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PROJECT 6

This week there are many small details that might occcupy your attention. I
would be satisfied if you concentrated on some of the more important points.
Things to explain in your notebook:
(i) Why is the theory for MZ(R™) almost the same as the theory
for M3[0, 1]?
(il)) Why do we get sigma-finite Doléans measures for the submartingales
corresponding to 1ocM(2) (R) processes?
(iii) Why can H e M be built up pathwise from isometric stochastic integrals
when H € locHpqg and M € locM3(RY)?

(iv) Why do we need to replace L?(PP) convergence by convergence in
probability after localizing?

Square-integrable martingales indexed by R™

e Define M?(R™T) as the set of all square-integrable martingales, that is,
cadlag martingales {M, : t € R*} for which sup, PM? < oo.

e Define ¥ =0 (U,EW 3",). If M € M*(R") then there exists an My, €
L2(2, Fs, P) such that M, — M, almost surely and P|M, — My|? — 0
as t — 0o. Moreover, M; = P(M, | F;) almost surely.

e Note that {(M;,F;) : 0 <t < oo} is also a martingale. Suppose V is a
one-to-one map from [0, 1] onto [0, co], such as ¥ (s) = s/(1 —s). Define
Gy :=FW(s)) and Ny = M (¥ (s)). Then {(Ny, G5) : 0 < s < 1} belongs
to M?[0, 1]. All the theory for the isometric stochastic integrals with
respect to M?[0, 1] processes carries over to analogous theory for M?(R™).

e Note a subtle difference: For M?(R*) we have left continuity of sample
paths at oo, by construction of M,,. For M?[0, 1] we did not require left
continuity at 1. Also we did not require that ¥, = o ( U <1 3",). A better
analogy would allow F, to be larger than o ( Urer+ ff’]) and would allow
M to have a jump at co.

Localization

<1> Definition. Suppose X is a process and t is a stopping time. Define the

onstandard notation stopped process X .. to be the process for which X 5. (t, ) = X (t(w) A t, w).

<2> Definition. Suppose W is a set of processes (indexed by RY) that is stable
under stopping, W +— W,.. Say that a process X is locally in W if there exists
a sequence of stopping times {t;} with t, 4 oo and X ., € W for each k. Call
or reducing sequence {tr} a W-localizing sequence for X. Write locW for the set of all processes
that are locally in 'W.

REMARK. Notice that if {r;} is a W-localizing sequence for X then so
is {k A ty}. Thus we can always require each t; in a localizing sequence to
be a bounded stopping time.

Predictable sigma-field

The predictable sigma-field P on (0, co) x €2 is again defined as the sigma-field
generated by all L-processes.

REMARK.  For (0,1] x € the predictable sigma-field contains some
subsets of {1} x €. For (0, 00) x €, subsets of {o0} x € are not in P.
Maybe it would be better to define P on (0, co] x .
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Stochastic intervals
For stopping times o and 7 taking values in R U {co} define
(o, :={¢t, 0) eRT x Q:0(w) <t < (W)},
and so on. Note well that the stochastic interval is a subset of R* x Q. Points

(t, w) with t = oo are not included, even at w for which 7(w) = oo. In
particular, for o = 0 and T = oo we get

(0, 00]] = R x Q.
Don’t be misled by the “oco]]” into assuming that {oo} x 2 is included.

REMARK.  The convention that 0o is excluded makes possible some neat
arguments, even though it spoils the analogy with stochastic subintervals
of (0, 1] x €. Although sorely tempted to buck tradition, I decided to
stick with established usage for fear of unwanted exceptions to established
theorems.

e Write T for the set of all [0, co]-valued stopping times. Is it true that P is
generated by the set of all stochastic intervals ((0, t]] for T € T?

o If M € M3(R") explain why there exists a finite, countably-additive
measure on P (the Doléans measure for the submartingale M?) for which
w(a,b] x F = PF(M), — M,)* for Fe%,,and 0 <a < b < oo.
Could we also allow b = oco? Is it still true that

(O, t]l =PM?  for each T € T?
How should the last equality be interpreted when {w : T(w) = oo} # ¥?

Locally square-integrable martingales

o Consider first the case of a process M for which there exists a stopping
time o such that N := M,, € M?(RT). Let u be the Doléans measure
on P for the square-integrable submartingale N2.

(1) Is it true that N, = M,? What would this equality be asserting about
those w at which o (w) = c0?

(ii) Show that (0, co]] = sup, PM? = PN2Z.

(iii) Show that p((f A o, 00]] = P(Neo — M;1s)> — 0 as t — 0o0.

(iv) Conclude that u is a finite measure that concentrates all its mass on the

stochastic interval ((0, o]].

e Now suppose M € locMZ(RT), with localizing sequence {7y : k € N}.
Write s for the Doléans measure of the submartingale M3, .

(1) Show that py is a finite measure concentrating on ((0, ]| and that the
restriction of w4 to ((0, 7¢]] equals pug.

(ii) Define p on P by uH := sup,.y 1k H. Show that p is a sigma-finite,

countably-additive measure for which
1(©, Tl = sup, PM?,.  forallt € T.
(iii) Suppose {0y : k € N} is another localizing sequence for M. Show that
1 (0, T]] = sup, IP’MTZMk forall T € 7.

That is, show that u does not depend on the choice of localizing
sequence for M.

Locally bounded predictable processes

Write Hpqq for the set of all bounded, P-measurable processes.
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e Show that every L-process X with sup,, |Xo(w)| < oo belongs to locHp4q-
Hint: Consider 74 () := inf{t € R" : | X;(w)| > k).

REMARK. Does an L-process have time set [0, co) or (0, 00)? Per-
haps the assertion would be better expressed as: the restriction of X
to (0, 00) x  belongs to locHggq. In that case, the assumption about X,
is superfluous. D&M have some delicate conventions and definitions for
handling contributions from {0} x .

e (Much harder) Is the previous assertion still true if we replace L-processes
by P-measurable processes? What if we also require each sample path to
be cadlag?

REMARK. A complete resolution of this question requires some facts
about predictable stopping times and predictable cross-sections. Compare
with Métivier (1982, Section 6).

Localization of the isometric stochastic integral

The new stochastic integral will be defined indirectly by a sequence of
isometries. The continuity properties of H e M will be expressed not via L2
bounds but by means of the concept of uniform convergence in probability

ucpc
on compact intervals. For a sequence of processes {Z,}, write Z, LS Z to
mean that supy, ., [Z,(s, w) — Z(s, w)| — 0 in probability, for each ¢ in R*.

Theorem. Suppose M € locMS(R*'). There exists a linear map H+— H e M
from locHgpaq into locM3(RY) with the following properties.
(i) ((0,t]l @ M; = M;p; forall T € T.

(ii) (H @ M), = (H((0,7]l) @ M, = (H ® M), for all H € locHpaq and
allt € 7.

(iii) If M has continuous sample paths then so does H e M.

(iv) Suppose {H™ : n e N} C locHpgq and H™(t, w) — O for each (t, w).
Suppose that the sequence is locally uniformly bounded: there exist
stopping times with t;, 1 oo and finite constants Cy such that |H, ﬁ",z| < Cy

ucpc
for each n and each k. Then H™ o M P,

(v) Ke(HeM)= (KH)e M for K, H € locHpqq.

Sketch of a proof. Suppose M has localizing sequence {t; : k € N} and
H € locHpyq has localizing sequence {oy : k € N}.
e Why is there no loss of generality in assuming that o}, = i for every k?

o Write M® for M,,,. Define X® to be the square integrable martingale
X© =H,, e MY = (H(O, %)) e M®.

Why are the two integrals the same, up to some sort of almost sure
equivalence?

e Show that X®(t, w) = X®(t A 1x(w), w) for all + € R*. That is, show
that the sample paths are constant for # > 7;(w). Do we need some sort
of almost sure qualification here?

e Show that, on a set of w with probability one,
X%Vt A (@), ) = XP @ A 1 (), w) for all € RY.

e Show that there is an R-process X for which, on a set of @ with probability
one,

Xt At(w),w) =XP@At(w),w)  forall t € R, all k.
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e Show that X € 100M§(R+), with localizing sequence {1} : k € N}.

e Define He M := X.

e In order to establish linearity of H +— H e M, we need to show that
the definition does not depend on the particular choice of the localizing
sequence. (If we can use a single localizing sequence for two different H

processes then linearity for the approximating X ®) processes will transfer
to the X process.)

e For assertion (iv), we may also assume that {z;} localizes M to M(z) (R1).
Write 1 for the Doléans measure of the submartingale (M ®)2. Then, for
each fixed k, we have

Psup (H™ o M)fmk =Psup (H” (0, %]l » M(k))f by construction
s<t

s<t
< 4P (H™ (O, n]l » M<’<>)t2 by Doob’s inequality
= 4 ((H™)*(O, m A 111)
-0 as n — 00, by Dominated Convergenece.

When 1, > ¢, which happens with probability tending to one, the processes
H™ o M, Az, and H ) o M, coincide for all s < ¢. The uniform convergence
(] in probability follows.

Characterization of the stochastic integral

<4> Theorem. Suppose M € MZ(RT). Suppose also that ¥ : locHpgqa — MG(RT)
is a linear map (in the sense of almost sure equivalence) for which

better just to state equality for (i) (0, t]] ® M; = M, ,; almost surely, for eacht € R and t € T

bounded 77 (ii) If {(H™ : n € N} C locHgpqq is locally uniformly bounded and
H®™W(t, w) — 0 for each (t, w) then ¥ (H™), — 0 in probability for
each t.

Then yr(H), = H e M, almost surely for each t € R* and each H € locHgyq.

REMARK. The assertion of the Theorem can also be written: there
exists a set € with Q5 € N such that

Y(H)(t,w) = H e M(t, w) for every ¢ if w € Qo

Cadlag sample paths allow us to deduce equality of whole paths from
equality ot a countable dense set of times.
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