Project 9

Itô Formula: Two-dimensional semimartingale (X, Y) with continuous paths and $Y \in \mathcal{FV}$, which ensures [Y, Y] = 0. Continuous, real-valued function f with enough continuous partial derivatives to define predictable processes

 $F_x(s,\omega) := f_x(X(s,\omega), Y(s,\omega)),$ $F_{xx}(s,\omega) := f_{xx}(X(s,\omega), Y(s,\omega)),$ $F_y(s,\omega) := f_y(X(s,\omega), Y(s,\omega)).$

with continuous sample paths. Then $f(X_s, Y_s)$ is a semimartingale with

 $f(X_t, Y_t) - f(X_0, Y_0) = (F_x \bullet X)_t + \frac{1}{2} \left(F_{xx} \bullet [X, X] \right)_t + (F_y \bullet Y)_t$

for each t in \mathbb{R}^+ .

1. Corrections

On Project 7 I asked you to show that

 $[H \bullet X, Y] = H \bullet [X, Y]$ for $X, Y \in SMG_0$ and $H \in loc\mathcal{H}_{Bdd}$.

I implied that the proof was just a simple example of a generating class argument. As some of you discovered, the proof is a little more delicate. A clean argument can be extracted from ideas used by Protter (1990, section II.6).

<2> **Lemma.** Suppose $\{H_n : n \in \mathbb{N}\} \subseteq \text{loc}\mathcal{H}_{\text{Bdd}}$ is locally uniformly bounded and $H_n \stackrel{ucpc}{\longrightarrow} 0$. Suppose also that $Y \in SMG$. Then $H_n \bullet Y \stackrel{ucpc}{\longrightarrow} 0$.

Proof. Suppose there is a *t* for which $\sup_{s \le t} |H_n \bullet Y_s|$ does not converge to zero in probability. For some $\epsilon > 0$ there is a subsequence along which $\mathbb{P}\{\sup_{s \le t} |H_n \bullet Y_s| > \epsilon\} > \epsilon$. Along a subsubsequence we have the same inequality as well as $\sup_{s \le t} |H_n(s)| \to 0$ almost surely; along the subsubsequence $\sup_{s \le t} |\{\omega \in N^c\}H_n(s, \omega)| \to 0$ for every ω , for some negligible set *N*. The sequence $K_n := \{\omega \in N^c\}H_n(0, t]\}$ is locally uniformly bounded and it converges pointwise to zero. Each K_n is \mathcal{P} -measurable, because $(0, 1] \times N \in \mathcal{P}$, and

$$\mathbb{P}\{\sup_{s\leq t} |K_n \bullet Y_s - H_n \bullet Y_s| \neq 0\} = 0$$

Along the subsubsequence, $K_n \bullet Y \xrightarrow{ucpc} 0$, which contradicts the property \Box defining the first subsequence.

To establish assertion <1>, consider the linear map

$$\psi(H) := [H \bullet X, Y] - H \bullet [X, Y]$$

= $(H \bullet X)Y - (H \bullet X)^{\bigcirc} \bullet Y - Y^{\bigcirc} \bullet (H \bullet X)$
 $- H \bullet (XY - X^{\bigcirc} \bullet Y - Y^{\bigcirc} \bullet X)$
= $(H \bullet X)Y - (H \bullet X)^{\bigcirc} \bullet Y - H \bullet (XY - X^{\bigcirc} \bullet Y)$

because $Y^{\odot} \bullet (H \bullet X) = (Y^{\odot}H) \bullet X = H \bullet (Y^{\odot} \bullet X).$

You can check that $\psi((0, \tau]] = 0$ for $\tau \in \mathcal{T}$ and that $\psi(H_n - H) \xrightarrow{ucpc} 0$ if $\{H_n : n \in \mathbb{N}\}$ is locally uniformly bounded and $H_n \to H$ pointwise. I think the rest of the argument is routine.

Please inform me if you find more gaps in the proof.

2. Exponential martingales

Suppose $M \in \text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$ has continuous sample paths. For $H \in \text{loc}\mathcal{H}_{\text{Bdd}}$, define

<3>

$$Z_t = \exp\left(iH \bullet M_t + \frac{1}{2}H^2 \bullet [M, M]_t\right)$$

• Invoke the complex analog of the Itô formula (or apply the result to real and imaginary parts) to show that

$$Z_t - 1 = iZ \bullet (H \bullet M)_t - \frac{1}{2}Z \bullet [H \bullet M, H \bullet M]_t + \frac{1}{2}Z \bullet (H^2 \bullet [M, M])_t$$
$$= i(ZH) \bullet M_t$$

You may use any of the properties established in the problems for Project 8.

• Deduce that $Z - 1 \in \text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$.

3. Lévy again

Define $\mathcal{U}_t = t$. Suppose $M \in \operatorname{loc}\mathcal{M}_0^2(\mathbb{R}^+)$ with continuous sample paths and $M^2 - \mathcal{U} \in \operatorname{loc}\mathcal{M}_0^2(\mathbb{R}^+)$. Show that M is a standard Brownian motion.

- Use Problem [2] to explain why $[M, M] = \mathcal{U}$.
- For fixed constants $0 = t_0 < t_1 < \ldots < t_{\ell} < \infty$ and real numbers $\{\theta_j\}$ define

$$H = \sum_{j=0}^{\ell-1} \theta_j((t_j, t_{j+1})]$$

Show that, for $t \ge t_{\ell}$,

Ì

$$H \bullet M_t = \sum_j \theta_j \Delta_j M \quad \text{where } \Delta_j M := M(t_{j+1}) - M(t_j)$$
$$H^2 \bullet \mathcal{U}_t = \sum_j \theta_j^2 \delta_j \quad \text{where } \delta_j := t_{j+1} - t_j$$

- For Z as in <3> and H as above, show that there is a sequence of stopping times τ_k ↑ ∞ for which PZ_{t∧τ_k} = 1 for all k.
- Invoke Dominated Convergence to deduce that

$$\mathbb{P}\exp\left(i\sum_{j}\theta_{j}\Delta_{j}M\right) = \exp\left(-\frac{1}{2}\sum_{j}\theta_{j}^{2}\delta_{j}\right)$$

• Conclude that M is a standard Brownian motion.

4. Brownian filtrations

Let $\{B(t, \omega : 0 \le t \le 1\}$ be a Brownian motion with continuous sample paths on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The **Brownian filtration** on Ω is defined by $\mathcal{F}_t := \sigma$ ($\{B_s : 0 \le s \le t\} \cup \mathbb{N}$), where \mathbb{N} denotes the class of all \mathbb{P} -negligible sets. The submartingale B^2 has Doléans measure $\mu = \mathfrak{m} \otimes \mathbb{P}$.

<4> **Definition.** A cadlag process $\{M_t : 0 \le t \le 1\}$ is said to be a local martingale if there exist stopping times $\tau_k \uparrow \infty$ for which each $M_{\wedge \tau_k}$ is a martingale.

Local martingales (with $M_0 = 0$) with respect to the Brownian filtration have two striking properties:

- (i) They have continuous sample paths. Thus they all belong to $loc \mathcal{M}_0^2[0, 1]$.
- (ii) They can be represented as stochastic integrals.

See Problem [4] for the first assertion. The second will follow via an argument based on the Itô formula.

©David Pollard

Maybe better to restrict definition to cases where $M_0 = 0$. Sketch of proof. Without loss of generality, suppose $\mathbb{P}X = 0$.

- Show that $\mathcal{R} := \{H \bullet B_1 : H \in L^2(\mu)\}$ is a closed vector subspace of $\mathcal{L}^2(\mathbb{P}, \mathcal{F}_1)$. Hint: If $H_n \bullet B_1 \to Y$ in $\mathcal{L}^2(\mathbb{P})$ -norm, show that $\{H_n\}$ is a Cauchy sequence with a limit H in $\mathcal{L}^2(\mu_1)$. Deduce that $Y = H \bullet B_1$.
- Let Z denote the component of X that is orthogonal to \Re . That is, $X = Z + K \bullet B_1$ for some $K \in \mathcal{L}^2(\mu)$ and $\mathbb{P}Z(H \bullet B)_1 = 0$ for all H in $\mathcal{L}^2(\mu)$. Show that $\mathbb{P}Z = 0$.
- Explain why we need to prove Z = 0 almost surely.
- Explain why it suffices to show $\mathbb{P}Zf(B) = 0$ for all bounded, C-measurable functionals f on C[0, 1].
- Explain why it suffices to consider functionals *f* that depend on *B* only through its values at a finite set of times.
- Explain why it suffices to consider functionals f that depend on B only through its increments $Y_j = B_{t_{j+1}} B_{t_j}$ for a fixed set of times $0 = t_0 < t_1 < \ldots < t_k = 1$. That is, why is it enough to prove $\mathbb{P}Zg(\mathbf{Y}) = 0$ for all bounded, measurable functions g on \mathbb{R}^k ?
- Invoke Problem [3] to show that it is enough to prove PZ exp(iθ · Y) = 0 for all θ in R^k.
- Work with stochastic integral notation. Show that $\theta \cdot \mathbf{Y} = H \bullet B_1$, where $H := \sum_{i=0}^{k-1} \theta_i((t_i, t_{i+1})]$.
- Show that $H \bullet B$ has a deterministic quadratic variation process, $A_t := [H \bullet B, H \bullet B]_t = \int_0^t H^2(s) ds$.
- Use the results from Section 2 to show that

$$W_1 = 1 + i(WH) \bullet B_1$$
 where $W_t := \exp(iH \bullet B_t + \frac{1}{2}A_t)$.

• Deduce that

$$\exp(A_1/2)\mathbb{P}Z\exp(i\boldsymbol{\theta}\cdot\mathbf{Y})=0.$$

- \Box Are we done?
- <6> **Corollary.** For each local martingale M adapted to the Brownian filtration there exists an H in $loc \mathcal{L}^2(\mu)$ such that $M_t = M_0 + (H \bullet B)_t$ for $0 \le t \le 1$.

Proof. Without loss of generality, suppose $M_0 = 0$. Define stopping times $\tau_k := 1 \wedge \inf\{t : |M_t| \ge k\}.$

- Why does $M_{\wedge \tau_k}$ belong to $\mathcal{M}_0^2[0, 1]$?
- For each k, explain why there exists an $H_k \in \mathcal{L}_2(\mu)$ such that

$$M_{t \wedge \tau_k} = (H_k((0, \tau_k)) \bullet B_t \quad \text{for } 0 \le t \le 1.$$

- Deduce that $(H_k((0, \tau_k])) \bullet B_1 = (H_{k+1}((0, \tau_k)) \bullet B_1 \text{ almost surely.})$
- Deduce that $H_k((0, \tau_k]] H_{k+1}((0, \tau_k]] = 0$ almost everywhere $[\mu]$.
- Show that the H_k processes can be pasted together to create an H in $loc \mathcal{L}^2(\mu)$ for which $M_t = H \bullet B_t$ almost surely.

REMARK. Should I extend to general \mathcal{F}_1 -measurable random variables, perhaps using the method of Dudley (1977), getting a representation $Y_0 + H \bullet B_1$ with $H \in \text{loc}\mathcal{H}_{\text{Bdd}}$.

Am I just repeateing the construction for the $loc \mathcal{M}_0^2[0, 1]$ stochastic integral?

5. Problems

- [1] Suppose $Z \in \mathcal{FV}_0 \cap \operatorname{loc} \mathcal{M}_0^2(\mathbb{R}^+)$ and Z has continuous sample paths. Show that $Z_t = 0$ almost surely, for each t. Hint: Use the fact that [Z, Z] = 0 to deduce that $Z^2 = 2Z \bullet Z \in \operatorname{loc} \mathcal{M}_0^2(\mathbb{R}^+)$. Find a sequence of stopping times $\tau_k \uparrow \infty$ for which $\mathbb{P}Z_{t \land \tau_k}^2 = 0$ for each t.
- [2] Suppose $M \in \text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$ has continuous sample paths. Suppose $A \in \mathcal{FV}_0$ also has continuous paths and $M^2 A \in \text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$. Deduce that A = [M, M]. Hint: Apply Problem [1] to [M, M] A.
- [3] Let X be an integrable random variable, and $\mathbf{Y} = (Y_1, \ldots, Y_k)$ be a vector of random variables such that $\mathbb{P}X \exp(i\boldsymbol{\theta} \cdot \mathbf{Y}) = 0$ for all $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_k)$ in \mathbb{R}^k . Show that $\mathbb{P}(Xg(\mathbf{Y})) = 0$ for all bounded, measurable g. Hint: Let μ^{\pm} be the measures with densities X^{\pm} with respect to \mathbb{P} . Show that \mathbf{Y} has the same Fourier transform, and hence the same distribution, under both μ^+ and μ^- . That is, $\mu^+g(\mathbf{Y}) = \mu^-g(\mathbf{Y})$.
- [4] Suppose $\{X_t : 0 \le t \le 1\}$ is a cadlag martingale with respect to the Brownian filtration. Remember that X_1 can be expressed as f(B) for some $\mathcal{C}\setminus\mathcal{B}(\mathbb{R})$ -measurable functional f on C[0, 1]. The functional is \mathbb{W} -integrable.
 - (i) If *f* is a continuous (for sup-norm distance) functional on *C*[0, 1], use the representation $X_t = \mathbb{P}_t f(B) = \mathbb{W}^x f(K_t B + S_t x)$ almost surely to show that *X* has continuous sample paths (almost surely?).
 - (ii) For a general \mathbb{W} -integrable functional, show that there exists a sequence of continuous functionals $\{f_n\}$ for which $\mathbb{W}|f f_n| \leq 4^{-n}$.
 - (iii) Let M_n be a version of the martingale $\mathbb{P}_t f_n(B)$ with continuous sample paths. Show that $|M_n(t) X(t)|$ is a uniformly integrable submartingale with cadlag sample paths.
 - (iv) Define stopping times $\tau_n := 1 \wedge \min\{t : |M_n(t) X(t)| \ge 2^{-n}\}$. Show that

$$\mathbb{P}\{\sup_{t} |M_{n}(t) - X(t)| > 2^{-n}\} \le 2^{n} \mathbb{P}|M_{n}(\tau_{n}) - X(\tau_{n})|$$

$$\le 2^{n} \mathbb{P}|M_{n}(1) - X(1)| = 2^{n} \mathbb{P}|f_{n}(B) - f(B)|$$

$$\le 2^{-n}$$

- (v) Deduce that $\sum_{n} \mathbb{P}\{\sup_{t} |M_{n}(t) X(t)| > 2^{-n}\} < \infty$ and hence $\sup_{t} |M_{n}(t) X(t)| \to 0$ almost surely.
- (vi) Conclude that almost all sample paths of X are continuous.
- (vii) Extend the argument to the case of a local martingale. Hint: If $M_{\wedge \tau_k}$ has (almost all) continuous paths for each k, and if $\tau_k \uparrow \infty$, what do you know about almost all paths of M?
- [5] Let X and Y be independent Brownian Motions.
 - (i) Show that both $(X + Y)/\sqrt{2}$ and $(X Y)/\sqrt{2}$ are also Brownian Motions.
 - (ii) Deduce that [X, Y] = 0.

The next problem presents the standard example of a uniformly integrable local martingale that is not of class [D].

[6] Let $\mathbf{B} = (1 + X, Y, Z)$ be a three-dimensional Brownian Motion started from $\mathbf{u} = (1, 0, 0)$. (The three processes X, Y, and Z are independent Brownian Motions started from zero.) Write \mathbf{x} for (x, y, z). Define $f(\mathbf{x}) = 1/||\mathbf{x}||$ on $\mathbb{R}^3 \setminus \{0\}$. Define a process $M(t) = 1/||\mathbf{B}(t)||$.

Statistics 603a: 4 November 2004

Better to start at origin, and

work with distance to **u**?

(i) Use the Multiprocess Itô Formula to show that $M \in \text{loc}\mathcal{M}^2(\mathbb{R}^+)$. Hint: Show that on the open region $\mathbb{R}^3 \setminus \{0\}$ the function f is harmonic:

$$\frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y} + \frac{\partial^2 f}{\partial^2 z} = 0.$$

- (ii) Deduce that M is a positive supermartingale.
- (iii) Let $\tau_k = \inf\{t : \|\mathbf{B}(t)\| \le 1/k\}$. Show that $M_{\wedge \tau_k} \in \mathcal{M}^2(\mathbb{R}^+)$.
- (iv) Show that $C_0 := \int \{ \|\mathbf{x}\| \le \frac{1}{2} \|\mathbf{x}\|^{-2} d\mathbf{x} < \infty \}$.
- (v) Show that $\mathbb{P}M(t)^2 \leq C_0 \exp(-(8t)^{-1})t^{-3/2} + \mathbb{P}(8 \wedge ||\mathbf{B}(t)||^{-2}).$
- (vi) Show that $\|\mathbf{B}(t)\|^2 \xrightarrow{\mathbb{P}} \infty$ as $t \to \infty$.
- (vii) Deduce that $\sup_t \mathbb{P}M(t)^2 < \infty$ and $\mathbb{P}M(t) \to 0$ as $t \to \infty$.
- (viii) Deduce that M is not a martingale, and hence M is not in class [D].

References

- Dudley, R. M. (1977), 'Wiener functionals as Itô integrals', *Annals of Probability* 5, 140–141.
- Protter, P. (1990), *Stochastic Integration and Differential Equations*, Springer, New York.