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Project 7

This week you should concentrate on understanding Theorem <4>, which
states the basic properties of integrals with respect to semimartingales. The
facts about finite variation are mostly for background information; you could
safely regard an FV-process to be defined as a difference of two increasing
R-processes.

The facts about quadratic variation process will be used in the next Project
to establsh the Itô formula. You might prefer to postpone your careful study
of [X, Y ] until that Project.

I do not expect you to work every Problem.

1. Cadlag functions of bounded variation

Suppose f is a real function defined on R
+. For each finite grid

G : a = t0 < t1 < . . . < tN = b

on [a, b] define the variation of f over the grid to be

Vf (G, [a, b]) :=
∑N

i=1
| f (ti ) − f (ti−1)|

Say that f is of bounded variation on the interval [a, b] if there exists a finite
constant Vf [a, b] for which

supG Vf (G, [a, b]) ≤ Vf [a, b]

where the supremum is taken over the set of all finite grids G on [a, b]. Say
that f is of finite variation if it is of bounded variation on each bounded
interal [0, b].

Problems [1] and [2] establish the following facts about finite variation.
Every difference f = f1 − f2 of two increasing functions is of finite variation.
Conversely, if f is of finite variation then the functions t �→ Vf [0, t] and
t �→ Vf [0, t] − f (t) are both increasing and

f (t) = Vf [0, t] − (
Vf [0, t] − f (t)

)
,

a difference of two increasing functions. Moreover, if f is cadlag then Vf [0, t]
is also cadlag.

2. Processes of finite variation as random (signed) measures

Let {Lt : t ∈ R
+} be an R-process with increasing sample paths, adapted to

a standard filtration {Ft : t ∈ R
+}. For each ω, the function L(·, ω) defines a

Notation: Lt (ω) = L(t, ω).
measure on B(R+),

λω[0, t] = Lt (ω) for t ∈ R
+.

The family � = {λω : ω ∈ �} may be thought of as a random measure, that
is, a map from � into the space of (sigma-finite) measures on B(R+).

Notice that λω{0} = L0(ω), an atom at the origin, which can be awkward.
It will be convenient if L0 ≡ 0, ensuring that λω concentrates on (0, ∞).
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<1> Definition. Write FV, or FV(R+) if there is any ambiguity about the time
set, for the set of all R-processes with sample paths that are of finite variation
on R

+. Write FV0 for the subset of FV-processes, A, with A0 ≡ 0.

• Show that FV could also be defined as the set of processes expressible as
a difference A(·, ω) = L ′(·, ω) − L ′′(·, ω) of two increasing R-processes.

The stochastic integral with respect to A will be defined as a difference of
stochastic integrals with respect to L ′ and L ′′. Questions of uniqueness—lack
of dependence on the choice of the two increasing processes—will be subsumed
in the the uniqueness assertion for semimartingales.

The case where L is an increasing R-process with L0 ≡ 0 will bring
out the main ideas. I will leave to you the task of extending the results to a
difference of two such processes. Define the stochastic integral with respect
to L pathwise,

H • Lt := λs
ω

({0 < s ≤ t}H(s, ω)
)
.

This integral is well defined if H ∈ locHBdd.
Indeed, suppose H ∈ locHBdd. There exist stopping times τk ↑ ∞

and finite constants Ck for which |H∧τk | ≤ Ck . For each fixed ω, the function
s �→ H(s, ω) is measurable (by Fubini, because predictable implies progressively
measurable). Also sups≤t |H(s, ω)| ≤ Ck when t ≤ τk(ω). The function H(·, ω)

is integrable with respect to λω on each bounded interval. Moreover, we have
a simple bound for the contributions from the positive and negative parts of H
to the stochastic integral:

0 ≤ H± • Lt∧τk = λs
ω

({0 ≤ s ≤ t ∧ τk}H±(s, ω)
) ≤ Ck L(t, ω).

That is, H± • Lt ≤ Ck L(t, ω) when t ≤ τk(ω).

• Show that the sample paths of H± • L are cadlag and adapted. Deduce
that H • L ∈ FV0.

You should now be able to prove the following result by using standard
facts about measures.

<2> Theorem. Suppose A ∈ FV0. There is a map H �→ H • A from locHBdd

to FV0 that is linear (in the almost sure sense?) for which:

(i) ((0, τ ]] • At = At∧τ for each τ ∈ T and t ∈ R
+.

(ii) (H • A)t∧τ = (H((0, τ ]]) • At = H • (A∧τ )t for each τ ∈ T and t ∈ R
+.

(iii) If a sequence {Hn} in locHBdd is locally uniformly bounded and

converges pointwise (in t and ω) to 0 then Hn • A
ucpc−→ 0.

As you can see, there is really not much subtlety beyond the usual measure
theory in the construction of stochastic integrals with respect to FV-processes.

Remark. The integral H • Lt can be defined even for processes that
are not predictable or locally bounded. In fact, as there are no martingales
involved in the construction, predictability is irrelevant. However, functions
in locHBdd will have stochastic integrals defined for both FV0-processes
and locM2

0(R
+)-processes.

3. Stochastic integrals with respect to semimartingales

By combining the results from the previous Section with results from Project 6,
we arrive at a most satisfactory definition of the stochastic integral for a very
broad class of processes.
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<3> Definition. An R-process X is called a semimartingale, for a given standard
filtration {Ft : t ∈ R

+}, if it can be decomposed as Xt = X0 + Mt + At with
M ∈ locM2

0(R
+) and A ∈ FV0. Write SMG for the class of all semimartingales

SMG is nonstandard notation
and SMG0 for those semimartinagles with X0 ≡ 0.

Notice that SMG0 is stable under stopping. Moreover, every local semi-
martingale is a semimartingale, a fact that is surprisingly difficult (Dellacherie
& Meyer 1982, §VII.26) to establish directly.

The stochastic integral H • X is defined as the sum of the stochastic
integrals with respect to the components M and A. The value X0 plays no role
in this definition, so we may as well assume X ∈ SMG0. The resulting integral
inherits the properties shared by integrals with respect to FV0 and integrals
with respect to locM2

0(R
+).

<4> Theorem. For each X in SMG0, there is a linear map H �→ H • X from
linear in thealmost sure sense

locHBdd into SMG0 such that:

(i) ((0, τ ]] • Xt = Xt∧τ for each τ ∈ T and t ∈ R
+.

(ii) H • Xt∧τ = (H((0, τ ]]) • Xt = H • (X∧τ )t for each τ ∈ T and t ∈ R
+.

(iii) If a sequence {Hn} in locHBdd is locally uniformly bounded and

converges pointwise (in t and ω) to 0 then Hn • X
ucpc−→ 0.

Conversely, let ψ be another linear map from locHBdd into the set of R-processes
having at least the weaker properties:

(iv) ψ(((0, τ ]])t = Xt∧τ almost surely, for each τ ∈ T and t ∈ R
+.

(vi) If a sequence {Hn} in locHBdd is locally uniformly bounded and
converges pointwise (in t and ω) to 0 then ψ(Hn)t → 0 in probability,
for each fixed t.

Then ψ(H)t = H • Xt almost surely for every t.

Remarks. The converse shows, in particular, that the stochastic integral
H • X does not depend on the choice of the processes M and A in the
semimartingale decomposition of X .

In general, I say that two processes X and Y are equal for almost
all paths if P{∃t : Xt (ω) �= Yt (ω)} = 0. For processes with cadlag sample
paths, this property is equivalent to P{ω : Xt (ω) �= Yt (ω)} = 0 for each t .

Outline of the proof of the converse. Define

H := {H ∈ HBdd : ψ(H)t = H • Xt almost surely, for each t ∈ R
+}

• Show that ((0, τ ]] ∈ H, for each τ ∈ T.

• Show that H is a λ-space. Hint: If Hn ∈ H and Hn ↑ H , with H bounded,
apply (iii) and (vi) to the uniformly bounded sequence H − Hn .

• Deduce that H equals HBdd.

• Extend the conclusion to locHBdd. Hint: If H ∈ locHBdd, with |H∧τk | ≤ Ck

for stopping times τk ↑ ∞, show that the processes Hn := H((0, τn]] are
locally uniformly bounded and converge pointwise to H .�
I have found the properties of the stochastic integral asserted by the

Theorem to be adequate for many arguments. I consider it a mark of defeat
if I have to argue separately for the locM2

0(R
+) and FV0 cases to establish

a general result about semimartingales. You might try Problem [3] or [4] for
practice.

The class of semimartingales is quite large. It is stable under sums (not
surprising) and products (very surprising—see the next Section) and under exotic
things like change of measure (to be discussed in a later Project). Even more

Statistics 603a: 21 October 2004 c©David Pollard



P7-4

surprisingly, semimartingales are the natural class of integrators for stochastic
integrals; they are the unexpected final product of a long sequence of ad hoc
improvements. You might consult Protter (1990, pages 44; 87–88; 114), whoCharacterization due to Del-

lacherie? Meyer? Bichteler?
Métivier? Check history. expounded the whole theory by starting from plausible linearity and continuity

assumptions then working towards the conclusion that only semimartingales
can have the desired properties.

4. Quadratic variation

In the proof of Lévy’s martingale characterization of Brownian Motion, you
saw how a sum of squares of increments of Brownian motion, taken over a
partition via stopping times of an interval [0, t], converges in probability to t .
In fact, if one allows random limits, the behaviour is a general property of
semimartingales. The limit is called the quadratic variation process of the
semimartingale.

It is easiest to establish existence of the quadratic variation by means of
an indirect stochastic integral argument. Suppose X is an R-processes with
X0 ≡ 0. Define the left-limit process X�

t := X (t−, ω) := lims↑↑t X (s, ω). (DoAwkward and nonstandard nota-
tion, X�, but I want X− for
the negative part of X . we need to define X�

0 ?)

• Show that X� ∈ locHBdd.

<5> Definition. The quadratic variation process of an X in SMG0 is defined
as [X, X ]t := X2

t − 2(X� • X)t for t ∈ R
+. For general Z ∈ SMG,

define [Z , Z ] := [X, X ] where Xt := Zt − Z0.

The logic behind the name quadratic variation and one of the main
reasons for why it is a useful process both appear in the next Theorem. The
first assertion of the Theorem could even be used to define quadratic variation,
but then we would have to work harder to prove existence of the limit (as for
the quadratic variation of Brownian motion).

<6> Definition. A random grid G is defined by a finite sequence of finite
stopping times 0 ≤ τ0 ≤ τ1 ≤ . . . ≤ τk . The mesh of the grid is defined as
mesh(G) := maxi |τi+1 − τi |; the max of the grid is defined as max(G) := τk .

To avoid double subscripting, let me write
∑

G
to mean a sum taken over

the stopping times that make up G.

<7> Theorem. Suppose X ∈ SMG0 and {Gn} is a sequence of random grids with
mesh(Gn)

a.s.−→ 0 and max(Gn)
a.s.−→ ∞. Then:

(i)
∑

Gn

(
Xt∧τi+1 − Xt∧τi

)2 ucpc−→ [X, X ]t .

(ii) The process [X, X ] has increasing sample paths;

(iii) If τ is a stopping time then [X∧τ , X∧τ ] = [X, X ]∧τ .Mention jumps as well?

Outline of proof. Without loss of generality suppose X0 ≡ 0. Consider first
a fixed t and a fixed grid G: 0 = τ0 ≤ τ1 ≤ . . . ≤ τk .

• Define a left-continuous process HG = ∑
G

Xτi ((τi , τi+1]]. Show that
H ∈ locHBdd and

HG • Xt =
∑

G
Xτi

(
Xt∧τi+1 − Xt∧τi

)

Hint: Look at Problem [3].

• Except on a negligible set of paths (which I will ignore for the rest of
the proof), show that HG converges pointwise to the left-limit process
X� as mesh(G) → 0 and max(G) → ∞. Show also that {HG} is locally
uniformly bounded. Hint: Consider stopping times σk := inf{s : |Xs | ≥ k}.
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• Abuse notation by writing �i X for Xt∧τi+1 − Xt∧τi . Invoke the continuity
property of the stochastic integral, along a sequence of grids with
mesh(Gn) → 0 and max(Gn) → ∞, to deduce that

∑
Gn

Xτi (�i X) = HGn • Xt
ucpc−→ X� • Xt

• Show that

2HGn • Xt +
∑

Gn
(�i X)2 = X2

t∧τk

ucpc−→ X2
t .

• Complete the proof of (i).

• Establish (ii) by taking the limit along a sequence of grids (deterministic
grids would suffice) for which both s and t are always grid points. Note:
The sums of squared increments that converge to [X, X ]t will always
contain extra terms in addition to those for sums converging to [X, X ]s .

• For assertion (iii), merely note that τ ∧ t is one of the points in the
interval [0, t] over which the convergence in probability is uniform. Thus

∑
Gn

(
Xt∧τi+1∧τ − Xt∧τi ∧τ

)2 P−→ [X, X ]t∧τ .

Interpret the left-hand side as an approximating sum of squares
for [X∧τ , X∧τ ]t .�

<8> Corollary. The square of a semimartingale X is a semimartingale.

Proof. Let Zt := Xt − X0 = Mt + At . Rearrange the definition of the
square bracket process, Z2

t = 2(Z� • Z)t + [Z , Z ]t , to express Z2
t as a sum

of a semimartingale and an increasing process. The process X2
t expands to

Z2
t + 2X0 Mt + (2X0 At + X2

0).

• Show that the middle term is reduced to M2
0(R

+) by the stopping times
τk ∧ σk , where {τk} reduces M and σk := 0{|X0| > k} + ∞{|X0| ≤ k}.�

<9> Corollary. The product of two semimartingales is a semimartingale.

• Use the polarization identity, 4XY = (X + Y )2 − (X − Y )2, and the fact
that sums of semimartingales are semimartingales, to reduce the assertion
to the previous Corollary.

<10> Definition. The square bracket process [X, Y ] of two semimartingales X
and Y (also known as the quadratic covariation process of X and Y ) is defined,
by polarization, as

4[X, Y ] := [X + Y, X + Y ] − [X − Y, X − Y ].

If X0 ≡ 0 and Y0 ≡ 0 then 4[X, Y ]t equals

(Xt + Yt )
2 − (Xt − Yt )

2 − 2(X + Y )� • (X + Y )t + 2(X − Y )� • (X − Y )t

= 4Xt Yt − 4X� • Yt − 4Y � • Xt .<11>

Remark. Notice that [X, Y ] is equal to the quadratic variation process
[X, X ] when X ≡ Y . Notice also that [X, Y ] ∈ FV0, being a difference of
two increasing processes started at 0.

The square bracket process inherits many properties from the quadratic
variation. For example, you might prove that a polarization argument derives
the following result from Theorem <7>.

Statistics 603a: 21 October 2004 c©David Pollard



P7-6

<12> Theorem. Let X and Y be semimartingales, and {Gn} be a sequence of
random grids with mesh(Gn)

a.s.−→ 0 and max(Gn)
a.s.−→ ∞. Then

<13>
∑

Gn

(
Xt∧τi+1 − Xt∧τi

) (
Yt∧τi+1 − Yt∧τi

) ucp−→ [X, Y ]t ,

and [X∧τ , Y∧τ ] = [X∧τ , Y ] = [X, Y∧τ ] = [X, Y ]∧τ for each stopping time τ ,

Problems

[1] Suppose f = f1 − f2, where f1 and f2 are increasing functions on R
+. Show

that

Vf [0, b] ≤ Vf1 [0, b] + Vf2 [0, b] = f1(b) − f1(0) + f2(b) − f2(0).

Deduce that f is of finite variation.

[2] Suppose f is a function on R
+ with finite variation, in the sense of Section 1.

Temorarily drop the subscript f on the variation functions.

(i) Suppose G is a grid on [a, b] and that s is point of (a, b) that is not
already a grid point. Show that V (G, [a, b]) is increased if we add s
as a new grid point.

(ii) Show that V [0, a] + V [a, b] = V [0, b] for all a < b. Deduce that
t �→ V [0, t] is an increasing function

(iii) Suppose 0 < s < t . Show that

V [0, t]− f (t) = V [0, s]− f (s)+ f (s)− f (t)+V [s, t] ≥ V [0, s]− f (s).

Hint: Consider a two-point grid on [s, t].

(iv) Now suppose f is right-continuous at some a ∈ R
+. For a fixed b > a

and an ε > 0 choose a grid

G : a = t0 < t1 < . . . < tN = b

for which V (G, [a, b]) > V [a, b] − ε. With no loss of generality
suppose | f (t1) − f (a)| < ε. Show that

ε + V [t1, b] ≥ V (G, [a, b]) > V [a, t1] + V [t1, b] − ε

Deduce that t �→ V [0, t] is continuous from the right at a.

(v) If f is right-continuous, show that Vf [a, b] can be determined by
taking a supremum over equispaced grids on [a, b].

(vi) If X is an R-processes with sample paths of finite variation, show
that it can be expressed as the difference of two R-processes with
increasing sample paths. [The issue is whether VX (·,ω)[0, t] is adapted.]

[3] Suppose σ and τ are stopping times and X ∈ SMG. With Y an
Fσ -measurable random variable, define H = Y (ω)((σ, τ ]]. Show that
H • Xt = Y (ω) (Xt∧τ − Xt∧σ ) by the following steps.

(i) Start with the case where Y = F ∈ Fσ . Define new stopping
times σ ′ = σ F + ∞Fc and τ ′ := τ F + ∞Fc. Show that

(F((σ, τ ]]) • Xt = Xt∧τ ′ − Xt∧σ ′ = F (Xt∧τ − Xt∧σ ) .

(ii) Extend the equality to all bounded, Fσ -measurable Y by a generating
class argument.

(iii) For unbounded Y , define Hn := Y {|Y | ≤ n}((σ, τ ]]. Show that
the sequence {Hn} is locally uniformly bounded and it converges
pointwise to H .

(iv) Complete the argument.
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[4] If H and K are in locHBdd, and X is a semimartingale, show that K •(H • X) =
(K H) • X for almost all paths. Hint: For fixed H , define ψ(K ) := (H K ) • M .
What do you get when K = ((0, τ ]]?

[5] Suppose H, K ∈ locHBdd and X, Y ∈ SMG0. Show that [H • X, K • Y ] =
(H K ) • [X, Y ] by the following steps.

(i) Consider first the case where K ≡ 1. Show that H �→ [H • X, Y ]
and H �→ H • [X, Y ] are both linear maps from locHBdd into SMG,
which agree when H = ((0, τ ]].

(ii) Use a λ-space argument followed by a localization to extend the result
to locHBdd.

(iii) Invoke part (ii)—or trivial rearrangements thereof—twice to transform
to an iterated stochastic integral.

[H • X, K • Y ] = H • [X, K • Y ] = H • (
K • [X, Y ]

)
.

(iv) Invoke Problem [4] to complete the argument.�
[6] Suppose M ∈ locM2

0(R
+).

(i) Show that the process Xt := M2
t − [M, M]t belongs to locM2

0(R
+).

(ii) Suppose M has continuous sample paths and [M, M]t ≡ t . Show that
M is a standard Brownian motion.
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