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Project 9

Itô Formula: Two-dimensional semimartingale (X, Y ) with continuous paths
and Y ∈ FV, which ensures [Y, Y ] = 0. Continuous, real-valued function f
with enough continuous partial derivatives to define predictable processes

Fx (s, ω) := fx
(
X (s, ω), Y (s, ω)

)
,

Fxx (s, ω) := fxx
(
X (s, ω), Y (s, ω)

)

Fy(s, ω) := fy
(
X (s, ω), Y (s, ω)

)
.

with continuous sample paths. Then f (Xs, Ys) is a semimartingale with

f (Xt , Yt ) − f (X0, Y0) = (Fx • X)t + 1/2
(
Fxx • [X, X ]

)
t
+ (Fy • Y )t

for each t in R
+.

1. Corrections

On Project 7 I asked you to show that

<1> [H • X, Y ] = H • [X, Y ] for X, Y ∈ SMG0 and H ∈ locHBdd.

I implied that the proof was just a simple example of a generating class
argument. As some of you discovered, the proof is a little more delicate. A
clean argument can be extracted from ideas used by Protter (1990, section II.6).

<2> Lemma. Suppose {Hn : n ∈ N} ⊆ locHBdd is locally uniformly bounded and

Hn
ucpc−→ 0. Suppose also that Y ∈ SMG. Then Hn • Y

ucpc−→ 0.

Proof. Suppose there is a t for which sups≤t |Hn •Ys | does not converge to zero
in probability. For some ε > 0 there is a subsequence along which P{sups≤t |Hn•
Ys | > ε} > ε. Along a subsubsequence we have the same inequality as well
as sups≤t |Hn(s)| → 0 almost surely; along the subsubsequence sups≤t |{ω ∈
N c}Hn(s, ω)| → 0 for every ω, for some negligible set N . The sequence
Kn := {ω ∈ N c}Hn((0, t]] is locally uniformly bounded and it converges
pointwise to zero. Each Kn is P-measurable, because (0, 1] × N ∈ P, and

P{sups≤t |Kn • Ys − Hn • Ys | �= 0} = 0.

Along the subsubsequence, Kn • Y
ucpc−→ 0, which contradicts the property

defining the first subsequence.�
To establish assertion <1>, consider the linear map

ψ(H) := [H • X, Y ] − H • [X, Y ]

= (H • X)Y − (H • X)� • Y − Y � • (H • X)

− H • (
XY − X� • Y − Y � • X

)

= (H • X)Y − (H • X)� • Y − H • (
XY − X� • Y

)

because Y � • (H • X) = (Y � H) • X = H • (
Y � • X

)
.

You can check that ψ((0, τ ]] = 0 for τ ∈ T and that ψ(Hn − H)
ucpc−→ 0 if

{Hn : n ∈ N} is locally uniformly bounded and Hn → H pointwise. I think the
rest of the argument is routine.

Please inform me if you find more gaps in the proof.
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2. Exponential martingales

Suppose M ∈ locM2
0(R

+) has continuous sample paths. For H ∈ locHBdd,
define

<3> Zt = exp
(
i H • Mt + 1

2 H 2 • [M, M]t
)

• Invoke the complex analog of the Itô formula (or apply the result to real
and imaginary parts) to show that

Zt − 1 = i Z • (H • M)t − 1
2 Z • [H • M, H • M]t + 1

2 Z • (
H 2 • [M, M]

)
t

= i(Z H) • Mt

You may use any of the properties established in the problems for Project 8.

• Deduce that Z − 1 ∈ locM2
0(R

+).

3. Lévy again

Define Ut = t . Suppose M ∈ locM2
0(R

+) with continuous sample paths and
M2 − U ∈ locM2

0(R
+). Show that M is a standard Brownian motion.

• Use Problem [2] to explain why [M, M] = U.

• For fixed constants 0 = t0 < t1 < . . . < t� < ∞ and real numbers {θj }
define

H =
∑�−1

j=0
θj ((tj , tj+1]]

Show that, for t ≥ t�,

H • Mt =
∑

j
θj�j M where �j M := M(tj+1) − M(tj )

H 2 • Ut =
∑

j
θ2

j δj where δj := tj+1 − tj

• For Z as in <3> and H as above, show that there is a sequence of stopping
times τk ↑ ∞ for which PZt∧τk = 1 for all k.

• Invoke Dominated Convergence to deduce that

P exp
(

i
∑

j
θj�j M

)
= exp

(
− 1

2

∑
j
θ2

j δj )
)

• Conclude that M is a standard Brownian motion.

4. Brownian filtrations

Let {B(t, ω : 0 ≤ t ≤ 1} be a Brownian motion with continuous sample paths
on a probability space (	, F, P). The Brownian filtration on 	 is defined by
Ft := σ ({Bs : 0 ≤ s ≤ t} ∪ N), where N denotes the class of all P-negligible
sets. The submartingale B2 has Doléans measure µ = m ⊗ P.

<4> Definition. A cadlag process {Mt : 0 ≤ t ≤ 1} is said to be a local
martingale if there exist stopping times τk ↑ ∞ for which each M∧τk is a
martingale.Maybe better to restrict defini-

tion to cases where M0 = 0.
Local martingales (with M0 = 0) with respect to the Brownian filtration

have two striking properties:

(i) They have continuous sample paths. Thus they all belong to locM2
0[0, 1].

(ii) They can be represented as stochastic integrals.

See Problem [4] for the first assertion. The second will follow via an argument
based on the Itô formula.
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<5> Theorem. For each X ∈ L2(	, F1, P) there exists an H ∈ L2(µ) such that
X − PX = H • B1 almost surely.

Sketch of proof. Without loss of generality, suppose PX = 0.

• Show that R := {H • B1 : H ∈ L2(µ)} is a closed vector subspace of
L2(P, F1). Hint: If Hn • B1 → Y in L2(P)-norm, show that {Hn} is a
Cauchy sequence with a limit H in L2(µ1). Deduce that Y = H • B1.

• Let Z denote the component of X that is orthogonal to R. That is,
X = Z + K • B1 for some K ∈ L2(µ) and PZ(H • B)1 = 0 for all H
in L2(µ). Show that PZ = 0.

• Explain why we need to prove Z = 0 almost surely.

• Explain why it suffices to show PZ f (B) = 0 for all bounded, C-measurable
functionals f on C[0, 1].

• Explain why it suffices to consider functionals f that depend on B only
through its values at a finite set of times.

• Explain why it suffices to consider functionals f that depend on B
only through its increments Yj = Btj+1 − Btj for a fixed set of times
0 = t0 < t1 < . . . < tk = 1. That is, why is it enough to prove
PZg(Y) = 0 for all bounded, measurable functions g on R

k?

• Invoke Problem [3] to show that it is enough to prove PZ exp(iθ · Y) = 0
for all θ in R

k .

• Work with stochastic integral notation. Show that θ · Y = H • B1, where
H := ∑k−1

j=0 θj ((tj , tj+1]].

• Show that H • B has a deterministic quadratic variation process, At :=
[H • B, H • B]t = ∫ t

0 H 2(s) ds.

• Use the results from Section 2 to show that

W1 = 1 + i(W H) • B1 where Wt := exp(i H • Bt + 1/2At ).

• Deduce that
exp(A1/2)PZ exp(iθ · Y) = 0.

• Are we done?�
<6> Corollary. For each local martingale M adapted to the Brownian filtration

there exists an H in locL2(µ) such that Mt = M0 + (H • B)t for 0 ≤ t ≤ 1.

Proof. Without loss of generality, suppose M0 = 0. Define stopping times
τk := 1 ∧ inf{t : |Mt | ≥ k}.

• Why does M∧τk belong to M2
0[0, 1]?

• For each k, explain why there exists an Hk ∈ L2(µ) such that

Mt∧τk = (
Hk((0, τk]]

) • Bt for 0 ≤ t ≤ 1.

• Deduce that (Hk((0, τk]]) • B1 = (Hk+1((0, τk]] • B1 almost surely.
Am I just repeateing the con-
struction for the locM2

0[0, 1]
stochastic integral? • Deduce that Hk((0, τk]] − Hk+1((0, τk]] = 0 almost everywhere [µ].

• Show that the Hk processes can be pasted together to create an H
in locL2(µ) for which Mt = H • Bt almost surely.�
Remark. Should I extend to general F1-measurable random variables,
perhaps using the method of Dudley (1977), getting a representation
Y0 + H • B1 with H ∈ locHBdd.
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5. Problems

[1] Suppose Z ∈ FV0 ∩ locM2
0(R

+) and Z has continuous sample paths. Show that
Zt = 0 almost surely, for each t . Hint: Use the fact that [Z , Z ] = 0 to deduce
that Z2 = 2Z • Z ∈ locM2

0(R
+). Find a sequence of stopping times τk ↑ ∞ for

which PZ2
t∧τk

= 0 for each t .

[2] Suppose M ∈ locM2
0(R

+) has continuous sample paths. Suppose A ∈ FV0 also
has continuous paths and M2 − A ∈ locM2

0(R
+). Deduce that A = [M, M].

Hint: Apply Problem [1] to [M, M] − A.

[3] Let X be an integrable random variable, and Y = (Y1, . . . , Yk) be a vector of
random variables such that PX exp (iθ · Y) = 0 for all θ = (θ1, . . . , θk) in R

k .
Show that P(Xg(Y)) = 0 for all bounded, measurable g. Hint: Let µ± be
the measures with densities X± with respect to P. Show that Y has the same
Fourier transform, and hence the same distribution, under both µ+ and µ−.
That is, µ+g(Y) = µ−g(Y).

[4] Suppose {Xt : 0 ≤ t ≤ 1} is a cadlag martingale with respect to the Brownian
filtration. Remember that X1 can be expressed as f (B) for some C\B(R)-
measurable functional f on C[0, 1]. The functional is W-integrable.

(i) If f is a continuous (for sup-norm distance) functional on C[0, 1], use
the representation Xt = Pt f (B) = W

x f (Kt B + St x) almost surely to
show that X has continuous sample paths (almost surely?).

(ii) For a general W-integrable functional, show that there exists a
sequence of continuous functionals { fn} for which W| f − fn| ≤ 4−n .

(iii) Let Mn be a version of the martingale Pt fn(B) with continuous
sample paths. Show that |Mn(t) − X (t)| is a uniformly integrable
submartingale with cadlag sample paths.

(iv) Define stopping times τn := 1 ∧ min{t : |Mn(t)− X (t)| ≥ 2−n}. Show
that

P{supt |Mn(t) − X (t)| > 2−n} ≤ 2n
P|Mn(τn) − X (τn)|

≤ 2n
P|Mn(1) − X (1)| = 2n

P| fn(B) − f (B)|
≤ 2−n

(v) Deduce that
∑

n P{supt |Mn(t) − X (t)| > 2−n} < ∞ and hence
supt |Mn(t) − X (t)| → 0 almost surely.

(vi) Conclude that almost all sample paths of X are continuous.

(vii) Extend the argument to the case of a local martingale. Hint: If M∧τk

has (almost all) continuous paths for each k, and if τk ↑ ∞, what do
you know about almost all paths of M?

[5] Let X and Y be independent Brownian Motions.

(i) Show that both (X + Y )/
√

2 and (X − Y )/
√

2 are also Brownian
Motions.

(ii) Deduce that [X, Y ] = 0.

The next problem presents the standard example of a uniformly integrable
local martingale that is not of class [D].

[6] Let B = (1 + X, Y, Z) be a three-dimensional Brownian Motion started fromBetter to start at origin, and
work with distance to u? u = (1, 0, 0). (The three processes X , Y , and Z are independent Brownian

Motions started from zero.) Write x for (x, y, z). Define f (x) = 1/‖x‖ on
R

3\{0}. Define a process M(t) = 1/‖B(t)‖.
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(i) Use the Multiprocess Itô Formula to show that M ∈ locM2(R+). Hint:
Show that on the open region R

3\{0} the function f is harmonic:

∂2 f

∂2x
+ ∂2 f

∂2 y
+ ∂2 f

∂2z
= 0.

(ii) Deduce that M is a positive supermartingale.

(iii) Let τk = inf{t : ‖B(t)‖ ≤ 1/k}. Show that M∧τk ∈ M2(R+).

(iv) Show that C0 := ∫ {‖x‖ ≤ 1/2}‖x‖−2 dx < ∞.

(v) Show that PM(t)2 ≤ C0 exp(−(8t)−1)t−3/2 + P
(
8 ∧ ‖B(t)‖−2

)
.

(vi) Show that ‖B(t)‖2 P−→ ∞ as t → ∞.

(vii) Deduce that supt PM(t)2 < ∞ and PM(t) → 0 as t → ∞.

(viii) Deduce that M is not a martingale, and hence M is not in class [D].
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