measurable map from � into C[0, ∞).

[3] One metric for uniform convergence on compacta of function in C[0, ∞) is
defined by

d(x, y) :=
∑
n∈N

2−n min

(
1, sup

0≤t≤n
|x(t) − y(t)|

)
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Show that the Borel sigma-field, generated by the open sets for this metric, is
the same as the cylinder sigma-field C.

[4] Suppose X is a stochastic process with sample paths in C[0, ∞). For each
fixed t , define F◦

t := σ {Xs : 0 ≤ s ≤ t}.
(i) Show that F◦

t is the smallest sigma-field for which the map ω 
→
Kt X (·, ω) is F◦

t \C-measurable.

(ii) Deduce (via Problem [1]) that each F◦
t -measurable random variable can

be factorized as h(Kt X (·, ω)) for some C-measurable functional h :
C[0, ∞) → R.
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