Project 5

This week I would like you to consolidate your understanding of the material from the last two weeks by working through some problems.

- Read the handout *Doleans.pdf*, at least up to Theorem 5. Try to explain the assertions flagged by the symbol ⇒. Try to solve Problem [2].
- <1> Definition. Suppose X is a process and τ is a stopping time. Define the stopped process $X_{\wedge\tau}$ to be the process for which $X_{\wedge\tau}(t,\omega) = X(\tau(\omega) \wedge t, \omega)$.

Problems

- [1] Suppose $M \in \mathcal{M}^2[0, 1]$ has continuous sample paths.
 - (i) For each H in \mathcal{H}_{simple} , show that $H \bullet M$ has continuous sample paths.
 - (ii) Suppose $\{H_n : n \in \mathbb{N}\} \subseteq \mathcal{H}_{simple}$ and $\mu |H_n H|^2 \to 0$. Use Doob's maximal inequality to show that there exists a subsequence \mathbb{N}_1 along which

$$\sum_{n\in\mathbb{N}_1}\mathbb{P}\sup_{0\leq t\leq 1}|H_n\bullet M_t-H\bullet M_t|<\infty$$

- (iii) Deduce that there is a version of $H \bullet M$ with continuous sample paths.
- [2] Suppose $\{\tau_n : n \in \mathbb{N}\}$ is a sequence of [0, 1]-valued stopping times for which $\tau_n \leq \tau$ and $\tau_n(\omega) \uparrow \uparrow \tau(\omega)$ at each ω for which $\tau(\omega) > 0$. Prove that $[[\tau, 1]] \in \mathcal{P}$.

REMARK. The sequence $\{\tau_n\}$ is said to **foretell** τ . Existence of a foretelling sequence was originally used to define the concept of a **predictable stopping time**. The modern definition requires $[[\tau, 1]] \in \mathcal{P}$. In fact, the two definitions are almost equivalent, as you will see from a later handout.

- [3] Suppose $M \in \mathcal{M}_0^2[0, 1]$ and $H \in \mathcal{H}^2(\mu)$, where μ is the Doléans measure defined by the submartingale M_t^2 . Let τ be a [0, 1]-valued stopping time. Let X denote the martingale $H \bullet M$.
 - (i) Define $N = M_{\wedge \tau}$. Show that $N \in \mathcal{M}_0^2[0, 1]$.
 - (ii) Show that, with probability one,

 $X_{t\wedge\tau} = \left(\left(H((0,\tau]] \right) \bullet M \right)_t = H \bullet N_t \quad \text{for } 0 \le t \le 1.$

Hint: Consider first the case where $H \in \mathcal{H}_{\text{simple}}$ and τ takes values only in a finite subset of [0, 1]. Extend to general τ by rounding up to integer multiples of 2^{-n} .

- (iii) Show that the Doléans measure ν for the submartingale $(H \bullet M)_t^2$ has density H^2 with respect to μ . Hint: Remember that the Doléans measure is uniquely determined by the values it gives to the stochastic intervals ((0, τ]].
- (iv) Suppose $K \in \mathcal{H}^2(\nu)$. Show that $KH \in \mathcal{H}^2(\mu)$ and $K \bullet (H \bullet M) = (HK) \bullet M$.
- [4] Suppose $\mu = \mathfrak{m} \otimes \mathbb{P}$, defined on $\mathcal{B}(0, 1] \otimes \mathcal{F}_1$. Let $\{X_t : 0 \le t \le 1\}$ be progressively measurable.
 - (i) Suppose X is bounded, that is, $\sup_{t,\omega} |X(t, \omega)| < \infty$. Define

$$H_n(t,\omega) := n \int_{t-n^{-1}}^t X(s,\omega) \, ds$$

Statistics 603a: 7 October 2004

©David Pollard

nonstandard notation

(How should you understand the definition when $t < n^{-1}$?) Show that H_n is predictable and that $\int_0^1 |H_n(t, \omega) - X(t, \omega)|^2 dt \to 0$ for each ω .

- (ii) Deduce that $\mu |H_n X|^2 \rightarrow 0$.
- (iii) Deduce that $X \in \overline{\mathcal{H}}_{simple}$, the closure in $\mathcal{L}^2(\mathcal{B}(0, 1] \otimes \mathcal{F}_1, \mu)$, if $\mu X^2 < \infty$.
- [5] Suppose $M \in \mathcal{M}_0^2[0, 1]$, with μ the Doléans measure defined by the submartingale M_t^2 . Suppose $\psi : \mathcal{H}^2(\mu) \to \mathcal{M}_0^2[0, 1]$ is a linear map, in the sense that $\psi(\alpha H + \beta K)_t = \alpha \psi(H)_t + \beta \psi(K)_t$ almost surely, for each $t \in [0, 1]$ and constants $\alpha, \beta \in \mathbb{R}$. Suppose that
 - (a) $\psi(((0, \tau]))_t = M_{t \wedge \tau}$ almost surely, for each stopping time τ .
 - (b) if $1 \ge |H_n| \to 0$ pointwise then $\psi(H_n)_t \to 0$ in probability, for each fixed *t*.

Show that these properties characterize the stochastic integral, in the following senses.

- (i) Show that $\psi(H)_t = H \bullet M_t$ almost surely, for each *t*. Hint: Consider the collection of all bounded, nonnegative, predictable processes *H* for which $\psi(H)_t = H \bullet M_t$ almost surely, for every *t*. Use a generating class argument.
- (ii) If, in addition, $\psi(H_n)_t \to 0$ in probability whenever $\mu H_n^2 \to 0$, show that the conclusion from part (i) also holds for every *H* in $\mathcal{H}_2(\mu)$.