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PrOJECT 9

It6 Formula: Two-dimensional semimartingale (X, Y) with continuous paths
and Y € FV, which ensures [Y, Y] = 0. Continuous, real-valued function f
with enough continuous partial derivatives to define predictable processes

Fi(s,w) = fx(X(s, ), Y (s, a))),

Fex(s, ) = fur (X (s, @), Y (5, ®))

Fy(s, w) := fy(X(s,a)), Y(s,a))).
with continuous sample paths. Then f(Xj, Y) is a semimartingale with
F(Xi, V) — f(Xo, Yo) = (Fy @ X); + /2 (Fux o [X, X]), + (Fy @ Y),

for each ¢ in R™T.

Corrections

On Project 7 I asked you to show that
[HeX,Y]=He[X,Y] for X,Y € SMGo and H € locHpqq.

I implied that the proof was just a simple example of a generating class
argument. As some of you discovered, the proof is a little more delicate. A
clean argument can be extracted from ideas used by Protter (1990, section I1.6).

Lemma. Suppose {H, : n € N} C locHgqq is locally uniformly bounded and
ucpc ucpc

H, gl 0. Suppose also that Y € 8MSG. Then H, oY i 0.

Proof.  Suppose there is a t for which sup,_, | H, @ Y| does not converge to zero

in probability. For some € > 0 there is a subsequence along which P{sup,, |H, e

Y| > €} > €. Along a subsubsequence we have the same inequality as well

as sup,, |H,(s)| — 0 almost surely; along the subsubsequence sup,, |[{w €

N€}H, (s, w)] — O for every w, for some negligible set N. The sequence

K, = {w € N°}H,((0, t]] is locally uniformly bounded and it converges

pointwise to zero. Each K, is P-measurable, because (0, 1] x N € P, and

]P){Supsst |Kn L4 Ys - Hn L Ys| 7é 0} =0.

ucpc
Along the subsubsequence, K, o Y _p) 0, which contradicts the property
defining the first subsequence.

To establish assertion <1>, consider the linear map
V(H) =[HeX,Y]— Hel[X,Y]
=(HeX)Y —(HeX)°eY —Y° e (HeX)
—Heo (XY —X%e¢Y —Y%eX)
=(HeX)Y—(HeX)eY—He (XY —X"eY)
because Yeo(HoX)=(Y®H)0X=H0(Y60X).
You can check that (0, 7]] = 0 for 7 € T and that ¥ (H, — H) <& 0 if
{H, : n € N} is locally uniformly bounded and H, — H pointwise. I think the

rest of the argument is routine.
Please inform me if you find more gaps in the proof.
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2. Exponential martingales

Suppose M € locMZ(R™) has continuous sample paths. For H € locHpad,
define

<3> Z,=exp(iH e M, + YH” o [M, M],)

e Invoke the complex analog of the Itd formula (or apply the result to real
and imaginary parts) to show that

Z,—1=iZe(HeM), —Ze[HeM HeM)+1Ze(H o[M, M),
—i(ZH) e M,
You may use any of the properties established in the problems for Project 8.
e Deduce that Z — 1 € locMZ(R").

3. Lévy again

Define U, = ¢. Suppose M € locM3(R*) with continuous sample paths and
—Ue 1003\/{8 (R™). Show that M is a standard Brownian motion.

e Use Problem [2] to explain why [M, M] =U

e For fixed constants 0 =) < t; < ... <ty < 00 and real numbers {6;}
define

H=Y " 0t 1511
Show that, for t > ¢,,
HeM, = Z O;A;M  where A;M = M(t;4) — M(t))
.ut = Zj Gj (Sj where (Sj =g —

e For Z as in <3> and H as above, show that there is a sequence of stopping
times 7 1 oo for which PZ; ., =1 for all k.

e Invoke Dominated Convergence to deduce that

Pexp (i Z_,‘ QjAjM) = exp ( -1 2_,‘ 9j25j)>

e Conclude that M is a standard Brownian motion.

4. Brownian filtrations

Let {B(t,w : 0 <t < 1} be a Brownian motion with continuous sample paths
on a probability space (2, F, P). The Brownian filtration on Q is defined by
F, =0 ({By;:0 <s <t}UN), where N denotes the class of all P-negligible
sets. The submartingale B% has Doléans measure u = m ® P.

<4> Definition. A cadlag process {M, : 0 < t < 1} is said to be a local
martingale if there exist stopping times 1, 1 oo for which each M, is a

Maybe better to restrict defini- martingale.
tion to cases where My = 0.
Local martingales (with My = 0) with respect to the Brownian filtration

have two striking properties:
(i) They have continuous sample paths. Thus they all belong to locM% [0, 1].
(ii)) They can be represented as stochastic integrals.

See Problem [4] for the first assertion. The second will follow via an argument
based on the Itd formula.
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<5> Theorem. For each X € L*(Q, F\, P) there exists an H € L>(u) such that

X —

PX = H e By almost surely.

Sketch of proof.  Without loss of generality, suppose PX = 0.

O °

Show that R := {H e B; : H € L?>(u)} is a closed vector subspace of
L*(P, F)). Hint: If H, ¢ By — Y in L?(P)-norm, show that {H,} is a
Cauchy sequence with a limit A in £%(u;). Deduce that Y = H e By.
Let Z denote the component of X that is orthogonal to R. That is,

X = Z+ K o B for some K € L*() and PZ(H e B), = 0 for all H
in £%(u). Show that PZ = 0.

Explain why we need to prove Z = 0 almost surely.

Explain why it suffices to show PZf(B) = 0 for all bounded, C-measurable
functionals f on CIO0, 1].

Explain why it suffices to consider functionals f that depend on B only
through its values at a finite set of times.

Explain why it suffices to consider functionals f that depend on B
only through its increments ¥; = B, — B, for a fixed set of times
0=1% <t < ... <t = 1. That is, why is it enough to prove
PZg(Y) = 0 for all bounded, measurable functions g on R¥?

Invoke Problem [3] to show that it is enough to prove PZ exp(i@ -Y) =0
for all @ in R¥.

Work with stochastic integral notation. Show that 8 - Y = H e B;, where
H = Y520 0;((t. tis 1.

Show that H e B has a deterministic quadratic variation process, A, :=
[H e B, HeBl = [, H (s)ds.

Use the results from Section 2 to show that

Wi =1+4+i(WH) e B; where W; :=exp(iH e B, 4+ hA,).

Deduce that
exp(A;/2)PZexp(if - Y) = 0.

Are we done?

<6> Corollary. For each local martingale M adapted to the Brownian filtration
there exists an H in locL?(w) such that M, = My + (H @ B), for 0 <t < 1.

Proof. Without loss of generality, suppose My = 0. Define stopping times
T = 1 Ainf{z 1 |M,| > k}.

Am I just repeateing the con-

struction for the IOCM(Z)[O, 1]
stochastic integral? °

Why does M, belong to M3[0, 1]?
For each k, explain why there exists an Hy € L,(u) such that
Mipy, = (He((0, 7]1) © B, for0 <t <1.

Deduce that (H;((0, 7;]]) @ By = (H+1((0, 7¢]] @ By almost surely.
Deduce that Hy((0, 74 ]] — Hi+1((0, 7¢]] = O almost everywhere [u].
Show that the Hj processes can be pasted together to create an H
in locL?(u) for which M, = H e B, almost surely.

REMARK. Should I extend to general F|-measurable random variables,
perhaps using the method of Dudley (1977), getting a representation
Yy + H e B; with H € locHgyq.
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5. Problems

[11 Suppose Z € FV, ﬂlocM%(]RJr) and Z has continuous sample paths. Show that
Z, = 0 almost surely, for each ¢. Hint: Use the fact that [Z, Z] = 0 to deduce
that Z*> = 2Z @ Z € locMZ(R™). Find a sequence of stopping times 7 1 co for
which PZ2,_ = 0 for each ¢.

IATk

[2] Suppose M € locM%(R’L) has continuous sample paths. Suppose A € FV, also
has continuous paths and M? — A € locM3(R*). Deduce that A = [M, M].
Hint: Apply Problem [1] to [M, M] — A.

[3] Let X be an integrable random variable, and Y = (Y1, ..., ¥;) be a vector of
random variables such that PX exp (i0 - Y) =0 for all 8 = (6, ..., 6) in R¥.
Show that P(Xg(Y)) = O for all bounded, measurable g. Hint: Let u* be
the measures with densities X* with respect to P. Show that Y has the same
Fourier transform, and hence the same distribution, under both " and u™.
That is, utg(Y) = ug(Y).

[4] Suppose {X; :0 <t < 1} is a cadlag martingale with respect to the Brownian
filtration. Remember that X; can be expressed as f(B) for some C\B(R)-
measurable functional f on C[0, 1]. The functional is W-integrable.

(i) If f is a continuous (for sup-norm distance) functional on C[O0, 1], use
the representation X; = P, f(B) = W* f(K,;B + S;x) almost surely to
show that X has continuous sample paths (almost surely?).

(i) For a general W-integrable functional, show that there exists a
sequence of continuous functionals { f,} for which W| f — f,| <47".

(iii)) Let M, be a version of the martingale P, f,,(B) with continuous
sample paths. Show that |M,(#) — X(¢)| is a uniformly integrable
submartingale with cadlag sample paths.

(iv) Define stopping times 7, := 1 Amin{¢ : | M, (t) — X (¢)| > 27"}. Show
that

P{sup, [M,(t) — X ()| > 27"} < 2"P|M,, (7)) — X ()]
<2"P|M,(1) — X(1)| = 2"P| f(B) — f(B)|
< o—n

(v) Deduce that ), P{sup, |M,(r) — X(t)] > 27"} < oo and hence
sup, |M,,(t) — X(t)| — O almost surely.

(vi) Conclude that almost all sample paths of X are continuous.

(vii) Extend the argument to the case of a local martingale. Hint: If M,
has (almost all) continuous paths for each k, and if 7; 1 co, what do
you know about almost all paths of M?

[5] Let X and Y be independent Brownian Motions.

(i) Show that both (X + Y)/+/2 and (X — Y)/+/2 are also Brownian
Motions.

(i) Deduce that [X, Y] =0.

The next problem presents the standard example of a uniformly integrable
local martingale that is not of class [D].

Better to start at origin, and  [6] Let B = (1 + X, Y, Z) be a three-dimensional Brownian Motion started from

work with distance to u? u = (1,0,0). (The three processes X, Y, and Z are independent Brownian
Motions started from zero.) Write x for (x, y, z). Define f(x) = 1/|[x|| on
R3\{0}. Define a process M(t) = 1/|B(2)]|.
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(i) Use the Multiprocess Itd Formula to show that M € locM?(R*). Hint:
Show that on the open region R?\{0} the function f is harmonic:
2f 3 f  df
2x %y | 9%z
(i) Deduce that M is a positive supermartingale.
(iii) Let 7, = inf{t : |[B()|| < 1/k}. Show that M,,, € M>(R").
(iv) Show that Cy := f{||x|| < 1L}Ix|| 72 dx < oo.
(v) Show that PM(1)* < Coexp(—(81))1=2 + P (8 A [B(1)[|72).

=0.

(vi) Show that ||B(z)||? E) 00 ast — 00.
(vii) Deduce that sup, PM(t)?> < oo and PM(t) — 0 as t — oo.

(viii) Deduce that M is not a martingale, and hence M is not in class [D].
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