Project 4

Things to explain in your notebook:

- (i) How to construct the isometric stochastic integral for a square integrable martingale.
- (ii) What advantages are there to considering only predictable integrands?
- (iii) Why does it suffice to have the Doléans measure defined only on the predictable sigma-field?

Notation and facts:

- Fixed complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Standard filtration.
- *R*-*process* = adapted process with cadlag sample paths
- *L-process* = adapted process with left-continuous sample paths with finite right limits
- M² = M²[0, 1] = martingales with index set [0, 1], cadlag sample paths, and PM₁² < ∞ ("square integrable martingales")
- $\mathcal{M}_0^2 = \mathcal{M}_0^2[0, 1] = \{M \in \mathcal{M}^2[0, 1] : M_0 \equiv 0\}$
- \mathcal{H}_{simple} = the set of all *simple processes* of the form

<1>

$$\sum_{i=0}^{N} h_i(\omega) \{ t_i < t \le t_{i+1} \}$$

for some grid $0 = t_0 < t_1 < \ldots < t_{N+1} = 1$ and bounded, $\mathcal{F}(t_i)$ -measurable random variables h_i . Note that \mathcal{H}_{simple} is a subset of the set of all L-processes.

REMARK. Some authors call members of \mathcal{H}_{simple} elementary processes; others reserve that name for the situation where the t_i are replaced by stopping times. Dellacherie & Meyer (1982, §8.1) adopted the opposite convention.

- Abbreviate $\mathbb{P}(\ldots | \mathcal{F}_s)$ to $\mathbb{P}_s(\ldots)$.
- Doob's inequality: $\mathbb{P} \sup_{0 \le t \le 1} M_t^2 \le 4\mathbb{P}M_1^2$ for $M \in \mathcal{M}^2[0, 1]$.

Increasing processes as measures

Suppose $M \in M^2$ is such that there exists an R-process A with increasing sample paths such that the process $N_t := M_t^2 - A_t$ is a martingale. Without loss of generality, $M_0 = A_0 = 0$. For example, for Brownian motion, $A_t \equiv t$.

REMARK. The existence of such an A for each M in $M^2[0, 1]$ will follow later from properties of stochastic integrals. See the discussion of quadratic variation.

Identify $A(\cdot, \omega)$ with a measure μ_{ω} on $\mathcal{B}(0, 1]$ for which

 $\mu_{\omega}(0, t] = A(t, \omega) \quad \text{for } 0 < t \le 1$

Construct a measure μ on $\mathcal{B}(0, 1] \otimes \mathcal{F}$ by

$$\mu g(t, \omega) = \mathbb{P}^{\omega} \mu_{\omega}^{t} g(t, \omega)$$
 for which g?

Notice that $\mu(0, 1] \times \Omega = \mathbb{P}A_1 < \infty$.

- For Brownian motion, show that μ = m ⊗ P with m = Lebesgue measure on B(0, 1].
- For fixed $0 \le a < b \le 1$, define $\Delta N = N_b N_a$, $\Delta M = M_b M_a$, and $\Delta A = A_b - A_a$. Show that

$$0 = \mathbb{P}_a \Delta N = \mathbb{P}_a \left((\Delta M)^2 - \Delta A \right) \qquad \text{almost surely.}$$

Statistics 603a: 30 September 2004

©David Pollard

borrowed from Rogers & Williams (1987)

cf. UGMTP Problem 6.9

• At least for each bounded, \mathcal{F}_a -measurable random variable h, deduce that

$$\mathbb{P}h(\omega)(\Delta M)^2 = \mathbb{P}h(\omega)\Delta A = \mathbb{P}^{\omega} \left(h(\omega)\mu_{\omega}^t \{a < t \le b\}\right)$$
$$= \mu h(\omega)\{a < t \le b\}$$

Stochastic integral for simple processes

Suppose *H* is a simple process, as in <1>, and $M \in M^2$. The stochastic integral is defined by

<3>

<2>

$$\int_{(0,1]} H \, dM := \sum_{i=0}^{N} h_i(\omega) \left(M(t_{i+1}, \omega) - M(t_i, \omega) \right)$$

REMARK. Here I follow Rogers & Williams (1987, page 2) in excluding the lower endpoint from the range of integration. Dellacherie & Meyer (1982, §8.1) added an extra contribution from a possible jump in M at 0. With the (0, 1] interpretation, the definition depends only on the increments of M; with no loss of generality, we may therefore assume $M_0 \equiv 0$.

A similar awkwardness arises in defining $\int_0^t H dM$ if M has a jump at t. The notation does not distinguish between the integral over (0, t) and the integral over (0, t]. I will use instead the Strasbourg notation $H \bullet M_1$ for $\int_{(0,1]} H dM$, with H multiplied by an explicit indicator function to modify the range of integration. For example, $\int_0^t H dM$ is obtained from <3> by substituting $H(s, \omega)\{0 < s \le t\}$ for H. Thus,

<4>

$$H \bullet M_t := \sum_{i=0}^N h_i(\omega) \left(M(t \wedge t_{i+1}, \omega) - M(t \wedge t_i, \omega) \right).$$

• You should check that $\mathbb{P}_t H \bullet M_1 = H \bullet M_t$ almost surely, so that $H \bullet M$ is a martingale (with cadlag paths).

<5> **Lemma.** $\mathbb{P}(H \bullet M_1)^2 = \mu H^2$ for each $H \in \mathcal{H}_{simple}$,

Proof. Expand the left-hand side of the asserted inequality as

$$\sum_{i} \mathbb{P}h_{i}^{2}(\Delta_{i}M)^{2} + 2\sum_{i < j} \mathbb{P}h_{i}h_{j}\Delta_{i}M\Delta_{j}M \quad \text{where } \Delta_{i}M = M(t_{i+1} - M(t_{i})).$$

Use the fact that $\mathbb{P}(\Delta_j M \mid \mathcal{F}(t_{j-1})) = 0$ to kill all the cross-product terms. Use equality $\langle 2 \rangle$ to simplify the other contributions to

$$\mu^{s,\omega} \sum_{i} h_i(\omega)^2 \{ t_i < s \le t_{i+1} \} = \mu H^2$$

Extension by isometry

Think of \mathcal{H}_{simple} as a subspace of $\mathcal{L}^2 = \mathcal{L}^2((0, 1] \times \Omega, \mathcal{B}(0, 1] \otimes \mathcal{F}_1, \mu)$. Then Lemma $\langle 5 \rangle$ shows that $H \mapsto H \bullet M_1$ is an isometry from a subspace of \mathcal{L}^2 to $\mathcal{L}^2(\Omega, \mathcal{F}_1, \mathbb{P})$. It extends to an isometry from $\overline{\mathcal{H}}_{simple}$, the $\mathcal{L}^2(\mu)$ closure of \mathcal{H}_{simple} in \mathcal{L}^2 , into $\mathcal{L}^2(\Omega, \mathcal{F}_1, \mathbb{P})$. The stochastic integral $H \bullet M_t$ is then taken to be a cadlag version of the martingale $\mathbb{P}_t H \bullet M_1$. In short, there is a linear map $H \mapsto H \bullet M$ from $\overline{\mathcal{H}}_{simple}$ to \mathcal{M}_0^2 for which, by Doob's inequality,

<6>

$$\mathbb{P}\sup_{0 \le t \le 1} |G \bullet M_t - H \bullet M_t|^2 \le 4\mathbb{P}|H \bullet M_1 - G \bullet M_1|^2 = \mu|G - H|^2$$

It is uniquely determined by the property, for all a < b and $F \in \mathcal{F}_a$,

$$H \bullet M_1 = F \left(M_b - M_a \right) \qquad \text{if } H(t, \omega) = \{ \omega \in F \} \{ a < t \le b \} .$$

Statistics 603a: 30 September 2004

hacle

<7> Example. Let τ be a stopping time taking values in [0, 1]. Define the stochastic interval

$$((0, \tau]] := \{(t, \omega) \in (0, 1] \times \Omega : 0 < t \le \tau(\omega)\}$$

Let τ_n be the stopping time obtained by rounding τ up to the next integer multiple of 2^{-n} :

$$\tau_n(\omega) = \sum_{i=1}^{2^n} t_i \{ t_{i-1} < \tau(\omega) \le t_i \}$$
 where $t_i = i/2^n$.

• Show that

$$((0, \tau_n]] = \sum_{i=1}^{2^n} \{t_{i-1} < t \le t_i\} \{\tau(\omega) > t_{i-1}\} \in \mathcal{H}_{\text{simple}}$$

and that $\mu (((0, \tau_n]] - ((0, \tau]])^2 \to 0.$

• Conclude that $((0, \tau]] \bullet M_t = M_{t \wedge \tau}$.

Predictable integrands

How large is $\overline{\mathcal{H}}_{simple}$? For Brownian motion, it s traditional to show (Chung & Williams 1990, Theorem 3.7) that $\overline{\mathcal{H}}_{simple}$ contains at least all the $\mathcal{B}(0, 1] \times \mathcal{F}_1$ -measurable, adapted processes that are square integrable for $\mathfrak{m} \times \mathbb{P}$. For other martingales, it is cleaner to work with a slightly smaller class of integrands.

<8> **Definition.** The predictable sigma-field \mathcal{P} is defined as the sigma-field on $(0, 1] \times \Omega$ generated by the set of all L-processes. The space $\mathcal{H}^2(\mu)$ is defined as the set of all \mathcal{P} -measurable processes H on $(0, 1] \times \Omega$ for which $\mu H^2 < \infty$.

Notice that $\mathcal{H}_{simple} \subseteq \mathcal{H}^2(\mu)$ for the μ corresponding to each M in \mathcal{M}_0^2 . In fact, a generating class argument shows that $\mathcal{H}^2(\mu)$ is the closure of \mathcal{H}_{simple} in the space $\mathcal{L}^2((0, 1] \times \Omega, \mathcal{P}, \mu)$:

• Suppose H is a bounded, L-process. Define

$$H_n(t,\omega) := \sum_{i=1}^{2^n} H(t_{i-1},\omega) \{t_{i-1} < t \le t_i\} \quad \text{where } t_i = i/2^n$$

Show that $H_n \in \mathcal{H}_{\text{simple}}$ and that $H_n(t,\omega) \to H(t,\omega)$ for all (t,ω) and

hence that $\mu (H_n - H)^2 \rightarrow 0$. Deduce that $H \in \overline{\mathcal{H}}_{\text{simple}}$.

- Invoke a generating class argument (such as the one given in the extract *generating-class-fns.pdf* from UGMTP) to deduce that $\overline{\mathcal{H}}_{simple}$ contains all bounded, \mathcal{P} -measurable processes.
- Then what?

The Doléans measure

If we intend only to extend the stochastic integral to predictable integrands, we do not need the measure μ that corresponds to the increasing process A to be defined on $\mathcal{B}(0, 1] \otimes \mathcal{F}_1$: we only need it defined on \mathcal{P} . In fact, it is a much easier task to construct an appropriate μ on \mathcal{P} directly from the submartingale $\{M_t^2: 0 \le t \le 1\}$ without even assuming the existence of A. The measure μ is called the **Doléans measure** for the submartingale M^2 . See the handout **Doleans.pdf** for a construction.

Moreover, there is another procedure (the dual predictable projection) for extending the Doléans measure to a "predictable measure" on $\mathcal{B}(0, 1] \otimes \mathcal{F}_1$. A disintegration of this new measure then defines the process A. I'll prepare a handout describing the method.

Problems

[1] Show that the predictable sigma-field \mathcal{P} on $(0, 1] \times \Omega$ is generated by each of the following sets of processes:

(i) all sets $(a, b] \times F$ with $F \in \mathfrak{F}_a$ and $0 \le a < b \le 1$

- (ii) \mathcal{H}_{simple}
- (iii) the set ${\mathbb C}$ of all adapted processes with continuous sample paths
- (iv) all stochastic intervals ((0, τ]] for stopping times τ taking values in [0, 1]
- (v) all sets $\{(t, \omega) \in (0, 1] \times \Omega : X(t, \omega) = 0\}$, with $X \in \mathbb{C}$

References

- Chung, K. L. & Williams, R. J. (1990), *Introduction to Stochastic Integration*, Birkhäuser, Boston.
- Dellacherie, C. & Meyer, P. A. (1982), *Probabilities and Potential B: Theory* of Martingales, North-Holland, Amsterdam.
- Rogers, L. C. G. & Williams, D. (1987), Diffusions, Markov Processes, and Martingales: Itô Calculus, Vol. 2, Wiley.