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Project 6

This week there are many small details that might occcupy your attention. I
would be satisfied if you concentrated on some of the more important points.
Things to explain in your notebook:

(i) Why is the theory for M2
0(R

+) almost the same as the theory
for M2

0[0, 1]?

(ii) Why do we get sigma-finite Doléans measures for the submartingales
corresponding to locM2

0(R
+) processes?

(iii) Why can H • M be built up pathwise from isometric stochastic integrals
when H ∈ locHBdd and M ∈ locM2

0(R
+)?

(iv) Why do we need to replace L2(P) convergence by convergence in
probability after localizing?

Square-integrable martingales indexed by R
+

• Define M2(R+) as the set of all square-integrable martingales, that is,
cadlag martingales {Mt : t ∈ R

+} for which supt PM2
t < ∞.

• Define F∞ = σ
( ∪t∈R+ Ft

)
. If M ∈ M2(R+) then there exists an M∞ ∈

L2(�, F∞, P) such that Mt → M∞ almost surely and P|Mt − M∞|2 → 0
as t → ∞. Moreover, Mt = P(M∞ | Ft ) almost surely.

• Note that {(Mt , Ft ) : 0 ≤ t ≤ ∞} is also a martingale. Suppose ψ is a
one-to-one map from [0, 1] onto [0, ∞], such as ψ(s) = s/(1 − s). Define
Gs := F(ψ(s)) and Ns = M(ψ(s)). Then {(Ns, Gs) : 0 ≤ s ≤ 1} belongs
to M2[0, 1]. All the theory for the isometric stochastic integrals with
respect to M2[0, 1] processes carries over to analogous theory for M2(R+).

• Note a subtle difference: For M2(R+) we have left continuity of sample
paths at ∞, by construction of M∞. For M2[0, 1] we did not require left
continuity at 1. Also we did not require that F1 = σ

( ∪t<1 Ft
)
. A better

analogy would allow F∞ to be larger than σ
( ∪t∈R+ Ft

)
and would allow

M to have a jump at ∞.

Localization

<1> Definition. Suppose X is a process and τ is a stopping time. Define the
stopped process X∧τ to be the process for which X∧τ (t, ω) = X (τ (ω) ∧ t, ω).

nonstandard notation

<2> Definition. Suppose W is a set of processes (indexed by R
+) that is stable

under stopping, W �→ W∧τ . Say that a process X is locally in W if there exists
a sequence of stopping times {τk} with τk ↑ ∞ and X∧τk ∈ W for each k. Call
{τk} a W-localizing sequence for X. Write locW for the set of all processesor reducing sequence
that are locally in W.

Remark. Notice that if {τk} is a W-localizing sequence for X then so
is {k ∧ τk}. Thus we can always require each τk in a localizing sequence to
be a bounded stopping time.

Predictable sigma-field

The predictable sigma-field P on (0, ∞)×� is again defined as the sigma-field
generated by all L-processes.

Remark. For (0, 1] × � the predictable sigma-field contains some
subsets of {1} × �. For (0, ∞) × �, subsets of {∞} × � are not in P.
Maybe it would be better to define P on (0, ∞] × �.

Statistics 603a: 14 October 2004 c©David Pollard



P6-2

Stochastic intervals

For stopping times σ and τ taking values in R
+ ∪ {∞} define

((σ, τ ]] := {(t, ω) ∈ R
+ × � : σ(ω) < t ≤ τ(ω)},

and so on. Note well that the stochastic interval is a subset of R
+ × �. Points

(t, ω) with t = ∞ are not included, even at ω for which τ(ω) = ∞. In
particular, for σ ≡ 0 and τ ≡ ∞ we get

((0, ∞]] = R
+ × �.

Don’t be misled by the “∞]]” into assuming that {∞} × � is included.

Remark. The convention that ∞ is excluded makes possible some neat
arguments, even though it spoils the analogy with stochastic subintervals
of (0, 1] × �. Although sorely tempted to buck tradition, I decided to
stick with established usage for fear of unwanted exceptions to established
theorems.

• Write T for the set of all [0, ∞]-valued stopping times. Is it true that P is
generated by the set of all stochastic intervals ((0, τ ]] for τ ∈ T?

• If M ∈ M2
0(R

+) explain why there exists a finite, countably-additive
measure on P (the Doléans measure for the submartingale M2) for which

µ(a, b] × F = PF(Mb − Ma)
2 for F ∈ Fa , and 0 ≤ a < b < ∞.

Could we also allow b = ∞? Is it still true that

µ((0, τ ]] = PM2
τ for each τ ∈ T?

How should the last equality be interpreted when {ω : τ(ω) = ∞} �= ∅?

Locally square-integrable martingales

• Consider first the case of a process M for which there exists a stopping
time σ such that N := M∧σ ∈ M2(R+). Let µ be the Doléans measure
on P for the square-integrable submartingale N 2.

(i) Is it true that N∞ = Mσ ? What would this equality be asserting about
those ω at which σ(ω) = ∞?

(ii) Show that µ((0, ∞]] = supt PM2
t∧σ = PN 2

∞.

(iii) Show that µ((t ∧ σ, ∞]] = P(N∞ − Mt∧σ )2 → 0 as t → ∞.

(iv) Conclude that µ is a finite measure that concentrates all its mass on the
stochastic interval ((0, σ ]].

• Now suppose M ∈ locM2
0(R

+), with localizing sequence {τk : k ∈ N}.
Write µk for the Doléans measure of the submartingale M2

∧τk
.

(i) Show that µk is a finite measure concentrating on ((0, τk]] and that the
restriction of µk+1 to ((0, τk]] equals µk .

(ii) Define µ on P by µH := supk∈N
µk H . Show that µ is a sigma-finite,

countably-additive measure for which

µ((0, τ ]] = supk PM2
τ∧τk

for all τ ∈ T.

(iii) Suppose {σk : k ∈ N} is another localizing sequence for M . Show that

µ((0, τ ]] = supk PM2
τ∧σk

for all τ ∈ T.

That is, show that µ does not depend on the choice of localizing
sequence for M .

Locally bounded predictable processes

Write HBdd for the set of all bounded, P-measurable processes.
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• Show that every L-process X with supω |X0(ω)| < ∞ belongs to locHBdd.
Hint: Consider τk(ω) := inf{t ∈ R

+ : |Xt (ω)| ≥ k}.
Remark. Does an L-process have time set [0, ∞) or (0, ∞)? Per-
haps the assertion would be better expressed as: the restriction of X
to (0, ∞) × � belongs to locHBdd. In that case, the assumption about X0

is superfluous. D&M have some delicate conventions and definitions for
handling contributions from {0} × �.

• (Much harder) Is the previous assertion still true if we replace L-processes
by P-measurable processes? What if we also require each sample path to
be cadlag?

Remark. A complete resolution of this question requires some facts
about predictable stopping times and predictable cross-sections. Compare
with Métivier (1982, Section 6).

Localization of the isometric stochastic integral

The new stochastic integral will be defined indirectly by a sequence of
isometries. The continuity properties of H • M will be expressed not via L2

bounds but by means of the concept of uniform convergence in probability

on compact intervals. For a sequence of processes {Zn}, write Zn
ucpc−→ Z to

nonstandard notation
mean that sup0≤s≤t |Zn(s, ω) − Z(s, ω)| → 0 in probability, for each t in R

+.

<3> Theorem. Suppose M ∈ locM2
0(R

+). There exists a linear map H �→ H • M
from locHBdd into locM2

0(R
+) with the following properties.

(i) ((0, τ ]] • Mt = Mt∧τ for all τ ∈ T.

(ii) (H • M)t∧τ = (
H((0, τ ]]

) • Mt = (
H • M∧τ

)
t , for all H ∈ locHBdd and

all τ ∈ T.

(iii) If M has continuous sample paths then so does H • M.

(iv) Suppose {H (n) : n ∈ N} ⊆ locHBdd and H (n)(t, ω) → 0 for each (t, ω).
Suppose that the sequence is locally uniformly bounded: there exist
stopping times with τk ↑ ∞ and finite constants Ck such that |H (n)

∧τk
| ≤ Ck

for each n and each k. Then H (n) • M
ucpc−→ 0.

(v) K • (H • M) = (K H) • M for K , H ∈ locHBdd.

Sketch of a proof. Suppose M has localizing sequence {τk : k ∈ N} and
H ∈ locHBdd has localizing sequence {σk : k ∈ N}.

• Why is there no loss of generality in assuming that σk = τk for every k?

• Write M (k) for M∧τk . Define X (k) to be the square integrable martingale

X (k) = H∧τk • M (k) = (
H((0, τk]]

) • M (k).

Why are the two integrals the same, up to some sort of almost sure
equivalence?

• Show that X (k)(t, ω) = X (k)(t ∧ τk(ω), ω) for all t ∈ R
+. That is, show

that the sample paths are constant for t ≥ τk(ω). Do we need some sort
of almost sure qualification here?

• Show that, on a set of ω with probability one,

X (k+1)(t ∧ τk(ω), ω) = X (k)(t ∧ τk(ω), ω) for all t ∈ R
+.

• Show that there is an R-process X for which, on a set of ω with probability
one,

X (t ∧ τk(ω), ω) = X (k)(t ∧ τk(ω), ω) for all t ∈ R
+, all k.
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• Show that X ∈ locM2
0(R

+), with localizing sequence {τk : k ∈ N}.
• Define H • M := X .

• In order to establish linearity of H �→ H • M , we need to show that
the definition does not depend on the particular choice of the localizing
sequence. (If we can use a single localizing sequence for two different H
processes then linearity for the approximating X (k) processes will transfer
to the X process.)

• For assertion (iv), we may also assume that {τk} localizes M to M2
0(R

+).
Write µk for the Doléans measure of the submartingale (M (k))2. Then, for
each fixed k, we have

P sup
s≤t

(
H (n) • M

)2

s∧τk
= P sup

s≤t

(
H (n)((0, τk]] • M (k)

)2

s
by construction

≤ 4P
(
H (n)((0, τk]] • M (k)

)2

t by Doob’s inequality

= 4µk
(
(H (n))2((0, τk ∧ t]]

)

→ 0 as n → ∞, by Dominated Convergenece.

When τk > t , which happens with probability tending to one, the processes
H (n)• Ms∧τk and H (n)• Ms coincide for all s ≤ t . The uniform convergence
in probability follows.�

Characterization of the stochastic integral

<4> Theorem. Suppose M ∈ M2
0(R

+). Suppose also that ψ : locHBdd → M2
0(R

+)

is a linear map (in the sense of almost sure equivalence) for which

(i) ((0, τ ]] • Mt = Mτ∧t almost surely, for each t ∈ R
+ and τ ∈ Tbetter just to state equality for

bounded τ ? (ii) If {H (n) : n ∈ N} ⊆ locHBdd is locally uniformly bounded and
H (n)(t, ω) → 0 for each (t, ω) then ψ(H (n))t → 0 in probability for
each t.

Then ψ(H)t = H • Mt almost surely for each t ∈ R
+ and each H ∈ locHBdd.

Remark. The assertion of the Theorem can also be written: there
exists a set �0 with �c

0 ∈ N such that

ψ(H)(t, ω) = H • M(t, ω) for every t if ω ∈ �0

Cadlag sample paths allow us to deduce equality of whole paths from
equality ot a countable dense set of times.
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