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Project 8

An R-process X is called a semimartingale, for a given standard filtra-
tion {Ft : t ∈ R

+}, if it can be decomposed as Xt = X0 + Mt + At

with M ∈ locM2
0(R

+) and A ∈ FV0. Write SMG for the class of all
semimartingales and SMG0 for those semimartinagles with X0 ≡ 0.

SMG is nonstandard notation

1. Corrections

In my enthusiasm for a single definition of localization, which could be applied
to both M2

0(R
+) and HBdd, I created an awkward problem for processes H

defined only on (0, ∞)×�. If H0(ω) is not defined, what does H(t ∧ τ(ω), ω)

mean at those ω for which τ(ω) = 0? It would be much better to follow
traditional and definelocHBdd to consist of those predictable processes H for
which there exist stopping times τk ↑ ∞ and finite constants Ck such that

|H((0, τk]]| ≤ Ck for each k.

Notice that there are no longer problems at ω for which τk(ω) = 0, because
{t ∈ R

+ : 0 < t ≤ τk(ω)} = ∅ for such ω.
Similarly, I should have defined local uniform boundedness of a se-

quence {Hn} in locHBdd to mean existence of stopping times τk ↑ ∞ and finite
constants Ck such that

|Hn((0, τk]]| ≤ Ck for each n and k.

I was also too vague about the definition of L-processes on R
+ × �.

Should such a process X be defined at t = 0? Should we require existence
of a finite right-hand limit at t = 0? Should we require existence of a limit
as t → ∞? To make sense of my assertion that L-processes belong to locHBdd,
I should regard X as an adapted process defined on (0, ∞) × � with sample
paths that are left-continuous on (0, ∞), with no assumptions about the behavior
as t → ∞. I also need existence of a finite right limit at each t in [0, ∞).
With these assumptions, the stopping times

τk := inf{t ∈ R
+ : |Xt | > k}

have the property that |X ((0, τk]]| ≤ k. Also we have τk ↑ ∞, because X (·, ω)

is bounded on each bounded interval (0, M]: You need a compactness argument
to get a covering of [0, M] by finitely many intervals (ti − δi , ti + δi ) within
which

|X (t, ω) − X (ti , ω)| ≤ ε for ti − δi < t ≤ ti
|X (t, ω) − X (ti+, ω)| ≤ ε for ti < t ≤ ti + δi .

I have also decided that it would be better to slightly change parts (iii)
and (vi) of the basic theorem about semimartinagles, to simplify one step in the
typical generating class argument.

Statistics 603a: 28 October 2004 c©David Pollard



P8-2

<1> Theorem. For each X in SMG0, there is a linear map H 
→ H • X from
linear in almost sure sense

locHBdd into SMG0 such that:

(i) ((0, τ ]] • Xt = Xt∧τ for each τ ∈ T and t ∈ R
+.

(ii) H • Xt∧τ = (H((0, τ ]]) • Xt = H • (X∧τ )t for each τ ∈ T and t ∈ R
+.

(iii) If a sequence {H (n) : n ∈ N} ⊆ locHBdd is locally uniformly bounded
and H (n)(t, ω) → H(t, ω) for each (t, ω), then H ∈ locHBdd and

H (n) • X
ucpc−→ H • X.

Conversely, let ψ be another linear map from locHBdd into SMG0 having at
least the weaker properties:

(iv) ψ(((0, τ ]])t = Xt∧τ almost surely, for each τ ∈ T and t ∈ R
+.

(vi) If a sequence {H (n) : n ∈ N} ⊆ locHBdd is locally uniformly bounded
and H (n)(t, ω) → H(t, ω) for each (t, ω), then ψ(H (n))t → ψ(H)t in
probability, for each fixed t.

Then ψ(H)t = H • Xt almost surely for every t.

Remark. I did attempt to weaken the pointwise convergence assump-
tions in (iii) and (vi) to: H (n)

t → Ht almost surely for each t . Unfortunately,
this change complicates (invalidates?) the argument that H ∈ locHBdd. I do
not know whether it is worthwhile attempting such a modification.

2. Quadratic variation

From Project 7:

<2> Definition. The quadratic variation process of an X in SMG0 is defined
as [X, X ]t := X2

t − 2(X� • X)t for t ∈ R
+. For general Z ∈ SMG,

define Z , Z ] := [X, X ] where Xt := Zt − Z0.

<3> Definition. A random grid G is defined by a finite sequence of finite
stopping times 0 ≤ τ0 ≤ τ1 ≤ . . . ≤ τk . The mesh of the grid is defined as
mesh(G) := maxi |τi+1 − τi |; the max of the grid is defined as max(G) := τk .

<4> Theorem. Suppose X ∈ SMG and {Gn} is a sequence of random grids with
mesh(Gn)

a.s.−→ 0 and max(Gn)
a.s.−→ ∞. Then:

(i)
∑

Gn

(
Xt∧τi+1 − Xt∧τi

)2 ucpc−→ [X, X ]t .

(ii) The process [X, X ] has increasing sample paths;

(iii) If τ is a stopping time then [X∧τ , X∧τ ] = [X, X ]∧τ .Mention jumps as well?

Remark. It would perhaps be cleaner to assume mesh(Gn) → 0
and max(Gn) → ∞ for every ω, to fit with the pointwise convergence
assumptions in Theorem <1>. This effect could also be achieved by
changing each τk on a negligible set. For a standard filtration, the change
could be made without disturbing any measurability assumptions.

The square bracket process [X, Y ] of two semimartingales X and Y
(also known as the quadratic covariation process of X and Y ) is defined, by
polarization, as

4[X, Y ] := [X + Y, X + Y ] − [X − Y, X − Y ].

If X0 ≡ 0 and Y0 ≡ 0 then 4[X, Y ]t equals

(Xt + Yt )
2 − (Xt − Yt )

2 − 2(X + Y )� • (X + Y )t + 2(X − Y )� • (X − Y )t

= 4Xt Yt − 4X� • Yt − 4Y � • Xt .<5>

Statistics 603a: 28 October 2004 c©David Pollard



P8-3

Notice that [X, Y ] is equal to the quadratic variation process [X, X ] when
X ≡ Y . Notice also that [X, Y ] ∈ FV0, being a difference of two increasing
processes started at 0.

The square bracket process inherits many properties from the quadratic
variation. For example, a polarization argument derives the following result
from Theorem <4>.

<6> Theorem. Suppose X, Y ∈ SMG and {Gn} is a sequence of random grids
with mesh(Gn)

a.s.−→ 0 and max(Gn)
a.s.−→ ∞. Then

<7>
∑

Gn

(
Xt∧τi+1 − Xt∧τi

) (
Yt∧τi+1 − Yt∧τi

) ucpc−→ [X, Y ]t ,

and [X∧τ , Y∧τ ] = [X∧τ , Y ] = [X, Y∧τ ] = [X, Y ]∧τ for each stopping time τ ,

Outline of last part of the proof. Temporarily write Wn(t, X, Y ) for the sum
on the left-hand side of <7>.I am slightly suspicious of the

following argument. • Show that there is no loss of generality in assuming that τ is one of the
grid points. Hint: Consider a new grid

0 = τ0 ∧ τ ≤ τ1 ∧ τ ≤ . . . ≤ τk ∧ τ ≤ τ ≤ τ ∨ τ1 ≤ . . . ≤ τ ∨ τk

• For the grid Gn, suppose τ = τ�. Show that

Wn(t ∧ τ, X, Y ) =
∑�−1

i=0

(
Xt∧τi+1 − Xt∧τi

) (
Yt∧τi+1 − Yt∧τi

)

= Wn(t, X∧τ , Y ) = Wn(t, X, Y∧τ ) = Wn(t, X∧τ , Y∧τ )

• Invoke uniform convergence over [0, t] in probability.�

3. Itô formulae

Suppose X and Y are semimartingales with continuous paths, such that the
two-dimensional random process {(Xt , Yt ) : t ∈ R

+} takes values in an open
subset G of R

2. Suppose Y has paths of bounded variation.
Treat processes with jumps,
or just cite Dellacherie &
Meyer (1982, §VIII.24–28)
or Protter (1990, page 71)?

Let f be a continuous, real-valued function on G with two continuous
partial derivatives fx and fxx with respect to its first argument and a continuous
partial derivative fy with respect to its second argument.

Define new processes by

Fx (s, ω) := fx
(
X (s, ω), Y (s, ω)

)
,

Fxx (s, ω) := fxx
(
X (s, ω), Y (s, ω)

)

Fy(s, ω) := fy
(
X (s, ω), Y (s, ω)

)
.

Each of them is adapted and has continuous paths; each process is predictable.

<8> Itô Formula. The process f (Xs, Ys) is a semimartingale with

f (Xt , Yt ) − f (X0, Y0) = (Fx • X)t + 1/2
(
Fxx • [X, X ]

)
t + (Fy • Y )t

for each t in R
+.

Remark. The Itô formula is often written in the suggestive form

d f (Xt , Yt ) = fx (Xt , Yt ) d Xt + 1/2 fxx (Xt , Yt ) d[X, X ]t + fy(Xt , Yt ) dYt ,

which hints at its origins as a sum of small increments.

Proof. Let K be a compact subset of G. Define

σ := inf{t ∈ R
+ : (Xt , Yt ) /∈ K }.

Replace X and Y by the corresponding stopped processes X∧σ and Y∧σ .I was tired when sketching the
proof. Beware of stupidities.
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• Show that the formula is trivially true for the stopped processes if
(X0, Y0) /∈ K .

• For each ε > 0 show that there exists a δ > 0 for which: if (x, y) ∈ K
and max(|	x |, |	y|) ≤ δ then

| f�(x + 	x, y + 	y) − f�(x, y)| ≤ ε where � = x or xx or y.

• For max(|	x |, |	y|) ≤ δ and (x, y) ∈ K , show that

f (x+	x, y + 	y) − f (x, y)

= (	x) fx (x, y) + 1/2(	x)2 fxx (x, y) + (	y) fy(x, y) + rem

where rem ≤ ε
(

1/2(	x)2 + |	y|)

• Fix t . Let δn correspond to some sequence εn ↓ 0. Define a grid Gn via
stopping times

τi+1 := inf{s ≥ τi : |(X, Y )s − (X, Y )τi | ≥ δn} ∧ t ∧ σ.

Show that there exist integers k(n) such that P{τk(n) = t ∧ σ } → 1 as
n → ∞.

K( Xσ,Yσ )

( X0,Y0)

G

• Write 	i X for Xτi+1 − Xτi , and similarly for Y . Show that f (Xτk(n)
, Yτk(n)

)−
f (X0, Y0) differs from

<9>
∑k(n)−1

i=0
(	i X)Fx (τi ) + 1/2(	i X)2 Fxx (τi ) + (	i Y )Fy(τi )

by a quantity that tends in probability to zero.

• Show that the contribution from the first summand in <9> equals (Hn •X)t ,
where

Hn(s, ω) =
∑k(n)−1

i=0
Fx (τi , ω)((τi .τi+1]],

which is uniformly bounded and converges pointwise to Fx .

• Deduce that ∑k(n)−1

i=0
(	i X)Fx (τi )

ucpc−→ Fx • Xt∧σ

• Argue similarly for the contribution from the third summand in <9> .

• Define Zt := Xt − X0. Abbreviate Zτi+1 − Zτi to 	i Z . Show that
cf. Protter (1990, page 69) ∑k(n)−1

i=0
(	i X)2 Fxx (τi ) =

∑k(n)−1

i=0
Fxx (τi )(Z2

τi+1
− Z2

τi
)

− 2
∑k(n)−1

i=0

(
Fxx (τi )Zτi

)
(	i Z).

• Show that the right-hand side converges in probability to

Fxx • Z2
t∧σ − 2(Fxx Z) • Zt∧σ = Fxx • (Z2 − 2Z • Z)t∧σ

= Fxx • [Z , Z ]t∧σ = Fxx • [X, X ]t∧σ .
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• Deduce that

f (Xt∧σ , Yt∧σ ) − f (X0, Y0)

= (Fx • X∧σ )t + 1/2(Fxx • [X∧σ , X∧σ ])t + (Fy • Y∧σ )t

= (Fx • X)t∧σ + 1/2(Fxx • [X, X ])t∧σ + (Fy • Y )t∧σ .

• Complete the proof by letting K expand up to G, so that σ ↑ ∞.�
Remarks.

(i) There would be nothing to gain by requiring existence of second-
order partial derivatives fxy and fyy , because the corresponding
bracket process [X, Y ] and [Y, Y ] are both zero—the process Y has
paths of finite variation.

(ii) The process 1/2Fxx •[X, X ]+Fy •Y is in FV. If X ∈ locM2
0(R

+) then
Fx • X ∈ locM2

0(R
+). The Itô formula then gives the semimartingale

decomposition for the process f (Xt , Yt ).

The story in Remark (i) changes if Y does not have paths of bounded
variation. The error term εn

∑
i |	i Y | would no longer disappear in the limit.

We would instead need continuous second order partial derivatives fxy and fyy

to handle the contributions from the 	i Y increments to the Taylor expansion
(to quadratic terms) in both variables. Error terms like

εn

∑
i
(	i Y )2 + (	i X)(	i Y )

would again converge in probability to zero. The cross-product term
∑

i
Fxy(τi )(	i X)(	i Y )

=
∑

i
Fxy(τi )(Xτi+1 Yτi+1 − Xτi Yτi ) −

∑
i

Fxy(τi )
(
Xτi (	i Y ) + Yτi (	i X)

)

would converge in probability to

Fxy • (XY − X0Y0 − X • Y − Y • X)t = Fxy • [X, Y ]t .

A similar argument works for functions of more than two semimartingales.

<10> Multiprocess Itô Formula. Suppose X (1), . . . X (d) and Y (1), . . . Y (d ′) are
semimartingales with continuous paths, such that the d + d ′-dimensional
random process (X, Y) takes values in an open subset G of R

d+d ′
. Suppose

each Y (γ ) has paths of finite variation.
If f is a continuous, real-valued function on G with continuous partial

derivatives fx(α), fx(α),x(β), fy(γ ) for α, β = 1, . . . , d and γ = 1, . . . , d ′, then
f (X, Y) is a semimartingale with

f (Xt , Yt ) − f (X0, Y0) =
∑

α
Fx(α) • X (α)

t

+
∑

γ
Fy(γ ) • Y (γ )

t + 1/2

∑
α,β

Fx(α),x(β) • [X (α), X (β)]t

for each t in R
+.

<11> Example. Let {Xt : t ∈ R
+} be a locally square integrable martingale

with continuous sample paths. Its quadratic variation process Y := [X, X ] is
continuous (invoke the ucpc of the sum of squared increments) and of bounded
variation. To be on the safe side, let me also assume that X0 ≡ 0, even though
it is not necessary.

Remove assumption on X0.
The semimartingale Zt := exp(Xt − 1/2Yt ) is a candidate for an application

of the Itô formula, with f (x, y) = exp(x − 1/2y). We have Fx = Fxx = −2Fy =
Z , and

Zt − Z0 = Z • X + 1/2Z • [X, X ]t − 1/2Z • Yt = Z • Xt .
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The Z process is also a locally square integrable martingale with continuous
paths.�

4. Problems

[1] Show that

[X1 + X2, Y1 + Y2] = [X1, Y1] + [X1, Y2] + [X2, Y1] + [X2, Y2],

for semimartingales X1, X2, Y1, and Y2.

[2] Suppose X ∈ SMG and Y ∈ FV. Suppose that X has continuous sample paths.
Show that [X, Y ]t = 0 almost surely, for each t . Hint: Consider a random grid
defined by

τi+1 := (τi + n−1) ∧ min{t ≥ τi : |X (t) − X (τi )| ≥ n−1}.
[3] For H1, H2, K1, K2 in locH∞, and X1, X2, Y1, Y2 in SMG, show that

[H1 • X1 + K1 • Y1, H2 • X2 + K2 • Y2]

= (H1 H2) • [X1, X2] + (H1 K2) • [X1, Y2]

+ (K1 H2) • [Y1, X2] + (K1 K2) • [Y1, Y2].

[4] If X ∈ SMG has continuous paths, show that [X, X ] also has conntinuous paths.
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