P6-1

Project 6

This week there are many small details that might occcupy your attention. I would be satisfied if you concentrated on some of the more important points. Things to explain in your notebook:

- (i) Why is the theory for M²₀(ℝ⁺) almost the same as the theory for M²₀[0, 1]?
- (ii) Why do we get sigma-finite Doléans measures for the submartingales corresponding to $loc \mathcal{M}_0^2(\mathbb{R}^+)$ processes?
- (iii) Why can $H \bullet M$ be built up pathwise from isometric stochastic integrals when $H \in \text{loc}\mathcal{H}_{\text{Bdd}}$ and $M \in \text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$?
- (iv) Why do we need to replace $\mathcal{L}^2(\mathbb{P})$ convergence by convergence in probability after localizing?

Square-integrable martingales indexed by \mathbb{R}^+

- Define M²(ℝ⁺) as the set of all square-integrable martingales, that is, cadlag martingales {M_t : t ∈ ℝ⁺} for which sup_t ℙM_t² < ∞.
- Define $\mathcal{F}_{\infty} = \sigma \left(\bigcup_{t \in \mathbb{R}^+} \mathcal{F}_t \right)$. If $M \in \mathcal{M}^2(\mathbb{R}^+)$ then there exists an $M_{\infty} \in \mathcal{L}^2(\Omega, \mathcal{F}_{\infty}, \mathbb{P})$ such that $M_t \to M_{\infty}$ almost surely and $\mathbb{P}|M_t M_{\infty}|^2 \to 0$ as $t \to \infty$. Moreover, $M_t = \mathbb{P}(M_{\infty} | \mathcal{F}_t)$ almost surely.
- Note that {(M_t, ℋ_t) : 0 ≤ t ≤ ∞} is also a martingale. Suppose ψ is a one-to-one map from [0, 1] onto [0, ∞], such as ψ(s) = s/(1-s). Define 𝔅_s := ℋ(ψ(s)) and N_s = M(ψ(s)). Then {(N_s, 𝔅_s) : 0 ≤ s ≤ 1} belongs to 𝓜²[0, 1]. All the theory for the isometric stochastic integrals with respect to 𝓜²[0, 1] processes carries over to analogous theory for 𝓜²(ℝ⁺).
- Note a subtle difference: For M²(ℝ⁺) we have left continuity of sample paths at ∞, by construction of M_∞. For M²[0, 1] we did not require left continuity at 1. Also we did not require that F₁ = σ (∪_{t<1} F_t). A better analogy would allow F_∞ to be larger than σ (∪_{t∈ℝ⁺} F_t) and would allow M to have a jump at ∞.

Localization

- <1> **Definition.** Suppose X is a process and τ is a stopping time. Define the stopped process $X_{\wedge\tau}$ to be the process for which $X_{\wedge\tau}(t,\omega) = X(\tau(\omega) \wedge t, \omega)$.
- <2> **Definition.** Suppose W is a set of processes (indexed by \mathbb{R}^+) that is stable under stopping, $W \mapsto W_{\wedge \tau}$. Say that a process X is locally in W if there exists a sequence of stopping times $\{\tau_k\}$ with $\tau_k \uparrow \infty$ and $X_{\wedge \tau_k} \in W$ for each k. Call $\{\tau_k\}$ a W-localizing sequence for X. Write locW for the set of all processes that are locally in W.

REMARK. Notice that if $\{\tau_k\}$ is a W-localizing sequence for X then so is $\{k \wedge \tau_k\}$. Thus we can always require each τ_k in a localizing sequence to be a bounded stopping time.

Predictable sigma-field

The predictable sigma-field \mathcal{P} on $(0, \infty) \times \Omega$ is again defined as the sigma-field generated by all L-processes.

REMARK. For $(0, 1] \times \Omega$ the predictable sigma-field contains some subsets of $\{1\} \times \Omega$. For $(0, \infty) \times \Omega$, subsets of $\{\infty\} \times \Omega$ are not in \mathcal{P} . Maybe it would be better to define \mathcal{P} on $(0, \infty] \times \Omega$.

nonstandard notation

or reducing sequence

Stochastic intervals

For stopping times σ and τ taking values in $\mathbb{R}^+ \cup \{\infty\}$ define

$$((\sigma, \tau]] := \{(t, \omega) \in \mathbb{R}^+ \times \Omega : \sigma(\omega) < t \le \tau(\omega)\},\$$

and so on. Note well that the stochastic interval is a subset of $\mathbb{R}^+ \times \Omega$. Points (t, ω) with $t = \infty$ are not included, even at ω for which $\tau(\omega) = \infty$. In particular, for $\sigma \equiv 0$ and $\tau \equiv \infty$ we get

$$((0,\infty]] = \mathbb{R}^+ \times \Omega.$$

Don't be misled by the " ∞]]" into assuming that { ∞ } × Ω is included.

REMARK. The convention that ∞ is excluded makes possible some neat arguments, even though it spoils the analogy with stochastic subintervals of $(0, 1] \times \Omega$. Although sorely tempted to buck tradition, I decided to stick with established usage for fear of unwanted exceptions to established theorems.

- Write T for the set of all [0, ∞]-valued stopping times. Is it true that P is generated by the set of all stochastic intervals ((0, τ]] for τ ∈ T?
- If $M \in \mathcal{M}_0^2(\mathbb{R}^+)$ explain why there exists a finite, countably-additive measure on \mathcal{P} (the Doléans measure for the submartingale M^2) for which

$$\mu(a, b] \times F = \mathbb{P}F(M_b - M_a)^2$$
 for $F \in \mathcal{F}_a$, and $0 \le a < b < \infty$.

Could we also allow $b = \infty$? Is it still true that

$$\mu((0, \tau]] = \mathbb{P}M_{\tau}^2 \quad \text{for each } \tau \in \mathfrak{T}?$$

How should the last equality be interpreted when $\{\omega : \tau(\omega) = \infty\} \neq \emptyset$?

Locally square-integrable martingales

- Consider first the case of a process *M* for which there exists a stopping time σ such that N := M_{∧σ} ∈ M²(ℝ⁺). Let μ be the Doléans measure on 𝒫 for the square-integrable submartingale N².
- (i) Is it true that $N_{\infty} = M_{\sigma}$? What would this equality be asserting about those ω at which $\sigma(\omega) = \infty$?
- (ii) Show that $\mu((0, \infty)] = \sup_t \mathbb{P}M_{t \wedge \sigma}^2 = \mathbb{P}N_{\infty}^2$.
- (iii) Show that $\mu((t \wedge \sigma, \infty)] = \mathbb{P}(N_{\infty} M_{t \wedge \sigma})^2 \to 0 \text{ as } t \to \infty.$
- (iv) Conclude that μ is a finite measure that concentrates all its mass on the stochastic interval ((0, σ]].
- Now suppose $M \in \text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$, with localizing sequence $\{\tau_k : k \in \mathbb{N}\}$. Write μ_k for the Doléans measure of the submartingale $M^2_{\wedge \tau_k}$.
- (i) Show that μ_k is a finite measure concentrating on ((0, τ_k]] and that the restriction of μ_{k+1} to ((0, τ_k]] equals μ_k.
- (ii) Define μ on \mathcal{P} by $\mu H := \sup_{k \in \mathbb{N}} \mu_k H$. Show that μ is a sigma-finite, countably-additive measure for which

$$\mu((0, \tau)] = \sup_{k} \mathbb{P} M^{2}_{\tau \wedge \tau_{k}} \quad \text{for all } \tau \in \mathcal{T}.$$

(iii) Suppose $\{\sigma_k : k \in \mathbb{N}\}$ is another localizing sequence for *M*. Show that

$$\mu((0, \tau]] = \sup_k \mathbb{P} M^2_{\tau \wedge \sigma_k} \quad \text{for all } \tau \in \mathcal{T}.$$

That is, show that μ does not depend on the choice of localizing sequence for M.

Locally bounded predictable processes

Write \mathcal{H}_{Bdd} for the set of all bounded, \mathcal{P} -measurable processes.

Statistics 603a: 14 October 2004

• Show that every L-process X with $\sup_{\omega} |X_0(\omega)| < \infty$ belongs to $\log \mathcal{H}_{Bdd}$. Hint: Consider $\tau_k(\omega) := \inf\{t \in \mathbb{R}^+ : |X_t(\omega)| \ge k\}.$

REMARK. Does an L-process have time set $[0, \infty)$ or $(0, \infty)$? Perhaps the assertion would be better expressed as: the restriction of X to $(0, \infty) \times \Omega$ belongs to $\log \mathcal{H}_{Bdd}$. In that case, the assumption about X_0 is superfluous. D&M have some delicate conventions and definitions for handling contributions from $\{0\} \times \Omega$.

• (Much harder) Is the previous assertion still true if we replace L-processes by P-measurable processes? What if we also require each sample path to be cadlag?

REMARK. A complete resolution of this question requires some facts about predictable stopping times and predictable cross-sections. Compare with Métivier (1982, Section 6).

Localization of the isometric stochastic integral

The new stochastic integral will be defined indirectly by a sequence of isometries. The continuity properties of $H \bullet M$ will be expressed not via \mathcal{L}^2 bounds but by means of the concept of *uniform convergence in probability*

on compact intervals. For a sequence of processes $\{Z_n\}$, write $Z_n \xrightarrow{ucpc} Z$ to mean that $\sup_{0 \le s \le t} |Z_n(s, \omega) - Z(s, \omega)| \to 0$ in probability, for each t in \mathbb{R}^+ .

- <3> **Theorem.** Suppose $M \in loc \mathcal{M}_0^2(\mathbb{R}^+)$. There exists a linear map $H \mapsto H \bullet M$ from $loc \mathcal{H}_{Bdd}$ into $loc \mathcal{M}_0^2(\mathbb{R}^+)$ with the following properties.
 - (i) $((0, \tau]] \bullet M_t = M_{t \wedge \tau}$ for all $\tau \in \mathcal{T}$.
 - (*ii*) $(H \bullet M)_{t \wedge \tau} = (H((0, \tau)) \bullet M_t = (H \bullet M_{\wedge \tau})_t, \text{ for all } H \in \text{loc}\mathcal{H}_{\text{Bdd}} \text{ and} all \ \tau \in \mathcal{T}.$
 - (iii) If M has continuous sample paths then so does $H \bullet M$.
 - (iv) Suppose $\{H^{(n)} : n \in \mathbb{N}\} \subseteq \text{loc}\mathcal{H}_{\text{Bdd}}$ and $H^{(n)}(t, \omega) \to 0$ for each (t, ω) . Suppose that the sequence is **locally uniformly bounded**: there exist stopping times with $\tau_k \uparrow \infty$ and finite constants C_k such that $|H^{(n)}_{\wedge \tau_k}| \leq C_k$

for each n and each k. Then $H^{(n)} \bullet M \xrightarrow{ucpc} 0$.

(v) $K \bullet (H \bullet M) = (KH) \bullet M$ for $K, H \in \text{loc}\mathcal{H}_{\text{Bdd}}$.

Sketch of a proof. Suppose *M* has localizing sequence $\{\tau_k : k \in \mathbb{N}\}$ and $H \in loc \mathcal{H}_{Bdd}$ has localizing sequence $\{\sigma_k : k \in \mathbb{N}\}$.

- Why is there no loss of generality in assuming that $\sigma_k = \tau_k$ for every k?
- Write $M^{(k)}$ for $M_{\wedge \tau_k}$. Define $X^{(k)}$ to be the square integrable martingale

$$X^{(k)} = H_{\wedge \tau_k} \bullet M^{(k)} = \left(H((0, \tau_k)) \bullet M^{(k)}\right)$$

Why are the two integrals the same, up to some sort of almost sure equivalence?

- Show that $X^{(k)}(t, \omega) = X^{(k)}(t \wedge \tau_k(\omega), \omega)$ for all $t \in \mathbb{R}^+$. That is, show that the sample paths are constant for $t \ge \tau_k(\omega)$. Do we need some sort of almost sure qualification here?
- Show that, on a set of ω with probability one,

11

 $X^{(k+1)}(t \wedge \tau_k(\omega), \omega) = X^{(k)}(t \wedge \tau_k(\omega), \omega) \quad \text{for all } t \in \mathbb{R}^+.$

• Show that there is an R-process X for which, on a set of ω with probability one,

$$X(t \wedge \tau_k(\omega), \omega) = X^{(k)}(t \wedge \tau_k(\omega), \omega)$$
 for all $t \in \mathbb{R}^+$, all k .

Statistics 603a: 14 October 2004

nonstandard notation

- Show that $X \in \text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$, with localizing sequence $\{\tau_k : k \in \mathbb{N}\}$.
- Define $H \bullet M := X$.
- In order to establish linearity of $H \mapsto H \bullet M$, we need to show that the definition does not depend on the particular choice of the localizing sequence. (If we can use a single localizing sequence for two different Hprocesses then linearity for the approximating $X^{(k)}$ processes will transfer to the X process.)
- For assertion (iv), we may also assume that $\{\tau_k\}$ localizes M to $\mathcal{M}_0^2(\mathbb{R}^+)$. Write μ_k for the Doléans measure of the submartingale $(M^{(k)})^2$. Then, for each fixed k, we have

$$\mathbb{P}\sup_{s \le t} \left(H^{(n)} \bullet M \right)_{s \land \tau_k}^2 = \mathbb{P}\sup_{s \le t} \left(H^{(n)}((0, \tau_k]] \bullet M^{(k)} \right)_s^2 \qquad \text{by construction}$$
$$\le 4\mathbb{P} \left(H^{(n)}((0, \tau_k]] \bullet M^{(k)} \right)_t^2 \qquad \text{by Doob's inequality}$$
$$= 4\mu_k \left((H^{(n)})^2 ((0, \tau_k \land t]] \right)$$
$$\to 0 \qquad \text{as } n \to \infty, \text{ by Dominated Convergencee.}$$

When $\tau_k > t$, which happens with probability tending to one, the processes $H^{(n)} \bullet M_{s \wedge \tau_k}$ and $H^{(n)} \bullet M_s$ coincide for all $s \leq t$. The uniform convergence in probability follows.

Characterization of the stochastic integral

<4> **Theorem.** Suppose $M \in \mathcal{M}^2_0(\mathbb{R}^+)$. Suppose also that $\psi : \operatorname{loc}\mathcal{H}_{\operatorname{Bdd}} \to \mathcal{M}^2_0(\mathbb{R}^+)$ is a linear map (in the sense of almost sure equivalence) for which

(i) $((0, \tau]] \bullet M_t = M_{\tau \wedge t}$ almost surely, for each $t \in \mathbb{R}^+$ and $\tau \in \mathcal{T}$

(ii) If $\{H^{(n)} : n \in \mathbb{N}\} \subseteq \text{loc}\mathcal{H}_{\text{Bdd}}$ is locally uniformly bounded and $H^{(n)}(t, \omega) \to 0$ for each (t, ω) then $\psi(H^{(n)})_t \to 0$ in probability for each t.

Then $\psi(H)_t = H \bullet M_t$ almost surely for each $t \in \mathbb{R}^+$ and each $H \in \text{loc}\mathcal{H}_{\text{Bdd}}$.

REMARK. The assertion of the Theorem can also be written: there exists a set Ω_0 with $\Omega_0^c \in \mathbb{N}$ such that

 $\psi(H)(t, \omega) = H \bullet M(t, \omega)$ for every t if $\omega \in \Omega_0$

Cadlag sample paths allow us to deduce equality of whole paths from equality of a countable dense set of times.

References

Métivier, M. (1982), Semimartingales: A Course on Stochastic Processes, De Gruyter, Berlin.

better just to state equality for bounded τ ?