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Project 1

I suggest that you bring a copy of this sheet to the Friday session and
make rough notes on it while I explain some of the ideas. You should then go
home and write a reasonably self-contained account in your notebook. You
may consult any texts you wish and you may ask me or anyone else as many
questions as you like.

Please do not just copy out standard proofs without understanding. Please
do not just copy from someone else’s notebook.

In your weekly session—don’t forget to arrange a time with
me—I will discuss with you any difficulties you have with producing an account
in your own words. I will also point out refinements, if you are interested.

At the end of the semester, I will look at your notebook to make up a grade.
By that time, you should have a pretty good written account of a significant
chunk of stochastic calculus.

Things to explain in your notebook:

(i) filtrations and stochastic processes adapted to a filtration

(ii) stopping times and related sigma-fields

(iii) (sub/super)martingales in continuous time

(iv) How does progressive measurability help?

(v) cadlag sample paths

(vi) versions of stochastic processes

(vii) standard filtrations: Why are they convenient?

(viii) cadlag versions of martingales adapted to standard filtrations

Please pardon my grammar. This sheet is witten in note form, not in real
sentences.

Filtrations and stochastic processes

Fixed probability space (�, F, P). Negligible sets N := {N ∈ F : PN = 0}.
Without loss of generality the probability space is complete.completeness needed later

Time set T ⊆ R ∪ −∞ ∪ {∞}. Filtration {Ft : t ∈ T }: set of sub-sigma-
fields of F with Fs ⊆ Ft if s < t . Think of Ft as “information available at
time t”?

If ∞ /∈ T define F∞ := σ
( ∪t∈T Ft

)
.

Stochastic process {Xt : t ∈ T }: a set of F-measurable random variables.
Write Xt (ω) or X (t, ω). We can think of X as a map from T × � into R.

Say that X is adapted to the filtration if Xt is Ft -measurable for
each t ∈ T . Value of Xt (ω) can be determined by the “information available at
time t”.

Stopping times

Function τ : � → T := T ∪ {∞} such that {ω : τ(ω) ≤ t} ∈ Ft for each t ∈ T .
Check that τ is F∞-measurable. Define

Fτ := {F ∈ F∞ : F{τ ≤ t} ∈ Ft for each t ∈ T }
Check that Fτ is a sigma-field. Show that τ is Fτ -measurable. Show that
an F∞-measurable random variable Z is Fτ -measurable if and only if Z{τ ≤ t}
is Ft -measurable for each t ∈ T .
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Progressive measurability

Problem: If {Xt : t ∈ T } is adapted and τ is a stopping time, when is the
function

ω �→ X (τ (ω), ω){τ(ω) < ∞}
Fτ -measurable? Perhaps simplest to think only of the case where T = R

+,
equipped with its Borel sigma-field B(T ).

Warmup: Suppose τ takes values in T . Show X (τ (ω), ω) is F-measurable.

ω �→ (τ (ω), ω) �→ X (τ (ω), ω)

� T × � R

F B(T ) ⊗ F B(R)

If X is B(T ) ⊗ F\B(R)-measurable, we get F\B(R)-measurability for the
composition.

Abbreviate B([0, t]), the Borel sigma-field on [0, t], to Bt .

• Now suppose X is progressively measurable, that is, the restriction of X
to [0, t] × � is Bt ⊗ Ft -measurable for each t ∈ T . For a fixed t , write Y
for the restriction of X to [0, t] × �. Show that

X (τ (ω), ω){τ(ω) ≤ t} = Y (τ (ω) ∧ t, ω){τ(ω) ≤ t}
Adapt the warmup argument to prove that Y (τ (ω)∧ t, ω) is Fτ -measurable.
Then what? Conclude that X (τ (ω), ω){τ(ω) < ∞} is Fτ -measurable.

• Show that an adapted process with right-continuous sample paths is
progressively measurable. Argue as follows, for a fixed t . Define ti = i t/n
and

Xn(s, ω) = X (0, ω) +
∑
i≤n

X (ti , ω){ti−1 < s ≤ ti } for 0 ≤ s ≤ t .

Show that Xn is Bt ⊗ Ft -measurable and Xn converges pointwise to the
restriction of X to [0, t] × �.

Cadlag

Define D(T ) as the set of real valued functions on T that are right continuous
and have left limits at each t . (Modify the requirements suitably at points not
in the interior of T .) Say that functions in D(T ) are cadlag on T .

Say that a process X has cadlag sample paths if the function t �→ X (t, ω)

is cadlag for each fixed ω.

A typical sample path problem

For a fixed integable random variable ξ , define Xt (ω) = P(ξ | Ft ). Note that
{(Xt , Ft ) : t ∈ T } is a martingale. Remember that each Xt is defined only up
to an almost sure equivalence. Question: Must X be progressively measurable?

To keep things simple, assume T = [0, 1].
Suppose Yt is another choice for P(ξ | Ft ). Note that

Nt := {ω : Xt (ω) �= Yt (ω)} ∈ N

That is, the stochastic process Y is a version of X . However, the sample paths
of X and Y can be very different:

{ω : X (·, ω) �= Y (·, ω)} ⊆ ∪t∈T Nt

A union of uncountably many negligible sets need not be negligible.
We need to be careful about the choice of the random variable from the

equivalence class corresponding to P(ξ | Ft ).
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How to construct a cadlag version of X

Without loss of generality (why?) suppose ξ ≥ 0.

• First build a nice “dense skeleton”. Define Sk := {i/2k : i = 0, 1, . . . , 2k}
and S = ∪k∈NSk . For each s in S, choose arbitrarily a random variable Xs

from the equivalence class P(ξ | Fs).

• Show that

P{maxs∈Sk Xs > x} ≤ PX0/x for each x > 0.

Let k tend to infinity then x tend to infinity to deduce that sups∈S Xs < ∞
almost surely.

• For fixed rational numbers 0 < α < β, invoke Dubin’s inequality to show
that the event

A(α, β,k, n)

:= {the process {Xs : s ∈ Sk} makes at least n upcrossings of [a, β] }
has probability less than (α/β)n .

• Let k tend to infinity, then n tend to infinity, then take a union over rational
pairs to deduce existence of an N ∈ N such that, for ω ∈ N c, the sample
path X (·, ω) (as a function on S) is bounded and

X (·, ω) makes only finitely many upcrossings of each rational interval .

• Deduce that X̃t (ω) := lims↓↓t X (s, ω) exists and is finite for each t ∈ [0.1)

and each ω ∈ N c. Deduce also that lims↑↑t X (s, ω) exists and is finite for
each t ∈ (0.1] and each ω ∈ N c.↑↑ means strictly increasing

and ↓↓ means strictly decreas-
ing • Define X̃(·, ω) ≡ 0 for ω ∈ N . Show that X̃ has cadlag sample paths.

• Note: X̃ need not be Ft -measurable but it is measurable with respect to
the sigma-field F̃t := ∩s>tσ(N ∪ Ft ).

• Show that {F̃t : t ∈ [0, 1]} is right continuous, that is, F̃t = ∩s>t F̃s ,
and that N ⊆ F̃t . [Assuming that P is complete, a filtration with these
properties is said to be standard or to satisfy the usual conditions.]

• Show that {(X̃t , F̃t ) : 0 ≤ t ≤ 1} is a martingale with cadlag sample paths.

• Is it true that X̃ is a version of X?
To complete your understanding, find a filtration (which is necessarily not

standard) for which there is a martingale that does not have a version with
cadlag sample paths.

Why do you think that most authors prefer to assume the usual conditions?

Small exercise on measurability

Suppose X is a bounded random variable and that G is a sub-sigma-field of F.
Suppose that for each ε > 0 there is a finite set of G-questions (that is, you learn
the value of {ω ∈ Gi } for some sets of your choosing G1, . . . , G N from G) from
which X (ω) can be determined up to a ±ε error. Show that X is G-measurable.
[This problem might help you think about measurability. Imagine that you
are allowed to ask the value of {ω ∈ F}, but I will answer only if F is a set
from G.]
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Project 2

Things to explain in your notebook:

(i) how to prove that a first passage time is a stopping time

(ii) how the Stopping Time Lemma extends from discrete to continuous
time

(iii) Give some illuminating examples.

Fixed probability space (�, F, P). Negligible sets N := {N ∈ F : PN = 0}.
Assume the probability space is complete, that is, for all A ⊆ �, if A ⊆ N ∈ N

then A ∈ N. From now on, unless indicated otherwise, also assume that all
filtrations {Ft : t ∈ T } are standard, that is, N ⊆ Ft = Ft+ for each t .

First passage times (a.k.a. debuts)

Suppose {Xt : t ∈ R
+} is adapted and that B ∈ B(R). Define

τ(ω) = inf{t ∈ R
+ : X (t, ω) ∈ B}.

As usual, inf ∅ := +∞.

• Easy case: B open and X has right-continuous paths
Let S be a countable, dense subset of R

+. Show that

{ω : τ(ω) < t} = ∪t>s∈S{Xs(ω) ∈ B} ∈ Ft

Deduce that {τ ≤ t} ∈ Ft+ = Ft .

• Slightly harder case: B closed and X has continuous paths
Let Gi := {x : d(x, B) < i−1}, an open set. Define τi = inf{t : Xt ∈ Gi }.
Show that τ = supi τi so that {τ ≤ t} = ∩i∈N{τi ≤ t} ∈ Ft .

• General case: B any Borel set and X progressively measurable
See the handout on analytic sets. The idea is that the set

Dt := {(s, ω) : s < t and X (s, ω) ∈ B}
is Bt ⊗ Ft -measurable. The set {τ < t} is the projection of Dt onto �. A
deep result about analytic sets asserts that the projection of Dt belongs to
the P-completion of Ft . For a standard filtration, Ft is already complete.
Thus {τ < t} ∈ Ft and {τ ≤ t} ∈ Ft+ = Ft . That is, τ is a stopping time.

Preservation of martingale properties at stopping times

<1> Stopping Time Lemma. Suppose {(Xt , Ft ) : 0 ≤ t ≤ 1} is a positive
supermartingale with cadlag sample paths. Suppose σ and τ are stopping
times taking values in [0, 1] and F is an event in Fσ for which σ(ω) ≤ τ(ω)bounded stopping times
when ω ∈ F. Then PXσ F ≥ PXτ F.

Proof: discrete case. Suppose both stopping times actually take values in a
finite subset of points t0 < t1 < . . . < tN in [0, 1]. Define ξi := X (ti )− X (ti−1).
The superMG property means that

Pξi F ≤ 0 for all F ∈ F(ti−1)

Note that

Xτ = X (t0) +
∑N

i=1
ξi {ti ≤ τ }

Xσ = X (t0) +
∑N

i=1
ξi {ti ≤ σ }

so that
P(Xτ − Xσ )F =

∑N

i=1
P

(
ξi {σ < ti ≤ τ }F

)
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The last equality uses the fact that σ ≤ τ on F . Check that {σ < ti ≤ τ }F
is F(ti−1)-measurable.

Proof: general case. For each n ∈ N define σn = 2−n�2nσ�. That is,

σn(ω) = 0{σ(ω) = 0} +
∑2n

i=1
i/2n{(i − 1)/2n < σ(ω) ≤ i/2n}

• Check that σn is a stopping time taking values in a finite subset of [0, 1].
Question: If we rounded down instead of up, would we still get a stopping
time? Check that F ∈ F(σn):

F{σn ≤ i/2n} = F{σ ≤ i/2n} ∈ F(i/2n).

Define τn analogously.

• From the discrete case, deduce that

PX (σn)F ≥ PX (τn)F for each n

• Show that σn(ω) ↓ σ(ω) and τn(ω) ↓ τ(ω) as n → ∞.

• Use right-continuity of the sample paths to deduce that X (σn, ω) →left-continuous paths wouldn’t
help—why not? X (σ, ω) and X (τn, ω) → X (τ, ω) for each ω.

• Prove that {X (σn) : n ∈ N} is uniformly integrable. Write Zn for X (σn).

(i) First show that PZn ↑ c0 ≤ PX0 as n → ∞.

(ii) Choose m so that PZm > c0−ε. For n ≥ m, show that Zn, Zn−1, . . . , Zm

is a superMG.

(iii) For constant K and n ≥ m, show that

PZn{Zn ≥ K } = PZn − PZn{Zn < K }
≤ c0 − PZm{Zn < K }
≤ ε + PZm{Zn ≥ K }

(iv) Show that P{Zn ≥ K } ≤ c0/K , then complete the proof of uniform
integrability.

• Prove similarly that {X (τn) : n ∈ N} is uniformly integrable. Pass to the
limit in the “discretized version” to complete the proof.

Problems = some possible examples for your notes

[1] Show that Lemma <1> also holds without the assumption that Xt ≥ 0.
Hint: Let M be a cadlag version of the martingale P

(
X−

1 | Ft
)
. Show that

Zt := Xt + Mt is a positive superMG with cadlag paths.

[2] Suppose {(Xt , Ft ) : t ∈ R
+} is a positive supermartingale with cadlag sample

paths. Suppose σ1 ≤ σ2 ≤ . . . are stopping times taking values in [0, ∞].

(i) Show that the sequence Xσn {σn < ∞} is a superMG for a suitable
filtration. Compare with UGMTP Problem 6.5.

(ii) If X is actually a positive martingale, is the sequence Xσn {σn < ∞}
also a martingale?

(iii) Same question as for part (ii), except that the σn all take values
in [0, 1].

[3] Suppose {(Xt , Ft ) : t ∈ [0, 1]} is a positive supermartingale with cadlag sample
paths. Let S denote the set of all stopping times taking values in [0, 1]. Is the
set of random variables {Xσ : σ ∈ S} uniformly integrable? It might help to
track down the concept of superMGs of class [D].
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Project 3

Things to explain in your notebook:

(i) How can Lévy’s martingale characterization of Brownian motion be
derived from a martingale central limit theorem?

(ii) How can stochastic processes with continuous sample paths be treated
as random elements of a space of continuous functions

(iii) What is the strong Markov property for Brownian motion? Maybe
sketch some sort of proof.

(iv) The completion of the filtration generated by a Brownian motion is
standard.

Fixed probability space (�, F, P). Negligible sets N := {N ∈ F : PN = 0}.
Assume the probability space is complete, that is, for all A ⊆ �, if A ⊆ N ∈ N

then A ∈ N. From now on, unless indicated otherwise, also assume that all
filtrations {Ft : t ∈ T } are standard, that is, N ⊆ Ft = Ft+ for each t .

McLeish <1> Theorem. (McLeish 1974) For each n in N let {ξnj : j = 0, . . . , kn} be a
martingale difference array, with respect to a filtration {Fnj }, for which:

(i)
∑

j ξ 2
nj → 1 in probability;

(ii) maxj |ξnj | → 0 in probability;

(iii) supn P maxj ξ 2
nj < ∞.

Then
∑

j ξnj � N (0, 1) as n → ∞.

Remark. In the last right-hand side on line 5 page 202 a factor Xn

is missing. We need the fact that Xn = Op(1) to prove that Yn → 0 in
probability.

Levy <2> Lévy’s martingale characterization of Brownian motion. Suppose
{Xt : 0 ≤ t ≤ 1} is a martingale with continuous sample paths and X0 = 0.
Suppose also that X2

t − t is a martingale. Then X is a Brownian motion.

Rigorous proof that X1 ∼ N (0, 1). Use stopping times to cut the path
into increments corresponding to the nth row of martingale differences in
Theorem <1>. Omit the subscript n’s. Take τ0 = 0 and

τi+1 = min
(
n−1 + τi , inf{t ≥ τi : |X (t) − X (τi )| ≥ n−1

)
For j = 1, 2, . . . define

ξj := X (τj ) − X (τj−1)

δj := τj − τj−1

Vj := ξ 2
j − δj

Write Pj (. . .) for P(. . . | F(τj )).

• Check that Pj−1ξj = 0 and Pj−1
(
Vj

) = 0, almost surely.

• Show that maxj |ξj | ≤ n−2 and maxj δj ≤ n−1.

• Show that there exist {kn} such that P{∑j≤kn
δj �= 1} → 0 as n → ∞.

• Show that P
∑

j≤kn
Vj = 0 and

P

( ∑
j≤kn

Vj

)2
=

∑
j≤kn

PV 2
j

≤ n−1
P

∑
j≤kn

|Vj |

≤ n−1
P

∑
j≤kn

(
Vj + 2δj

) → 0 as n → ∞.
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• Deduce that
∑

j≤kn
ξ 2

j → 1 in probability.

• Deduce that X (τkn ) � N (0, 1).

• Deduce that X1 ∼ N (0, 1).

• For enthusiasts: Extend the argument to show that X is a Brownian motion.
�

Random elements of a function space

Suppose {Xt : t ∈ R
+} is a process with continuous sample paths. That

is, for each fixed ω the sample path X (·, ω) is a member of C[0, ∞), the
set of all continuous real functions (not necessarily bounded) on R

+. Equip
C[0, ∞) with its cylinder sigma-field C, which is defined as the smallest
sigma-field on C[0, ∞) for which each coordinate map πt , for each t ∈ R

+, isFor fixed t ∈ R
+, πt (x) :=

x(t) for x ∈ C[0, ∞). C\B(R)-measurable. Then ω 
→ X (·, ω) is an F\C-measurable map from �

into C[0, ∞).

• Prove the last assertion. Note that πt X (·, ω) = Xt (ω).

• Find some nontrivial examples of sets in C. For example, is the set
{x ∈ C[0, ∞) : supt x(t) ≤ 6} in C?

The distribution of X is a probability measure defined on C, the image of
P under the map ω 
→ X (·, ω). For example, for a standard Brownian motion,
the distribution is called Wiener measure, which I will denote by W. In other
words, if B is a standard Brownian motion, and at least if f : C[0, ∞) → R

+

is a C\B(R+)-measurable function, then

P
ω f (X (·, ω)) = W

x f (x).

Sometimes I will slip into old-fashioned terminology and call a real-valued
function a functional if it is defined on a space of functions.

For each fixed τ ∈ R
+, define the stopping operator Kτ : C[0, ∞) →

C[0, ∞) by
(Kτ x)(t) = x(τ ∧ t) for t ∈ R

+.

Decomposition of Brownian motion

Think of a standard Brownian motion {Bt : t ∈ R
+} as a random element

of C[0, ∞). For a fixed τ ∈ R
+, the process

Z(t) := B(τ + t) − B(τ ) for t ∈ R
+

is also a Brownian motion (with respect to which filtration?). Moreover the
process Z , as a random element of (C[0, ∞), C), is independent of Fτ . Proof?
This fact can be reexpressed in several useful ways.

You might try your skills at generating-class arguments to establish some
of the following. You might also give some special cases as examples.Compare with the Brownian

motion chapter of UGMTP. Define the shift operator Sτ by

(Sτ x)(t) =
{

0 for 0 ≤ t < τ

x(t − τ) for t ≥ τ

(i) B has the same distribution as Kτ B + Sτ B̃, where B̃ is a new standard
Brownian motion that is independent of B.

(ii) At least for each C-measurable functional h : C[0, ∞) → R
+,

P
(
h(B) | Fτ

) = W
x h(Kτ B + Sτ x) almost surely.

Notice that Kτ B is Fτ -measurable. It is unaffected by the integral with
respect to W.
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(iii) For each F ∈ Fτ and each h as in (ii),

PFh(B) = P
ω

({ω ∈ F}Wx h(Kτ B(·, ω) + Sτ x)
)

(iv) At least for each B(R) ⊗ C-measurable map f : R × C[0, ∞) → R
+,

and each Fτ -measurable random variable Y ,

P f (Y, B) = P
ω
W

x f (Y, Kτ B + Sτ x)

The strong Markov property for Brownian motion asserts that proper-
ties (i) to (iv) also hold for stopping times τ , provided we handle contributions
from {τ = ∞} appropriately. For example, with f and Y as in (iv),

P f (Y, B){τ < ∞} = P
ω
W

x f (Y, Kτ B + Sτ x){τ < ∞}
Remark. Notice the several ways in which ω affects the sample path
of Kτ B + Sτ x : at time t it takes the value

B(t, ω) if 0 ≤ t < τ(ω)

B(τ (ω), ω) + x(t − τ(ω)) if t ≥ τ(ω)

The Brownian filtration

If we regard a Brownian motion {Bt : t ∈ R
+} as just a Gaussian process with

continuus paths and a specific covariance structure (cf. UGMTP §9.3), we need
not explicitly mention the filtration. In fact, we could always use the natural
filtration defined by the process itself:

F◦
t := σ {Bs : 0 ≤ s ≤ t}

= sigma-field generated by Kt B see Problem [2].

The process B is adapted to the natural filtration and {(Bt , F
◦
t ) : 0 ≤ t ≤ 1} is

a Brownian motion in the sense defined by Project 2.
If we augment the filtration by adding the neglible sets to the generating

class,
Ft = σ

(
F◦

t ∪ N
)
,

it should be easy for you to check that {(Bt , Ft ) : t ∈ R
+} is still a Brownian

motion.
In fact, B is also a Brownian motion with respect to the standard filtration

F̃t = Ft+ = ∩s>tσ
(
F◦

t ∪ N
)

Proof.

• Suppose s < t and F ∈ F̃s . Explain why it is enough to show that

PF f
(
Bt − Bs

) = (
PF

) (
P f (Z)

)
where Z ∼ N (0, t − s)

for each bounded continuous f .

• Choose a sequence with t > sn ↓↓ s. Show that F ∈ Fsn and

PF f
(
Bt − Bsn

) = (
PF

) (
P f (Zn)

)
where Zn ∼ N (0, t − sn).

• Pass to the limit.�

BMstd <3> Corollary. The filtration {Ft : t ∈ R
+} is standard. That is, F̃t = Ft =

σ
(
F◦

t ∪ N
)

for each t.

Proof. Suppose F ∈ F̃t . Then F ∈ Fs for each s > t . Fix one such s.

• Show there is an F◦ ∈ F◦
s for which F�F◦ ∈ N.

• Explain why there exists a {0, 1}-valued, C-measurable functional h
on C[0, ∞) for which F◦ = h(B).
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• Show that, with probability one,

F = P

(
F | F̃t

)

= P

(
h(B) | F̃t

)

= W
x h(Kt B + St x).

• Explain why W
x h(Kt B + St x) is a C-measurable function of Kt B and

hence it is F◦
t -measurable.

• Conclude that F ∈ σ(N ∪ F◦
t ) = Ft .

�

Problems = some possible examples for your notes

cylinder.Borel [1] One metric for uniform convergence on compacta of function in C[0, ∞) is
defined by

d(x, y) :=
∑
n∈N

2−n min

(
1, sup

0≤t≤n
|x(t) − y(t)|

)

Show that the Borel sigma-field for this metric is exactly the cylinder sigma-
field C.

raw [2] Suppose X is a stochastic process with sample paths in C[0, ∞). For each
fixed t , define F◦

t := σ {Xs : 0 ≤ s ≤ t}. Show that F◦
t is the smallest

sigma-field for which the map ω 
→ Kt X (·, ω) is F◦
t \C-measurable.

References

McLeish, D. L. (1974), ‘Dependent central limit theorems and invariance
principles’, Annals of Probability 2, 620–628.
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Project 4

Things to explain in your notebook:

(i) How to construct the isometric stochastic integral for a square integrable
martingale.

(ii) What advantages are there to considering only predictable integrands?

(iii) Why does it suffice to have the Doléans measure defined only on the
predictable sigma-field?

Notation and facts:

• Fixed complete probability space (�, F, P). Standard filtration.

• R-process = adapted process with cadlag sample paths

• L-process = adapted process with left-continuous sample paths with finite
right limitsborrowed from Rogers &

Williams (1987) • M2 = M2[0, 1] = martingales with index set [0, 1], cadlag sample paths,
and PM2

1 < ∞ (“square integrable martingales”)

• M2
0 = M2

0[0, 1] = {M ∈ M2[0, 1] : M0 ≡ 0}
• Hsimple = the set of all simple processes of the form

<1>
∑N

i=0
hi (ω){ti < t ≤ ti+1}

for some grid 0 = t0 < t1 < . . . < tN+1 = 1 and bounded, F(ti )-
measurable random variables hi . Note that Hsimple is a subset of the set of
all L-processes.

Remark. Some authors call members of Hsimple elementary pro-
cesses; others reserve that name for the situation where the ti are replaced
by stopping times. Dellacherie & Meyer (1982, §8.1) adopted the opposite
convention.

• Abbreviate P(. . . | Fs) to Ps(. . .).

• Doob’s inequality: P sup0≤t≤1 M2
t ≤ 4PM2

1 for M ∈ M2[0, 1].
cf. UGMTP Problem 6.9

Increasing processes as measures

Suppose M ∈ M2 is such that there exists an R-process A with increasing
sample paths such that the process Nt := M2

t − At is a martingale. Without
loss of generality, M0 = A0 = 0. For example, for Brownian motion, At ≡ t .

Remark. The existence of such an A for each M in M2[0, 1] will
follow later from properties of stochastic integrals. See the discussion of
quadratic variation.

Identify A(·, ω) with a measure µω on B(0, 1] for which

µω(0, t] = A(t, ω) for 0 < t ≤ 1

Construct a measure µ on B(0, 1] ⊗ F by

µg(t, ω) = P
ωµt

ωg(t, ω) for which g?

Notice that µ(0, 1] × � = PA1 < ∞.

• For Brownian motion, show that µ = m ⊗ P with m = Lebesgue measure
on B(0, 1].

• For fixed 0 ≤ a < b ≤ 1, define �N = Nb − Na , �M = Mb − Ma ,
and �A = Ab − Aa . Show that

0 = Pa�N = Pa
(
(�M)2 − �A

)
almost surely.
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• At least for each bounded, Fa-measurable random variable h, deduce that

Ph(ω)(�M)2 = Ph(ω)�A = P
ω

(
h(ω)µt

ω{a < t ≤ b})
= µh(ω){a < t ≤ b}<2>

Stochastic integral for simple processes

Suppose H is a simple process, as in <1>, and M ∈ M2. The stochastic
integral is defined by

<3>

∫
(0,1]

H d M :=
∑N

i=0
hi (ω)

(
M(ti+1, ω) − M(ti , ω)

)
.

Remark. Here I follow Rogers & Williams (1987, page 2) in excluding
the lower endpoint from the range of integration. Dellacherie & Meyer (1982,
§8.1) added an extra contribution from a possible jump in M at 0. With the
(0, 1] interpretation, the definition depends only on the increments of M ;
with no loss of generality, we may therefore assume M0 ≡ 0.

A similar awkwardness arises in defining
∫ t

0 H d M if M has a jump
at t . The notation does not distinguish between the integral over (0, t) and
the integral over (0, t]. I will use instead the Strasbourg notation H • M1

for
∫
(0,1] H d M , with H multiplied by an explicit indicator function to modify

the range of integration. For example,
∫ t

0 H d M is obtained from <3> by
substituting H(s, ω){0 < s ≤ t} for H . Thus,

Check

<4> H • Mt :=
∑N

i=0
hi (ω)

(
M(t ∧ ti+1, ω) − M(t ∧ ti , ω)

)
.

• You should check that Pt H • M1 = H • Mt almost surely, so that H • M
is a martingale (with cadlag paths).

<5> Lemma. P
(
H • M1

)2 = µH 2 for each H ∈ Hsimple,

Proof. Expand the left-hand side of the asserted inequality as∑
i
Ph2

i (�i M)2 +2
∑

i< j
Phi hj�i M�j M where �i M = M(ti+1 − M(ti ).

Use the fact that P(�j M | F(tj−1)) = 0 to kill all the cross-product terms. Use
equality <2> to simplify the other contributions to

µs,ω
∑

i
hi (ω)2{ti < s ≤ ti+1} = µH 2

�

Extension by isometry

Think of Hsimple as a subspace of L2 = L2((0, 1] × �, B(0, 1] ⊗ F1, µ). Then
Lemma <5> shows that H �→ H • M1 is an isometry from a subspace of L2

to L2(�, F1, P). It extends to an isometry from Hsimple, the L2(µ) closure
of Hsimple in L2, into L2(�, F1, P). The stochastic integral H • Mt is then
taken to be a cadlag version of the martingale Pt H • M1. In short, there is a
linear map H �→ H • M from Hsimple to M2

0 for which, by Doob’s inequality,

<6> P sup
0≤t≤1

|G • Mt − H • Mt |2 ≤ 4P|H • M1 − G • M1|2 = µ|G − H |2

It is uniquely determined by the property, for all a < b and F ∈ Fa ,

H • M1 = F
(
Mb − Ma

)
if H(t, ω) = {ω ∈ F}{a < t ≤ b} .
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<7> Example. Let τ be a stopping time taking values in [0, 1]. Define the
stochastic interval

((0, τ ]] := {(t, ω) ∈ (0, 1] × � : 0 < t ≤ τ(ω)}
Let τn be the stopping time obtained by rounding τ up to the next integer
multiple of 2−n:

τn(ω) =
∑2n

i=1
ti {ti−1 < τ(ω) ≤ ti } where ti = i/2n.

• Show that

((0, τn]] =
∑2n

i=1
{ti−1 < t ≤ ti }{τ(ω) > ti−1} ∈ Hsimple

and that µ
(
((0, τn]] − ((0, τ ]]

)2 → 0.

• Conclude that ((0, τ ]] • Mt = Mt∧τ .�

Predictable integrands

How large is Hsimple? For Brownian motion, it s traditional to show (Chung &
Williams 1990, Theorem 3.7) that Hsimple contains at least all the B(0, 1] × F1-
measurable, adapted processes that are square integrable for m × P. For other
martingales, it is cleaner to work with a slightly smaller class of integrands.

<8> Definition. The predictable sigma-field P is defined as the sigma-field
on (0, 1] × � generated by the set of all L-processes. The space H2(µ) is
defined as the set of all P-measurable processes H on (0, 1] × � for which
µH 2 < ∞.

Notice that Hsimple ⊆ H2(µ) for the µ corresponding to each M in M2
0.

In fact, a generating class argument shows that H2(µ) is the closure of Hsimple

in the space L2( (0, 1] × �, P, µ):

• Suppose H is a bounded, L-process. Define

Hn(t, ω) :=
∑2n

i=1
H(ti−1, ω){ti−1 < t ≤ ti } where ti = i/2n

Show that Hn ∈ Hsimple and that Hn(t, ω) → H(t, ω) for all (t, ω) and

hence that µ
(
Hn − H

)2 → 0. Deduce that H ∈ Hsimple.

• Invoke a generating class argument (such as the one given in the extract
generating-class-fns.pdf from UGMTP) to deduce that Hsimple contains all
bounded, P-measurable processes.

• Then what?

The Doléans measure

If we intend only to extend the stochastic integral to predictable integrands,
we do not need the measure µ that corresponds to the increasing process A
to be defined on B(0, 1] ⊗ F1: we only need it defined on P. In fact, it
is a much easier task to construct an appropriate µ on P directly from the
submartingale {M2

t : 0 ≤ t ≤ 1} without even assuming the existence of A. The
measure µ is called the Doléans measure for the submartingale M2. See the
handout Doleans.pdf for a construction.

Moreover, there is another procedure (the dual predictable projection) for
extending the Doléans measure to a “predictable measure” on B(0, 1] ⊗ F1. A
disintegration of this new measure then defines the process A. I’ll prepare a
handout describing the method.
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Problems

[1] Show that the predictable sigma-field P on (0, 1] × � is generated by each of
the following sets of processes:

(i) all sets (a, b] × F with F ∈ Fa and 0 ≤ a < b ≤ 1

(ii) Hsimple

(iii) the set C of all adapted processes with continuous sample paths

(iv) all stochastic intervals ((0, τ ]] for stopping times τ taking values
in [0, 1]

(v) all sets {(t, ω) ∈ (0, 1] × � : X (t, ω) = 0}, with X ∈ C

References

Chung, K. L. & Williams, R. J. (1990), Introduction to Stochastic Integration,
Birkhäuser, Boston.

Dellacherie, C. & Meyer, P. A. (1982), Probabilities and Potential B: Theory
of Martingales, North-Holland, Amsterdam.

Rogers, L. C. G. & Williams, D. (1987), Diffusions, Markov Processes, and
Martingales: Itô Calculus, Vol. 2, Wiley.
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Project 5

This week I would like you to consolidate your understanding of the material
from the last two weeks by working through some problems.

• Read the handout Doleans.pdf, at least up to Theorem 5. Try to explain
the assertions flagged by the symbol �. Try to solve Problem [2].

<1> Definition. Suppose X is a process and τ is a stopping time. Define the
stopped process X∧τ to be the process for which X∧τ (t, ω) = X (τ (ω) ∧ t, ω).

nonstandard notation

Problems

[1] Suppose M ∈ M2[0, 1] has continuous sample paths.

(i) For each H in Hsimple, show that H • M has continuous sample paths.

(ii) Suppose {Hn : n ∈ N} ⊆ Hsimple and µ|Hn − H |2 → 0. Use Doob’s
maximal inequality to show that there exists a subsequence N1 along
which ∑

n∈N1

P sup
0≤t≤1

|Hn • Mt − H • Mt | < ∞

(iii) Deduce that there is a version of H • M with continuous sample paths.

[2] Suppose {τn : n ∈ N} is a sequence of [0, 1]-valued stopping times for which
τn ≤ τ and τn(ω) ↑↑ τ(ω) at each ω for which τ(ω) > 0. Prove that
[[τ, 1]] ∈ P.

Remark. The sequence {τn} is said to foretell τ . Existence of
a foretelling sequence was originally used to define the concept of a
predictable stopping time. The modern definition requires [[τ, 1]] ∈ P.
In fact, the two definitions are almost equivalent, as you will see from a
later handout.

[3] Suppose M ∈ M2
0[0, 1] and H ∈ H2(µ), where µ is the Doléans measure

defined by the submartingale M2
t . Let τ be a [0, 1]-valued stopping time. Let X

denote the martingale H • M .

(i) Define N = M∧τ . Show that N ∈ M2
0[0, 1].

(ii) Show that, with probability one,

Xt∧τ = ( (
H((0, τ ]]

) • M
)

t
= H • Nt for 0 ≤ t ≤ 1.

Hint: Consider first the case where H ∈ Hsimple and τ takes values
only in a finite subset of [0, 1]. Extend to general τ by rounding up
to integer multiples of 2−n .

(iii) Show that the Doléans measure ν for the submartingale (H • M)2
t

has density H 2 with respect to µ. Hint: Remember that the Doléans
measure is uniquely determined by the values it gives to the stochastic
intervals ((0, τ ]].

(iv) Suppose K ∈ H2(ν). Show that K H ∈ H2(µ) and K • (H • M) =
(H K ) • M .

[4] Suppose µ = m ⊗ P, defined on B(0, 1] ⊗ F1. Let {Xt : 0 ≤ t ≤ 1} be
progressively measurable.

(i) Suppose X is bounded, that is, supt,ω |X (t, ω)| < ∞. Define

Hn(t, ω) := n
∫ t

t−n−1
X (s, ω) ds
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(How should you understand the definition when t < n−1?) Show
that Hn is predictable and that

∫ 1
0 |Hn(t, ω) − X (t, ω)|2 dt → 0 for

each ω.

(ii) Deduce that µ|Hn − X |2 → 0.

(iii) Deduce that X ∈ Hsimple, the closure in L2(B(0, 1] ⊗ F1, µ), if
µX2 < ∞.

[5] Suppose M ∈ M2
0[0, 1], with µ the Doléans measure defined by the submartin-

gale M2
t . Suppose ψ : H2(µ) → M2

0[0, 1] is a linear map, in the sense that
ψ(αH + βK )t = αψ(H)t + βψ(K )t almost surely, for each t ∈ [0, 1] and
constants α, β ∈ R. Suppose that

(a) ψ(((0, τ ]])t = Mt∧τ almost surely, for each stopping time τ .

(b) if 1 ≥ |Hn| → 0 pointwise then ψ(Hn)t → 0 in probability, for each
fixed t .

Show that these properties characterize the stochastic integral, in the following
senses.

(i) Show that ψ(H)t = H • Mt almost surely, for each t . Hint: Consider
the collection of all bounded, nonnegative, predictable processes H for
which ψ(H)t = H • Mt almost surely, for every t . Use a generating
class argument.

(ii) If, in addition, ψ(Hn)t → 0 in probability whenever µH 2
n → 0, show

that the conclusion from part (i) also holds for every H in H2(µ).
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Project 6

This week there are many small details that might occcupy your attention. I
would be satisfied if you concentrated on some of the more important points.
Things to explain in your notebook:

(i) Why is the theory for M2
0(R

+) almost the same as the theory
for M2

0[0, 1]?

(ii) Why do we get sigma-finite Doléans measures for the submartingales
corresponding to locM2

0(R
+) processes?

(iii) Why can H • M be built up pathwise from isometric stochastic integrals
when H ∈ locHBdd and M ∈ locM2

0(R
+)?

(iv) Why do we need to replace L2(P) convergence by convergence in
probability after localizing?

Square-integrable martingales indexed by R
+

• Define M2(R+) as the set of all square-integrable martingales, that is,
cadlag martingales {Mt : t ∈ R

+} for which supt PM2
t < ∞.

• Define F∞ = σ
( ∪t∈R+ Ft

)
. If M ∈ M2(R+) then there exists an M∞ ∈

L2(�, F∞, P) such that Mt → M∞ almost surely and P|Mt − M∞|2 → 0
as t → ∞. Moreover, Mt = P(M∞ | Ft ) almost surely.

• Note that {(Mt , Ft ) : 0 ≤ t ≤ ∞} is also a martingale. Suppose ψ is a
one-to-one map from [0, 1] onto [0, ∞], such as ψ(s) = s/(1 − s). Define
Gs := F(ψ(s)) and Ns = M(ψ(s)). Then {(Ns, Gs) : 0 ≤ s ≤ 1} belongs
to M2[0, 1]. All the theory for the isometric stochastic integrals with
respect to M2[0, 1] processes carries over to analogous theory for M2(R+).

• Note a subtle difference: For M2(R+) we have left continuity of sample
paths at ∞, by construction of M∞. For M2[0, 1] we did not require left
continuity at 1. Also we did not require that F1 = σ

( ∪t<1 Ft
)
. A better

analogy would allow F∞ to be larger than σ
( ∪t∈R+ Ft

)
and would allow

M to have a jump at ∞.

Localization

<1> Definition. Suppose X is a process and τ is a stopping time. Define the
stopped process X∧τ to be the process for which X∧τ (t, ω) = X (τ (ω) ∧ t, ω).

nonstandard notation

<2> Definition. Suppose W is a set of processes (indexed by R
+) that is stable

under stopping, W �→ W∧τ . Say that a process X is locally in W if there exists
a sequence of stopping times {τk} with τk ↑ ∞ and X∧τk ∈ W for each k. Call
{τk} a W-localizing sequence for X. Write locW for the set of all processesor reducing sequence
that are locally in W.

Remark. Notice that if {τk} is a W-localizing sequence for X then so
is {k ∧ τk}. Thus we can always require each τk in a localizing sequence to
be a bounded stopping time.

Predictable sigma-field

The predictable sigma-field P on (0, ∞)×� is again defined as the sigma-field
generated by all L-processes.

Remark. For (0, 1] × � the predictable sigma-field contains some
subsets of {1} × �. For (0, ∞) × �, subsets of {∞} × � are not in P.
Maybe it would be better to define P on (0, ∞] × �.
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Stochastic intervals

For stopping times σ and τ taking values in R
+ ∪ {∞} define

((σ, τ ]] := {(t, ω) ∈ R
+ × � : σ(ω) < t ≤ τ(ω)},

and so on. Note well that the stochastic interval is a subset of R
+ × �. Points

(t, ω) with t = ∞ are not included, even at ω for which τ(ω) = ∞. In
particular, for σ ≡ 0 and τ ≡ ∞ we get

((0, ∞]] = R
+ × �.

Don’t be misled by the “∞]]” into assuming that {∞} × � is included.

Remark. The convention that ∞ is excluded makes possible some neat
arguments, even though it spoils the analogy with stochastic subintervals
of (0, 1] × �. Although sorely tempted to buck tradition, I decided to
stick with established usage for fear of unwanted exceptions to established
theorems.

• Write T for the set of all [0, ∞]-valued stopping times. Is it true that P is
generated by the set of all stochastic intervals ((0, τ ]] for τ ∈ T?

• If M ∈ M2
0(R

+) explain why there exists a finite, countably-additive
measure on P (the Doléans measure for the submartingale M2) for which

µ(a, b] × F = PF(Mb − Ma)
2 for F ∈ Fa , and 0 ≤ a < b < ∞.

Could we also allow b = ∞? Is it still true that

µ((0, τ ]] = PM2
τ for each τ ∈ T?

How should the last equality be interpreted when {ω : τ(ω) = ∞} �= ∅?

Locally square-integrable martingales

• Consider first the case of a process M for which there exists a stopping
time σ such that N := M∧σ ∈ M2(R+). Let µ be the Doléans measure
on P for the square-integrable submartingale N 2.

(i) Is it true that N∞ = Mσ ? What would this equality be asserting about
those ω at which σ(ω) = ∞?

(ii) Show that µ((0, ∞]] = supt PM2
t∧σ = PN 2

∞.

(iii) Show that µ((t ∧ σ, ∞]] = P(N∞ − Mt∧σ )2 → 0 as t → ∞.

(iv) Conclude that µ is a finite measure that concentrates all its mass on the
stochastic interval ((0, σ ]].

• Now suppose M ∈ locM2
0(R

+), with localizing sequence {τk : k ∈ N}.
Write µk for the Doléans measure of the submartingale M2

∧τk
.

(i) Show that µk is a finite measure concentrating on ((0, τk]] and that the
restriction of µk+1 to ((0, τk]] equals µk .

(ii) Define µ on P by µH := supk∈N
µk H . Show that µ is a sigma-finite,

countably-additive measure for which

µ((0, τ ]] = supk PM2
τ∧τk

for all τ ∈ T.

(iii) Suppose {σk : k ∈ N} is another localizing sequence for M . Show that

µ((0, τ ]] = supk PM2
τ∧σk

for all τ ∈ T.

That is, show that µ does not depend on the choice of localizing
sequence for M .

Locally bounded predictable processes

Write HBdd for the set of all bounded, P-measurable processes.
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• Show that every L-process X with supω |X0(ω)| < ∞ belongs to locHBdd.
Hint: Consider τk(ω) := inf{t ∈ R

+ : |Xt (ω)| ≥ k}.
Remark. Does an L-process have time set [0, ∞) or (0, ∞)? Per-
haps the assertion would be better expressed as: the restriction of X
to (0, ∞) × � belongs to locHBdd. In that case, the assumption about X0

is superfluous. D&M have some delicate conventions and definitions for
handling contributions from {0} × �.

• (Much harder) Is the previous assertion still true if we replace L-processes
by P-measurable processes? What if we also require each sample path to
be cadlag?

Remark. A complete resolution of this question requires some facts
about predictable stopping times and predictable cross-sections. Compare
with Métivier (1982, Section 6).

Localization of the isometric stochastic integral

The new stochastic integral will be defined indirectly by a sequence of
isometries. The continuity properties of H • M will be expressed not via L2

bounds but by means of the concept of uniform convergence in probability

on compact intervals. For a sequence of processes {Zn}, write Zn
ucpc−→ Z to

nonstandard notation
mean that sup0≤s≤t |Zn(s, ω) − Z(s, ω)| → 0 in probability, for each t in R

+.

<3> Theorem. Suppose M ∈ locM2
0(R

+). There exists a linear map H �→ H • M
from locHBdd into locM2

0(R
+) with the following properties.

(i) ((0, τ ]] • Mt = Mt∧τ for all τ ∈ T.

(ii) (H • M)t∧τ = (
H((0, τ ]]

) • Mt = (
H • M∧τ

)
t , for all H ∈ locHBdd and

all τ ∈ T.

(iii) If M has continuous sample paths then so does H • M.

(iv) Suppose {H (n) : n ∈ N} ⊆ locHBdd and H (n)(t, ω) → 0 for each (t, ω).
Suppose that the sequence is locally uniformly bounded: there exist
stopping times with τk ↑ ∞ and finite constants Ck such that |H (n)

∧τk
| ≤ Ck

for each n and each k. Then H (n) • M
ucpc−→ 0.

(v) K • (H • M) = (K H) • M for K , H ∈ locHBdd.

Sketch of a proof. Suppose M has localizing sequence {τk : k ∈ N} and
H ∈ locHBdd has localizing sequence {σk : k ∈ N}.

• Why is there no loss of generality in assuming that σk = τk for every k?

• Write M (k) for M∧τk . Define X (k) to be the square integrable martingale

X (k) = H∧τk • M (k) = (
H((0, τk]]

) • M (k).

Why are the two integrals the same, up to some sort of almost sure
equivalence?

• Show that X (k)(t, ω) = X (k)(t ∧ τk(ω), ω) for all t ∈ R
+. That is, show

that the sample paths are constant for t ≥ τk(ω). Do we need some sort
of almost sure qualification here?

• Show that, on a set of ω with probability one,

X (k+1)(t ∧ τk(ω), ω) = X (k)(t ∧ τk(ω), ω) for all t ∈ R
+.

• Show that there is an R-process X for which, on a set of ω with probability
one,

X (t ∧ τk(ω), ω) = X (k)(t ∧ τk(ω), ω) for all t ∈ R
+, all k.
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• Show that X ∈ locM2
0(R

+), with localizing sequence {τk : k ∈ N}.
• Define H • M := X .

• In order to establish linearity of H �→ H • M , we need to show that
the definition does not depend on the particular choice of the localizing
sequence. (If we can use a single localizing sequence for two different H
processes then linearity for the approximating X (k) processes will transfer
to the X process.)

• For assertion (iv), we may also assume that {τk} localizes M to M2
0(R

+).
Write µk for the Doléans measure of the submartingale (M (k))2. Then, for
each fixed k, we have

P sup
s≤t

(
H (n) • M

)2

s∧τk
= P sup

s≤t

(
H (n)((0, τk]] • M (k)

)2

s
by construction

≤ 4P
(
H (n)((0, τk]] • M (k)

)2

t by Doob’s inequality

= 4µk
(
(H (n))2((0, τk ∧ t]]

)
→ 0 as n → ∞, by Dominated Convergenece.

When τk > t , which happens with probability tending to one, the processes
H (n)• Ms∧τk and H (n)• Ms coincide for all s ≤ t . The uniform convergence
in probability follows.�

Characterization of the stochastic integral

<4> Theorem. Suppose M ∈ M2
0(R

+). Suppose also that ψ : locHBdd → M2
0(R

+)

is a linear map (in the sense of almost sure equivalence) for which

(i) ((0, τ ]] • Mt = Mτ∧t almost surely, for each t ∈ R
+ and τ ∈ Tbetter just to state equality for

bounded τ ? (ii) If {H (n) : n ∈ N} ⊆ locHBdd is locally uniformly bounded and
H (n)(t, ω) → 0 for each (t, ω) then ψ(H (n))t → 0 in probability for
each t.

Then ψ(H)t = H • Mt almost surely for each t ∈ R
+ and each H ∈ locHBdd.

Remark. The assertion of the Theorem can also be written: there
exists a set �0 with �c

0 ∈ N such that

ψ(H)(t, ω) = H • M(t, ω) for every t if ω ∈ �0

Cadlag sample paths allow us to deduce equality of whole paths from
equality ot a countable dense set of times.

References

Métivier, M. (1982), Semimartingales: A Course on Stochastic Processes,
De Gruyter, Berlin.
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Project 7

This week you should concentrate on understanding Theorem <4>, which
states the basic properties of integrals with respect to semimartingales. The
facts about finite variation are mostly for background information; you could
safely regard an FV-process to be defined as a difference of two increasing
R-processes.

The facts about quadratic variation process will be used in the next Project
to establsh the Itô formula. You might prefer to postpone your careful study
of [X, Y ] until that Project.

I do not expect you to work every Problem.

1. Cadlag functions of bounded variation

Suppose f is a real function defined on R
+. For each finite grid

G : a = t0 < t1 < . . . < tN = b

on [a, b] define the variation of f over the grid to be

Vf (G, [a, b]) :=
∑N

i=1
| f (ti ) − f (ti−1)|

Say that f is of bounded variation on the interval [a, b] if there exists a finite
constant Vf [a, b] for which

sup
G

Vf (G, [a, b]) ≤ Vf [a, b]

where the supremum is taken over the set of all finite grids G on [a, b]. Say
that f is of finite variation if it is of bounded variation on each bounded
interal [0, b].

Problems [1] and [2] establish the following facts about finite variation.
Every difference f = f1 − f2 of two increasing functions is of finite variation.
Conversely, if f is of finite variation then the functions t �→ Vf [0, t] and
t �→ Vf [0, t] − f (t) are both increasing and

f (t) = Vf [0, t] − (
Vf [0, t] − f (t)

)
,

a difference of two increasing functions. Moreover, if f is cadlag then Vf [0, t]
is also cadlag.

2. Processes of finite variation as random (signed) measures

Let {Lt : t ∈ R
+} be an R-process with increasing sample paths, adapted to

a standard filtration {Ft : t ∈ R
+}. For each ω, the function L(·, ω) defines a

Notation: Lt (ω) = L(t, ω).
measure on B(R+),

λω[0, t] = Lt (ω) for t ∈ R
+.

The family � = {λω : ω ∈ �} may be thought of as a random measure, that
is, a map from � into the space of (sigma-finite) measures on B(R+).

Notice that λω{0} = L0(ω), an atom at the origin, which can be awkward.
It will be convenient if L0 ≡ 0, ensuring that λω concentrates on (0, ∞).
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<1> Definition. Write FV, or FV(R+) if there is any ambiguity about the time
set, for the set of all R-processes with sample paths that are of finite variation
on R

+. Write FV0 for the subset of FV-processes, A, with A0 ≡ 0.

• Show that FV could also be defined as the set of processes expressible as
a difference A(·, ω) = L ′(·, ω) − L ′′(·, ω) of two increasing R-processes.

The stochastic integral with respect to A will be defined as a difference of
stochastic integrals with respect to L ′ and L ′′. Questions of uniqueness—lack
of dependence on the choice of the two increasing processes—will be subsumed
in the the uniqueness assertion for semimartingales.

The case where L is an increasing R-process with L0 ≡ 0 will bring
out the main ideas. I will leave to you the task of extending the results to a
difference of two such processes. Define the stochastic integral with respect
to L pathwise,

H • Lt := λs
ω

({0 < s ≤ t}H(s, ω)
)
.

This integral is well defined if H ∈ locHBdd.
Indeed, suppose H ∈ locHBdd. There exist stopping times τk ↑ ∞

and finite constants Ck for which |H∧τk | ≤ Ck . For each fixed ω, the function
s �→ H(s, ω) is measurable (by Fubini, because predictable implies progressively
measurable). Also sups≤t |H(s, ω)| ≤ Ck when t ≤ τk(ω). The function H(·, ω)

is integrable with respect to λω on each bounded interval. Moreover, we have
a simple bound for the contributions from the positive and negative parts of H
to the stochastic integral:

0 ≤ H± • Lt∧τk = λs
ω

({0 ≤ s ≤ t ∧ τk}H±(s, ω)
) ≤ Ck L(t, ω).

That is, H± • Lt ≤ Ck L(t, ω) when t ≤ τk(ω).

• Show that the sample paths of H± • L are cadlag and adapted. Deduce
that H • L ∈ FV0.

You should now be able to prove the following result by using standard
facts about measures.

<2> Theorem. Suppose A ∈ FV0. There is a map H �→ H • A from locHBdd

to FV0 that is linear (in the almost sure sense?) for which:

(i) ((0, τ ]] • At = At∧τ for each τ ∈ T and t ∈ R
+.

(ii) (H • A)t∧τ = (H((0, τ ]]) • At = H • (A∧τ )t for each τ ∈ T and t ∈ R
+.

(iii) If a sequence {Hn} in locHBdd is locally uniformly bounded and

converges pointwise (in t and ω) to 0 then Hn • A
ucpc−→ 0.

As you can see, there is really not much subtlety beyond the usual measure
theory in the construction of stochastic integrals with respect to FV-processes.

Remark. The integral H • Lt can be defined even for processes that
are not predictable or locally bounded. In fact, as there are no martingales
involved in the construction, predictability is irrelevant. However, functions
in locHBdd will have stochastic integrals defined for both FV0-processes
and locM2

0(R
+)-processes.

3. Stochastic integrals with respect to semimartingales

By combining the results from the previous Section with results from Project 6,
we arrive at a most satisfactory definition of the stochastic integral for a very
broad class of processes.
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<3> Definition. An R-process X is called a semimartingale, for a given standard
filtration {Ft : t ∈ R

+}, if it can be decomposed as Xt = X0 + Mt + At with
M ∈ locM2

0(R
+) and A ∈ FV0. Write SMG for the class of all semimartingales

SMG is nonstandard notation
and SMG0 for those semimartinagles with X0 ≡ 0.

Notice that SMG0 is stable under stopping. Moreover, every local semi-
martingale is a semimartingale, a fact that is surprisingly difficult (Dellacherie
& Meyer 1982, §VII.26) to establish directly.

The stochastic integral H • X is defined as the sum of the stochastic
integrals with respect to the components M and A. The value X0 plays no role
in this definition, so we may as well assume X ∈ SMG0. The resulting integral
inherits the properties shared by integrals with respect to FV0 and integrals
with respect to locM2

0(R
+).

<4> Theorem. For each X in SMG0, there is a linear map H �→ H • X from
linear in thealmost sure sense

locHBdd into SMG0 such that:

(i) ((0, τ ]] • Xt = Xt∧τ for each τ ∈ T and t ∈ R
+.

(ii) H • Xt∧τ = (H((0, τ ]]) • Xt = H • (X∧τ )t for each τ ∈ T and t ∈ R
+.

(iii) If a sequence {Hn} in locHBdd is locally uniformly bounded and

converges pointwise (in t and ω) to 0 then Hn • X
ucpc−→ 0.

Conversely, let ψ be another linear map from locHBdd into the set of R-processes
having at least the weaker properties:

(iv) ψ(((0, τ ]])t = Xt∧τ almost surely, for each τ ∈ T and t ∈ R
+.

(vi) If a sequence {Hn} in locHBdd is locally uniformly bounded and
converges pointwise (in t and ω) to 0 then ψ(Hn)t → 0 in probability,
for each fixed t.

Then ψ(H)t = H • Xt almost surely for every t.

Remarks. The converse shows, in particular, that the stochastic integral
H • X does not depend on the choice of the processes M and A in the
semimartingale decomposition of X .

In general, I say that two processes X and Y are equal for almost
all paths if P{∃t : Xt (ω) �= Yt (ω)} = 0. For processes with cadlag sample
paths, this property is equivalent to P{ω : Xt (ω) �= Yt (ω)} = 0 for each t .

Outline of the proof of the converse. Define

H := {H ∈ HBdd : ψ(H)t = H • Xt almost surely, for each t ∈ R
+}

• Show that ((0, τ ]] ∈ H, for each τ ∈ T.

• Show that H is a λ-space. Hint: If Hn ∈ H and Hn ↑ H , with H bounded,
apply (iii) and (vi) to the uniformly bounded sequence H − Hn .

• Deduce that H equals HBdd.

• Extend the conclusion to locHBdd. Hint: If H ∈ locHBdd, with |H∧τk | ≤ Ck

for stopping times τk ↑ ∞, show that the processes Hn := H((0, τn]] are
locally uniformly bounded and converge pointwise to H .�
I have found the properties of the stochastic integral asserted by the

Theorem to be adequate for many arguments. I consider it a mark of defeat
if I have to argue separately for the locM2

0(R
+) and FV0 cases to establish

a general result about semimartingales. You might try Problem [3] or [4] for
practice.

The class of semimartingales is quite large. It is stable under sums (not
surprising) and products (very surprising—see the next Section) and under exotic
things like change of measure (to be discussed in a later Project). Even more
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surprisingly, semimartingales are the natural class of integrators for stochastic
integrals; they are the unexpected final product of a long sequence of ad hoc
improvements. You might consult Protter (1990, pages 44; 87–88; 114), whoCharacterization due to Del-

lacherie? Meyer? Bichteler?
Métivier? Check history. expounded the whole theory by starting from plausible linearity and continuity

assumptions then working towards the conclusion that only semimartingales
can have the desired properties.

4. Quadratic variation

In the proof of Lévy’s martingale characterization of Brownian Motion, you
saw how a sum of squares of increments of Brownian motion, taken over a
partition via stopping times of an interval [0, t], converges in probability to t .
In fact, if one allows random limits, the behaviour is a general property of
semimartingales. The limit is called the quadratic variation process of the
semimartingale.

It is easiest to establish existence of the quadratic variation by means of
an indirect stochastic integral argument. Suppose X is an R-processes with
X0 ≡ 0. Define the left-limit process X�

t := X (t−, ω) := lims↑↑t X (s, ω). (DoAwkward and nonstandard nota-
tion, X�, but I want X− for
the negative part of X . we need to define X�

0 ?)

• Show that X� ∈ locHBdd.

<5> Definition. The quadratic variation process of an X in SMG0 is defined
as [X, X ]t := X2

t − 2(X� • X)t for t ∈ R
+. For general Z ∈ SMG,

define [Z , Z ] := [X, X ] where Xt := Zt − Z0.

The logic behind the name quadratic variation and one of the main
reasons for why it is a useful process both appear in the next Theorem. The
first assertion of the Theorem could even be used to define quadratic variation,
but then we would have to work harder to prove existence of the limit (as for
the quadratic variation of Brownian motion).

<6> Definition. A random grid G is defined by a finite sequence of finite
stopping times 0 ≤ τ0 ≤ τ1 ≤ . . . ≤ τk . The mesh of the grid is defined as
mesh(G) := maxi |τi+1 − τi |; the max of the grid is defined as max(G) := τk .

To avoid double subscripting, let me write
∑

G
to mean a sum taken over

the stopping times that make up G.

<7> Theorem. Suppose X ∈ SMG0 and {Gn} is a sequence of random grids with
mesh(Gn)

a.s.−→ 0 and max(Gn)
a.s.−→ ∞. Then:

(i)
∑

Gn

(
Xt∧τi+1 − Xt∧τi

)2 ucpc−→ [X, X ]t .

(ii) The process [X, X ] has increasing sample paths;

(iii) If τ is a stopping time then [X∧τ , X∧τ ] = [X, X ]∧τ .Mention jumps as well?

Outline of proof. Without loss of generality suppose X0 ≡ 0. Consider first
a fixed t and a fixed grid G: 0 = τ0 ≤ τ1 ≤ . . . ≤ τk .

• Define a left-continuous process HG = ∑
G

Xτi ((τi , τi+1]]. Show that
H ∈ locHBdd and

HG • Xt =
∑

G
Xτi

(
Xt∧τi+1 − Xt∧τi

)
Hint: Look at Problem [3].

• Except on a negligible set of paths (which I will ignore for the rest of
the proof), show that HG converges pointwise to the left-limit process
X� as mesh(G) → 0 and max(G) → ∞. Show also that {HG} is locally
uniformly bounded. Hint: Consider stopping times σk := inf{s : |Xs | ≥ k}.
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• Abuse notation by writing �i X for Xt∧τi+1 − Xt∧τi . Invoke the continuity
property of the stochastic integral, along a sequence of grids with
mesh(Gn) → 0 and max(Gn) → ∞, to deduce that

∑
Gn

Xτi (�i X) = HGn • Xt
ucpc−→ X� • Xt

• Show that

2HGn • Xt +
∑

Gn
(�i X)2 = X2

t∧τk

ucpc−→ X2
t .

• Complete the proof of (i).

• Establish (ii) by taking the limit along a sequence of grids (deterministic
grids would suffice) for which both s and t are always grid points. Note:
The sums of squared increments that converge to [X, X ]t will always
contain extra terms in addition to those for sums converging to [X, X ]s .

• For assertion (iii), merely note that τ ∧ t is one of the points in the
interval [0, t] over which the convergence in probability is uniform. Thus

∑
Gn

(
Xt∧τi+1∧τ − Xt∧τi ∧τ

)2 P−→ [X, X ]t∧τ .

Interpret the left-hand side as an approximating sum of squares
for [X∧τ , X∧τ ]t .�

<8> Corollary. The square of a semimartingale X is a semimartingale.

Proof. Let Zt := Xt − X0 = Mt + At . Rearrange the definition of the
square bracket process, Z2

t = 2(Z� • Z)t + [Z , Z ]t , to express Z2
t as a sum

of a semimartingale and an increasing process. The process X2
t expands to

Z2
t + 2X0 Mt + (2X0 At + X2

0).

• Show that the middle term is reduced to M2
0(R

+) by the stopping times
τk ∧ σk , where {τk} reduces M and σk := 0{|X0| > k} + ∞{|X0| ≤ k}.�

<9> Corollary. The product of two semimartingales is a semimartingale.

• Use the polarization identity, 4XY = (X + Y )2 − (X − Y )2, and the fact
that sums of semimartingales are semimartingales, to reduce the assertion
to the previous Corollary.

<10> Definition. The square bracket process [X, Y ] of two semimartingales X
and Y (also known as the quadratic covariation process of X and Y ) is defined,
by polarization, as

4[X, Y ] := [X + Y, X + Y ] − [X − Y, X − Y ].

If X0 ≡ 0 and Y0 ≡ 0 then 4[X, Y ]t equals

(Xt + Yt )
2 − (Xt − Yt )

2 − 2(X + Y )� • (X + Y )t + 2(X − Y )� • (X − Y )t

= 4Xt Yt − 4X� • Yt − 4Y � • Xt .<11>

Remark. Notice that [X, Y ] is equal to the quadratic variation process
[X, X ] when X ≡ Y . Notice also that [X, Y ] ∈ FV0, being a difference of
two increasing processes started at 0.

The square bracket process inherits many properties from the quadratic
variation. For example, you might prove that a polarization argument derives
the following result from Theorem <7>.
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<12> Theorem. Let X and Y be semimartingales, and {Gn} be a sequence of
random grids with mesh(Gn)

a.s.−→ 0 and max(Gn)
a.s.−→ ∞. Then

<13>
∑

Gn

(
Xt∧τi+1 − Xt∧τi

) (
Yt∧τi+1 − Yt∧τi

) ucp−→ [X, Y ]t ,

and [X∧τ , Y∧τ ] = [X∧τ , Y ] = [X, Y∧τ ] = [X, Y ]∧τ for each stopping time τ ,

Problems

[1] Suppose f = f1 − f2, where f1 and f2 are increasing functions on R
+. Show

that

Vf [0, b] ≤ Vf1 [0, b] + Vf2 [0, b] = f1(b) − f1(0) + f2(b) − f2(0).

Deduce that f is of finite variation.

[2] Suppose f is a function on R
+ with finite variation, in the sense of Section 1.

Temorarily drop the subscript f on the variation functions.

(i) Suppose G is a grid on [a, b] and that s is point of (a, b) that is not
already a grid point. Show that V (G, [a, b]) is increased if we add s
as a new grid point.

(ii) Show that V [0, a] + V [a, b] = V [0, b] for all a < b. Deduce that
t �→ V [0, t] is an increasing function

(iii) Suppose 0 < s < t . Show that

V [0, t]− f (t) = V [0, s]− f (s)+ f (s)− f (t)+V [s, t] ≥ V [0, s]− f (s).

Hint: Consider a two-point grid on [s, t].

(iv) Now suppose f is right-continuous at some a ∈ R
+. For a fixed b > a

and an ε > 0 choose a grid

G : a = t0 < t1 < . . . < tN = b

for which V (G, [a, b]) > V [a, b] − ε. With no loss of generality
suppose | f (t1) − f (a)| < ε. Show that

ε + V [t1, b] ≥ V (G, [a, b]) > V [a, t1] + V [t1, b] − ε

Deduce that t �→ V [0, t] is continuous from the right at a.

(v) If f is right-continuous, show that Vf [a, b] can be determined by
taking a supremum over equispaced grids on [a, b].

(vi) If X is an R-processes with sample paths of finite variation, show
that it can be expressed as the difference of two R-processes with
increasing sample paths. [The issue is whether VX (·,ω)[0, t] is adapted.]

[3] Suppose σ and τ are stopping times and X ∈ SMG. With Y an
Fσ -measurable random variable, define H = Y (ω)((σ, τ ]]. Show that
H • Xt = Y (ω) (Xt∧τ − Xt∧σ ) by the following steps.

(i) Start with the case where Y = F ∈ Fσ . Define new stopping
times σ ′ = σ F + ∞Fc and τ ′ := τ F + ∞Fc. Show that

(F((σ, τ ]]) • Xt = Xt∧τ ′ − Xt∧σ ′ = F (Xt∧τ − Xt∧σ ) .

(ii) Extend the equality to all bounded, Fσ -measurable Y by a generating
class argument.

(iii) For unbounded Y , define Hn := Y {|Y | ≤ n}((σ, τ ]]. Show that
the sequence {Hn} is locally uniformly bounded and it converges
pointwise to H .

(iv) Complete the argument.
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[4] If H and K are in locHBdd, and X is a semimartingale, show that K •(H • X) =
(K H) • X for almost all paths. Hint: For fixed H , define ψ(K ) := (H K ) • M .
What do you get when K = ((0, τ ]]?

[5] Suppose H, K ∈ locHBdd and X, Y ∈ SMG0. Show that [H • X, K • Y ] =
(H K ) • [X, Y ] by the following steps.

(i) Consider first the case where K ≡ 1. Show that H �→ [H • X, Y ]
and H �→ H • [X, Y ] are both linear maps from locHBdd into SMG,
which agree when H = ((0, τ ]].

(ii) Use a λ-space argument followed by a localization to extend the result
to locHBdd.

(iii) Invoke part (ii)—or trivial rearrangements thereof—twice to transform
to an iterated stochastic integral.

[H • X, K • Y ] = H • [X, K • Y ] = H • (
K • [X, Y ]

)
.

(iv) Invoke Problem [4] to complete the argument.�
[6] Suppose M ∈ locM2

0(R
+).

(i) Show that the process Xt := M2
t − [M, M]t belongs to locM2

0(R
+).

(ii) Suppose M has continuous sample paths and [M, M]t ≡ t . Show that
M is a standard Brownian motion.
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Project 8

An R-process X is called a semimartingale, for a given standard filtra-
tion {Ft : t ∈ R

+}, if it can be decomposed as Xt = X0 + Mt + At

with M ∈ locM2
0(R

+) and A ∈ FV0. Write SMG for the class of all
semimartingales and SMG0 for those semimartinagles with X0 ≡ 0.

SMG is nonstandard notation

1. Corrections

In my enthusiasm for a single definition of localization, which could be applied
to both M2

0(R
+) and HBdd, I created an awkward problem for processes H

defined only on (0, ∞)×�. If H0(ω) is not defined, what does H(t ∧ τ(ω), ω)

mean at those ω for which τ(ω) = 0? It would be much better to follow
traditional and definelocHBdd to consist of those predictable processes H for
which there exist stopping times τk ↑ ∞ and finite constants Ck such that

|H((0, τk]]| ≤ Ck for each k.

Notice that there are no longer problems at ω for which τk(ω) = 0, because
{t ∈ R

+ : 0 < t ≤ τk(ω)} = ∅ for such ω.
Similarly, I should have defined local uniform boundedness of a se-

quence {Hn} in locHBdd to mean existence of stopping times τk ↑ ∞ and finite
constants Ck such that

|Hn((0, τk]]| ≤ Ck for each n and k.

I was also too vague about the definition of L-processes on R
+ × �.

Should such a process X be defined at t = 0? Should we require existence
of a finite right-hand limit at t = 0? Should we require existence of a limit
as t → ∞? To make sense of my assertion that L-processes belong to locHBdd,
I should regard X as an adapted process defined on (0, ∞) × � with sample
paths that are left-continuous on (0, ∞), with no assumptions about the behavior
as t → ∞. I also need existence of a finite right limit at each t in [0, ∞).
With these assumptions, the stopping times

τk := inf{t ∈ R
+ : |Xt | > k}

have the property that |X ((0, τk]]| ≤ k. Also we have τk ↑ ∞, because X (·, ω)

is bounded on each bounded interval (0, M]: You need a compactness argument
to get a covering of [0, M] by finitely many intervals (ti − δi , ti + δi ) within
which

|X (t, ω) − X (ti , ω)| ≤ ε for ti − δi < t ≤ ti
|X (t, ω) − X (ti+, ω)| ≤ ε for ti < t ≤ ti + δi .

I have also decided that it would be better to slightly change parts (iii)
and (vi) of the basic theorem about semimartinagles, to simplify one step in the
typical generating class argument.

Statistics 603a: 28 October 2004 c©David Pollard



P8-2

<1> Theorem. For each X in SMG0, there is a linear map H 
→ H • X from
linear in almost sure sense

locHBdd into SMG0 such that:

(i) ((0, τ ]] • Xt = Xt∧τ for each τ ∈ T and t ∈ R
+.

(ii) H • Xt∧τ = (H((0, τ ]]) • Xt = H • (X∧τ )t for each τ ∈ T and t ∈ R
+.

(iii) If a sequence {H (n) : n ∈ N} ⊆ locHBdd is locally uniformly bounded
and H (n)(t, ω) → H(t, ω) for each (t, ω), then H ∈ locHBdd and

H (n) • X
ucpc−→ H • X.

Conversely, let ψ be another linear map from locHBdd into SMG0 having at
least the weaker properties:

(iv) ψ(((0, τ ]])t = Xt∧τ almost surely, for each τ ∈ T and t ∈ R
+.

(vi) If a sequence {H (n) : n ∈ N} ⊆ locHBdd is locally uniformly bounded
and H (n)(t, ω) → H(t, ω) for each (t, ω), then ψ(H (n))t → ψ(H)t in
probability, for each fixed t.

Then ψ(H)t = H • Xt almost surely for every t.

Remark. I did attempt to weaken the pointwise convergence assump-
tions in (iii) and (vi) to: H (n)

t → Ht almost surely for each t . Unfortunately,
this change complicates (invalidates?) the argument that H ∈ locHBdd. I do
not know whether it is worthwhile attempting such a modification.

2. Quadratic variation

From Project 7:

<2> Definition. The quadratic variation process of an X in SMG0 is defined
as [X, X ]t := X2

t − 2(X� • X)t for t ∈ R
+. For general Z ∈ SMG,

define Z , Z ] := [X, X ] where Xt := Zt − Z0.

<3> Definition. A random grid G is defined by a finite sequence of finite
stopping times 0 ≤ τ0 ≤ τ1 ≤ . . . ≤ τk . The mesh of the grid is defined as
mesh(G) := maxi |τi+1 − τi |; the max of the grid is defined as max(G) := τk .

<4> Theorem. Suppose X ∈ SMG and {Gn} is a sequence of random grids with
mesh(Gn)

a.s.−→ 0 and max(Gn)
a.s.−→ ∞. Then:

(i)
∑

Gn

(
Xt∧τi+1 − Xt∧τi

)2 ucpc−→ [X, X ]t .

(ii) The process [X, X ] has increasing sample paths;

(iii) If τ is a stopping time then [X∧τ , X∧τ ] = [X, X ]∧τ .Mention jumps as well?

Remark. It would perhaps be cleaner to assume mesh(Gn) → 0
and max(Gn) → ∞ for every ω, to fit with the pointwise convergence
assumptions in Theorem <1>. This effect could also be achieved by
changing each τk on a negligible set. For a standard filtration, the change
could be made without disturbing any measurability assumptions.

The square bracket process [X, Y ] of two semimartingales X and Y
(also known as the quadratic covariation process of X and Y ) is defined, by
polarization, as

4[X, Y ] := [X + Y, X + Y ] − [X − Y, X − Y ].

If X0 ≡ 0 and Y0 ≡ 0 then 4[X, Y ]t equals

(Xt + Yt )
2 − (Xt − Yt )

2 − 2(X + Y )� • (X + Y )t + 2(X − Y )� • (X − Y )t

= 4Xt Yt − 4X� • Yt − 4Y � • Xt .<5>
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Notice that [X, Y ] is equal to the quadratic variation process [X, X ] when
X ≡ Y . Notice also that [X, Y ] ∈ FV0, being a difference of two increasing
processes started at 0.

The square bracket process inherits many properties from the quadratic
variation. For example, a polarization argument derives the following result
from Theorem <4>.

<6> Theorem. Suppose X, Y ∈ SMG and {Gn} is a sequence of random grids
with mesh(Gn)

a.s.−→ 0 and max(Gn)
a.s.−→ ∞. Then

<7>
∑

Gn

(
Xt∧τi+1 − Xt∧τi

) (
Yt∧τi+1 − Yt∧τi

) ucpc−→ [X, Y ]t ,

and [X∧τ , Y∧τ ] = [X∧τ , Y ] = [X, Y∧τ ] = [X, Y ]∧τ for each stopping time τ ,

Outline of last part of the proof. Temporarily write Wn(t, X, Y ) for the sum
on the left-hand side of <7>.I am slightly suspicious of the

following argument. • Show that there is no loss of generality in assuming that τ is one of the
grid points. Hint: Consider a new grid

0 = τ0 ∧ τ ≤ τ1 ∧ τ ≤ . . . ≤ τk ∧ τ ≤ τ ≤ τ ∨ τ1 ≤ . . . ≤ τ ∨ τk

• For the grid Gn, suppose τ = τ�. Show that

Wn(t ∧ τ, X, Y ) =
∑�−1

i=0

(
Xt∧τi+1 − Xt∧τi

) (
Yt∧τi+1 − Yt∧τi

)
= Wn(t, X∧τ , Y ) = Wn(t, X, Y∧τ ) = Wn(t, X∧τ , Y∧τ )

• Invoke uniform convergence over [0, t] in probability.�

3. Itô formulae

Suppose X and Y are semimartingales with continuous paths, such that the
two-dimensional random process {(Xt , Yt ) : t ∈ R

+} takes values in an open
subset G of R

2. Suppose Y has paths of bounded variation.
Treat processes with jumps,
or just cite Dellacherie &
Meyer (1982, §VIII.24–28)
or Protter (1990, page 71)?

Let f be a continuous, real-valued function on G with two continuous
partial derivatives fx and fxx with respect to its first argument and a continuous
partial derivative fy with respect to its second argument.

Define new processes by

Fx (s, ω) := fx
(
X (s, ω), Y (s, ω)

)
,

Fxx (s, ω) := fxx
(
X (s, ω), Y (s, ω)

)
Fy(s, ω) := fy

(
X (s, ω), Y (s, ω)

)
.

Each of them is adapted and has continuous paths; each process is predictable.

<8> Itô Formula. The process f (Xs, Ys) is a semimartingale with

f (Xt , Yt ) − f (X0, Y0) = (Fx • X)t + 1/2
(
Fxx • [X, X ]

)
t + (Fy • Y )t

for each t in R
+.

Remark. The Itô formula is often written in the suggestive form

d f (Xt , Yt ) = fx (Xt , Yt ) d Xt + 1/2 fxx (Xt , Yt ) d[X, X ]t + fy(Xt , Yt ) dYt ,

which hints at its origins as a sum of small increments.

Proof. Let K be a compact subset of G. Define

σ := inf{t ∈ R
+ : (Xt , Yt ) /∈ K }.

Replace X and Y by the corresponding stopped processes X∧σ and Y∧σ .I was tired when sketching the
proof. Beware of stupidities.
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• Show that the formula is trivially true for the stopped processes if
(X0, Y0) /∈ K .

• For each ε > 0 show that there exists a δ > 0 for which: if (x, y) ∈ K
and max(|	x |, |	y|) ≤ δ then

| f�(x + 	x, y + 	y) − f�(x, y)| ≤ ε where � = x or xx or y.

• For max(|	x |, |	y|) ≤ δ and (x, y) ∈ K , show that

f (x+	x, y + 	y) − f (x, y)

= (	x) fx (x, y) + 1/2(	x)2 fxx (x, y) + (	y) fy(x, y) + rem

where rem ≤ ε
(

1/2(	x)2 + |	y|)

• Fix t . Let δn correspond to some sequence εn ↓ 0. Define a grid Gn via
stopping times

τi+1 := inf{s ≥ τi : |(X, Y )s − (X, Y )τi | ≥ δn} ∧ t ∧ σ.

Show that there exist integers k(n) such that P{τk(n) = t ∧ σ } → 1 as
n → ∞.

K( Xσ,Yσ )

( X0,Y0)

G

• Write 	i X for Xτi+1 − Xτi , and similarly for Y . Show that f (Xτk(n)
, Yτk(n)

)−
f (X0, Y0) differs from

<9>
∑k(n)−1

i=0
(	i X)Fx (τi ) + 1/2(	i X)2 Fxx (τi ) + (	i Y )Fy(τi )

by a quantity that tends in probability to zero.

• Show that the contribution from the first summand in <9> equals (Hn •X)t ,
where

Hn(s, ω) =
∑k(n)−1

i=0
Fx (τi , ω)((τi .τi+1]],

which is uniformly bounded and converges pointwise to Fx .

• Deduce that ∑k(n)−1

i=0
(	i X)Fx (τi )

ucpc−→ Fx • Xt∧σ

• Argue similarly for the contribution from the third summand in <9> .

• Define Zt := Xt − X0. Abbreviate Zτi+1 − Zτi to 	i Z . Show that
cf. Protter (1990, page 69) ∑k(n)−1

i=0
(	i X)2 Fxx (τi ) =

∑k(n)−1

i=0
Fxx (τi )(Z2

τi+1
− Z2

τi
)

− 2
∑k(n)−1

i=0

(
Fxx (τi )Zτi

)
(	i Z).

• Show that the right-hand side converges in probability to

Fxx • Z2
t∧σ − 2(Fxx Z) • Zt∧σ = Fxx • (Z2 − 2Z • Z)t∧σ

= Fxx • [Z , Z ]t∧σ = Fxx • [X, X ]t∧σ .
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• Deduce that

f (Xt∧σ , Yt∧σ ) − f (X0, Y0)

= (Fx • X∧σ )t + 1/2(Fxx • [X∧σ , X∧σ ])t + (Fy • Y∧σ )t

= (Fx • X)t∧σ + 1/2(Fxx • [X, X ])t∧σ + (Fy • Y )t∧σ .

• Complete the proof by letting K expand up to G, so that σ ↑ ∞.�
Remarks.

(i) There would be nothing to gain by requiring existence of second-
order partial derivatives fxy and fyy , because the corresponding
bracket process [X, Y ] and [Y, Y ] are both zero—the process Y has
paths of finite variation.

(ii) The process 1/2Fxx •[X, X ]+Fy •Y is in FV. If X ∈ locM2
0(R

+) then
Fx • X ∈ locM2

0(R
+). The Itô formula then gives the semimartingale

decomposition for the process f (Xt , Yt ).

The story in Remark (i) changes if Y does not have paths of bounded
variation. The error term εn

∑
i |	i Y | would no longer disappear in the limit.

We would instead need continuous second order partial derivatives fxy and fyy

to handle the contributions from the 	i Y increments to the Taylor expansion
(to quadratic terms) in both variables. Error terms like

εn

∑
i
(	i Y )2 + (	i X)(	i Y )

would again converge in probability to zero. The cross-product term∑
i
Fxy(τi )(	i X)(	i Y )

=
∑

i
Fxy(τi )(Xτi+1 Yτi+1 − Xτi Yτi ) −

∑
i

Fxy(τi )
(
Xτi (	i Y ) + Yτi (	i X)

)
would converge in probability to

Fxy • (XY − X0Y0 − X • Y − Y • X)t = Fxy • [X, Y ]t .

A similar argument works for functions of more than two semimartingales.

<10> Multiprocess Itô Formula. Suppose X (1), . . . X (d) and Y (1), . . . Y (d ′) are
semimartingales with continuous paths, such that the d + d ′-dimensional
random process (X, Y) takes values in an open subset G of R

d+d ′
. Suppose

each Y (γ ) has paths of finite variation.
If f is a continuous, real-valued function on G with continuous partial

derivatives fx(α), fx(α),x(β), fy(γ ) for α, β = 1, . . . , d and γ = 1, . . . , d ′, then
f (X, Y) is a semimartingale with

f (Xt , Yt ) − f (X0, Y0) =
∑

α
Fx(α) • X (α)

t

+
∑

γ
Fy(γ ) • Y (γ )

t + 1/2

∑
α,β

Fx(α),x(β) • [X (α), X (β)]t

for each t in R
+.

<11> Example. Let {Xt : t ∈ R
+} be a locally square integrable martingale

with continuous sample paths. Its quadratic variation process Y := [X, X ] is
continuous (invoke the ucpc of the sum of squared increments) and of bounded
variation. To be on the safe side, let me also assume that X0 ≡ 0, even though
it is not necessary.

Remove assumption on X0.
The semimartingale Zt := exp(Xt − 1/2Yt ) is a candidate for an application

of the Itô formula, with f (x, y) = exp(x − 1/2y). We have Fx = Fxx = −2Fy =
Z , and

Zt − Z0 = Z • X + 1/2Z • [X, X ]t − 1/2Z • Yt = Z • Xt .
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The Z process is also a locally square integrable martingale with continuous
paths.�

4. Problems

[1] Show that

[X1 + X2, Y1 + Y2] = [X1, Y1] + [X1, Y2] + [X2, Y1] + [X2, Y2],

for semimartingales X1, X2, Y1, and Y2.

[2] Suppose X ∈ SMG and Y ∈ FV. Suppose that X has continuous sample paths.
Show that [X, Y ]t = 0 almost surely, for each t . Hint: Consider a random grid
defined by

τi+1 := (τi + n−1) ∧ min{t ≥ τi : |X (t) − X (τi )| ≥ n−1}.
[3] For H1, H2, K1, K2 in locH∞, and X1, X2, Y1, Y2 in SMG, show that

[H1 • X1 + K1 • Y1, H2 • X2 + K2 • Y2]

= (H1 H2) • [X1, X2] + (H1 K2) • [X1, Y2]

+ (K1 H2) • [Y1, X2] + (K1 K2) • [Y1, Y2].

[4] If X ∈ SMG has continuous paths, show that [X, X ] also has conntinuous paths.

References
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Project 9

Itô Formula: Two-dimensional semimartingale (X, Y ) with continuous paths
and Y ∈ FV, which ensures [Y, Y ] = 0. Continuous, real-valued function f
with enough continuous partial derivatives to define predictable processes

Fx (s, ω) := fx
(
X (s, ω), Y (s, ω)

)
,

Fxx (s, ω) := fxx
(
X (s, ω), Y (s, ω)

)
Fy(s, ω) := fy

(
X (s, ω), Y (s, ω)

)
.

with continuous sample paths. Then f (Xs, Ys) is a semimartingale with

f (Xt , Yt ) − f (X0, Y0) = (Fx • X)t + 1/2
(
Fxx • [X, X ]

)
t
+ (Fy • Y )t

for each t in R
+.

1. Corrections

On Project 7 I asked you to show that

<1> [H • X, Y ] = H • [X, Y ] for X, Y ∈ SMG0 and H ∈ locHBdd.

I implied that the proof was just a simple example of a generating class
argument. As some of you discovered, the proof is a little more delicate. A
clean argument can be extracted from ideas used by Protter (1990, section II.6).

<2> Lemma. Suppose {Hn : n ∈ N} ⊆ locHBdd is locally uniformly bounded and

Hn
ucpc−→ 0. Suppose also that Y ∈ SMG. Then Hn • Y

ucpc−→ 0.

Proof. Suppose there is a t for which sups≤t |Hn •Ys | does not converge to zero
in probability. For some ε > 0 there is a subsequence along which P{sups≤t |Hn•
Ys | > ε} > ε. Along a subsubsequence we have the same inequality as well
as sups≤t |Hn(s)| → 0 almost surely; along the subsubsequence sups≤t |{ω ∈
N c}Hn(s, ω)| → 0 for every ω, for some negligible set N . The sequence
Kn := {ω ∈ N c}Hn((0, t]] is locally uniformly bounded and it converges
pointwise to zero. Each Kn is P-measurable, because (0, 1] × N ∈ P, and

P{sups≤t |Kn • Ys − Hn • Ys | �= 0} = 0.

Along the subsubsequence, Kn • Y
ucpc−→ 0, which contradicts the property

defining the first subsequence.�
To establish assertion <1>, consider the linear map

ψ(H) := [H • X, Y ] − H • [X, Y ]

= (H • X)Y − (H • X)� • Y − Y � • (H • X)

− H • (
XY − X� • Y − Y � • X

)
= (H • X)Y − (H • X)� • Y − H • (

XY − X� • Y
)

because Y � • (H • X) = (Y � H) • X = H • (
Y � • X

)
.

You can check that ψ((0, τ ]] = 0 for τ ∈ T and that ψ(Hn − H)
ucpc−→ 0 if

{Hn : n ∈ N} is locally uniformly bounded and Hn → H pointwise. I think the
rest of the argument is routine.

Please inform me if you find more gaps in the proof.
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2. Exponential martingales

Suppose M ∈ locM2
0(R

+) has continuous sample paths. For H ∈ locHBdd,
define

<3> Zt = exp
(
i H • Mt + 1

2 H 2 • [M, M]t
)

• Invoke the complex analog of the Itô formula (or apply the result to real
and imaginary parts) to show that

Zt − 1 = i Z • (H • M)t − 1
2 Z • [H • M, H • M]t + 1

2 Z • (
H 2 • [M, M]

)
t

= i(Z H) • Mt

You may use any of the properties established in the problems for Project 8.

• Deduce that Z − 1 ∈ locM2
0(R

+).

3. Lévy again

Define Ut = t . Suppose M ∈ locM2
0(R

+) with continuous sample paths and
M2 − U ∈ locM2

0(R
+). Show that M is a standard Brownian motion.

• Use Problem [2] to explain why [M, M] = U.

• For fixed constants 0 = t0 < t1 < . . . < t� < ∞ and real numbers {θj }
define

H =
∑�−1

j=0
θj ((tj , tj+1]]

Show that, for t ≥ t�,

H • Mt =
∑

j
θj�j M where �j M := M(tj+1) − M(tj )

H 2 • Ut =
∑

j
θ2

j δj where δj := tj+1 − tj

• For Z as in <3> and H as above, show that there is a sequence of stopping
times τk ↑ ∞ for which PZt∧τk = 1 for all k.

• Invoke Dominated Convergence to deduce that

P exp
(

i
∑

j
θj�j M

)
= exp

(
− 1

2

∑
j
θ2

j δj )
)

• Conclude that M is a standard Brownian motion.

4. Brownian filtrations

Let {B(t, ω : 0 ≤ t ≤ 1} be a Brownian motion with continuous sample paths
on a probability space (	, F, P). The Brownian filtration on 	 is defined by
Ft := σ ({Bs : 0 ≤ s ≤ t} ∪ N), where N denotes the class of all P-negligible
sets. The submartingale B2 has Doléans measure µ = m ⊗ P.

<4> Definition. A cadlag process {Mt : 0 ≤ t ≤ 1} is said to be a local
martingale if there exist stopping times τk ↑ ∞ for which each M∧τk is a
martingale.Maybe better to restrict defini-

tion to cases where M0 = 0.
Local martingales (with M0 = 0) with respect to the Brownian filtration

have two striking properties:

(i) They have continuous sample paths. Thus they all belong to locM2
0[0, 1].

(ii) They can be represented as stochastic integrals.

See Problem [4] for the first assertion. The second will follow via an argument
based on the Itô formula.
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<5> Theorem. For each X ∈ L2(	, F1, P) there exists an H ∈ L2(µ) such that
X − PX = H • B1 almost surely.

Sketch of proof. Without loss of generality, suppose PX = 0.

• Show that R := {H • B1 : H ∈ L2(µ)} is a closed vector subspace of
L2(P, F1). Hint: If Hn • B1 → Y in L2(P)-norm, show that {Hn} is a
Cauchy sequence with a limit H in L2(µ1). Deduce that Y = H • B1.

• Let Z denote the component of X that is orthogonal to R. That is,
X = Z + K • B1 for some K ∈ L2(µ) and PZ(H • B)1 = 0 for all H
in L2(µ). Show that PZ = 0.

• Explain why we need to prove Z = 0 almost surely.

• Explain why it suffices to show PZ f (B) = 0 for all bounded, C-measurable
functionals f on C[0, 1].

• Explain why it suffices to consider functionals f that depend on B only
through its values at a finite set of times.

• Explain why it suffices to consider functionals f that depend on B
only through its increments Yj = Btj+1 − Btj for a fixed set of times
0 = t0 < t1 < . . . < tk = 1. That is, why is it enough to prove
PZg(Y) = 0 for all bounded, measurable functions g on R

k?

• Invoke Problem [3] to show that it is enough to prove PZ exp(iθ · Y) = 0
for all θ in R

k .

• Work with stochastic integral notation. Show that θ · Y = H • B1, where
H := ∑k−1

j=0 θj ((tj , tj+1]].

• Show that H • B has a deterministic quadratic variation process, At :=
[H • B, H • B]t = ∫ t

0 H 2(s) ds.

• Use the results from Section 2 to show that

W1 = 1 + i(W H) • B1 where Wt := exp(i H • Bt + 1/2At ).

• Deduce that
exp(A1/2)PZ exp(iθ · Y) = 0.

• Are we done?�
<6> Corollary. For each local martingale M adapted to the Brownian filtration

there exists an H in locL2(µ) such that Mt = M0 + (H • B)t for 0 ≤ t ≤ 1.

Proof. Without loss of generality, suppose M0 = 0. Define stopping times
τk := 1 ∧ inf{t : |Mt | ≥ k}.

• Why does M∧τk belong to M2
0[0, 1]?

• For each k, explain why there exists an Hk ∈ L2(µ) such that

Mt∧τk = (
Hk((0, τk]]

) • Bt for 0 ≤ t ≤ 1.

• Deduce that (Hk((0, τk]]) • B1 = (Hk+1((0, τk]] • B1 almost surely.
Am I just repeateing the con-
struction for the locM2

0[0, 1]
stochastic integral? • Deduce that Hk((0, τk]] − Hk+1((0, τk]] = 0 almost everywhere [µ].

• Show that the Hk processes can be pasted together to create an H
in locL2(µ) for which Mt = H • Bt almost surely.�
Remark. Should I extend to general F1-measurable random variables,
perhaps using the method of Dudley (1977), getting a representation
Y0 + H • B1 with H ∈ locHBdd.
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5. Problems

[1] Suppose Z ∈ FV0 ∩ locM2
0(R

+) and Z has continuous sample paths. Show that
Zt = 0 almost surely, for each t . Hint: Use the fact that [Z , Z ] = 0 to deduce
that Z2 = 2Z • Z ∈ locM2

0(R
+). Find a sequence of stopping times τk ↑ ∞ for

which PZ2
t∧τk

= 0 for each t .

[2] Suppose M ∈ locM2
0(R

+) has continuous sample paths. Suppose A ∈ FV0 also
has continuous paths and M2 − A ∈ locM2

0(R
+). Deduce that A = [M, M].

Hint: Apply Problem [1] to [M, M] − A.

[3] Let X be an integrable random variable, and Y = (Y1, . . . , Yk) be a vector of
random variables such that PX exp (iθ · Y) = 0 for all θ = (θ1, . . . , θk) in R

k .
Show that P(Xg(Y)) = 0 for all bounded, measurable g. Hint: Let µ± be
the measures with densities X± with respect to P. Show that Y has the same
Fourier transform, and hence the same distribution, under both µ+ and µ−.
That is, µ+g(Y) = µ−g(Y).

[4] Suppose {Xt : 0 ≤ t ≤ 1} is a cadlag martingale with respect to the Brownian
filtration. Remember that X1 can be expressed as f (B) for some C\B(R)-
measurable functional f on C[0, 1]. The functional is W-integrable.

(i) If f is a continuous (for sup-norm distance) functional on C[0, 1], use
the representation Xt = Pt f (B) = W

x f (Kt B + St x) almost surely to
show that X has continuous sample paths (almost surely?).

(ii) For a general W-integrable functional, show that there exists a
sequence of continuous functionals { fn} for which W| f − fn| ≤ 4−n .

(iii) Let Mn be a version of the martingale Pt fn(B) with continuous
sample paths. Show that |Mn(t) − X (t)| is a uniformly integrable
submartingale with cadlag sample paths.

(iv) Define stopping times τn := 1 ∧ min{t : |Mn(t)− X (t)| ≥ 2−n}. Show
that

P{supt |Mn(t) − X (t)| > 2−n} ≤ 2n
P|Mn(τn) − X (τn)|

≤ 2n
P|Mn(1) − X (1)| = 2n

P| fn(B) − f (B)|
≤ 2−n

(v) Deduce that
∑

n P{supt |Mn(t) − X (t)| > 2−n} < ∞ and hence
supt |Mn(t) − X (t)| → 0 almost surely.

(vi) Conclude that almost all sample paths of X are continuous.

(vii) Extend the argument to the case of a local martingale. Hint: If M∧τk

has (almost all) continuous paths for each k, and if τk ↑ ∞, what do
you know about almost all paths of M?

[5] Let X and Y be independent Brownian Motions.

(i) Show that both (X + Y )/
√

2 and (X − Y )/
√

2 are also Brownian
Motions.

(ii) Deduce that [X, Y ] = 0.

The next problem presents the standard example of a uniformly integrable
local martingale that is not of class [D].

[6] Let B = (1 + X, Y, Z) be a three-dimensional Brownian Motion started fromBetter to start at origin, and
work with distance to u? u = (1, 0, 0). (The three processes X , Y , and Z are independent Brownian

Motions started from zero.) Write x for (x, y, z). Define f (x) = 1/‖x‖ on
R

3\{0}. Define a process M(t) = 1/‖B(t)‖.
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(i) Use the Multiprocess Itô Formula to show that M ∈ locM2(R+). Hint:
Show that on the open region R

3\{0} the function f is harmonic:

∂2 f

∂2x
+ ∂2 f

∂2 y
+ ∂2 f

∂2z
= 0.

(ii) Deduce that M is a positive supermartingale.

(iii) Let τk = inf{t : ‖B(t)‖ ≤ 1/k}. Show that M∧τk ∈ M2(R+).

(iv) Show that C0 := ∫ {‖x‖ ≤ 1/2}‖x‖−2 dx < ∞.

(v) Show that PM(t)2 ≤ C0 exp(−(8t)−1)t−3/2 + P
(
8 ∧ ‖B(t)‖−2

)
.

(vi) Show that ‖B(t)‖2 P−→ ∞ as t → ∞.

(vii) Deduce that supt PM(t)2 < ∞ and PM(t) → 0 as t → ∞.

(viii) Deduce that M is not a martingale, and hence M is not in class [D].
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Project 10

1. Change of measure for Brownian motion

Let {Bt : 0 ≤ t ≤ 1} be a Brownian motion with respect to a (standard)
filtration {Ft } on (�, F, P). Write U for its quadratic variation process, Ut = t .

For each α ∈ R, the process

qt = exp
(
αBt − 1

2α2t
)

for 0 ≤ t ≤ 1

is a nonnegative martingale, with Pqt = Pq0 = 1. Define a new probability
measure Qα on F1 by specifying q1 to be its density with respect to P. That is,

Qα X = P(Xq1)

at least for all bounded random variables X .

• Show that Qα is equivalent to P, in the sense that both measures have the
same collection N of negligible sets.

• Show that Qα X = P(Xqt ) if X is Ft -measurable. Explain why qt is a
Radon-Nikodym density for Qα with respect to P when both measures are
restricted to Ft .

• For fixed s and t = s + δ, a fixed F in Fs , and a bounded measurable f ,
show that

Qα F f (Bt − Bs) = P(Fqs) P
(

f (Bt − Bs) exp
(
α(Bt − Bs) − 1

2α2δ
))

= Qα F
∫ ∞

−∞

1√
2πδ

f (z) exp
( − 1

2 (z − αδ)2/δ
)

dz

• Deduce that, under Qα , the process Bt −αt is a standard Brownian motion.

2. The Black-Scholes formula

Stock prices (in units so that S0 ≡ 1) are sometimes modeled by a continuous
process driven by a Brownian motion, B, on [0, 1];

St = exp((µ − 1/2σ
2)t + σ Bt ) for 0 ≤ t ≤ 1

= exp(σ B̃t − 1/2σ
2t) where B̃t = Bt + (µ/σ)t

for constants σ > 0 (assumed known) and µ (unknown). That is,

St = ψ(Bt , Ut ) where ψ(x, y) = exp(σ x + (µ − 1/2σ
2)y).

Suppose Y = f (S), with f a C-measurable functional on C[0, 1]. How much
should one pay at time 0 in order to receive the amount Y at time 1?I am ignoring inflation. cf.

expression of value of stock as
a multiple of a bond price.

• Use the Itô formula to show that

<1> St = 1 + σ S • Bt + µS • Ut ,

In more traditional notation,

d St = σ St d Bt + µSt dt, or
d St

St
= σ d Bt + µ dt.

Roughly speaking, the relative increments of S behave like the increments of
a Brownian motion with drift µ. The process σ S • B is the locM2

0[0, 1] part
of the semimartingale decomposition of S.
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• Similarly, show that St = 1 + σ S • B̃t .

• Show that Y can be written as a C-measurable functional of the B̃ sample
path.

• Temporarily suppose that µ = 0, so that B̃ is a standard Brownian motion.

(i) Use stochastic calculus to show that

B̃ = 1

σ S
• S

Hint: What do you know about the increments of the process that takes
a constant value?

(ii) Suppose PY 2 < ∞. Invoke results from Project 9 to show that there
exists a predictable H such that

<2> Y = PY + H • B̃1 = PY + K • S1 where K := H

σ S
.

(iii) Interpret the last equality as an assertion that there exists an (idealized?)
hedging stategy that returns Y − PY . Deduce that the arbitrage price
for Y equals PY in the special case where µ = 0.

• Now consider the case where µ is unknown, possibly nonzero. Let Qα be
the probability measure with density exp(αB1 − 1

2α2) with respect to P,
where α = −µ/σ . Show that B̃ is a standard Brownian motion under Qα .

• Assume that QαY 2 < ∞. Show that there exists some predictable
process Kα (in some apppropriate L2 space) for which

Y = QαY + Kα • S1 almost surely [Qα].

• I believe that the threat of the trading scheme that delivers a return Kα • S1

now forces QαY to be the amount one should pay at time 0 to receive the
amount Y at time 1. What do you think? Should the fact that Kα seems
to depend on the unknown µ invalidate the arbitrage argument?

• Suppose Y actually depends only on the stock price at time 1, that is,
Y = f1(S1) for some measurable function f1. Show that

QαY = Q f1
(

exp(σ W − 1
2σ 2)

)
where W ∼ N (0, 1) under Q.

Deduce that QαY does not depend on µ.

• Specialize even further, to the case where f1(x) = (x − C)+, for some
constant C , to derive the famous Black-Scholes formula for the price of a
European option.

3. Does Kα actually depend on µ?

As I type this Project late at night, I find myself in the embarrassing position of
not really understanding how the question is handled for a general Y . However,
when Y = f1(S1) there is another approach that avoids the difficulty by
constructing an explicit strategy via the solution to a partial differental equation.I should reread Harrison &

Pliska (1981). Look for a smooth function f (x, t) for which f (x, 1) = f1(x) and

σ 2x2 fxx (x, t) + ft (x, t) = 0

• Use Itô to show that

f (St , t) = f (1, 0) + Fx • St almost surely [P].

• Show that, under Qα , the stock price process is a martingale. Deduce that

f (St , t) = Qα

(
f (S1, 1) | Ft

) = Qα(Y | Ft )
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and, in particular, f (1, 0) = Qα(Y | F0) = QαY .

I hope I can sort through my confusion before the lecture. I will reread
the final section of Chung & Williams (1990).

4. Change of measure for semimartingales

The key fact about the change from P to an equivalent measure Q is the
preservation of the semimartingale property. It is not at all an obvious fact.
For suppose that X is a P-semimartingale that has decomposition X0 + M + A,
where M is a locally square integrable P-martingale and A ∈ FV0. Under Q the
A process is still in FV0, but we will have to subtract another FV0 process A∗

from M to make it a locally square integrable Q-martingale, leading to the
Q-semimartingale decomposition X = X0 + (M − A∗) + (A + A∗).

To establish these facts in the general case I would need some theory about
processes with jumps—things like the Doob-Meyer decomposition. Using only
tools developed in the course, I can show you how to treat a special case.

Consider only a process M ∈ locM2
0([0, 1], P) with continuous sample paths.

Here I have added the P to emphasize that the martingale properties hold
under the P distribution. Suppose that P and Q are equivalent measures, with
q1 := dQ/dP and dP/dQ = p1 = 1/q1. Assume that the cadlag versions
of the P-martingale qt := P(q1 | Ft ) and the Q-martingale pt := Q(p1 | Ft )

actually have continuous sample paths.

• Show that pσ = Q(p1 | Fσ ) for each [0, 1]-valued stopping time σ .

• Explain why we can assume pt qt ≡ 1. More specifically, explain why
pt can be thought of as the density of P with respect to Q when both
measures are restricted to Ft .

Define

τk := 1 ∧ inf{t : pt ≥ k or pt ≤ 1/k} ∧ inf{t : |Mt | ≥ k}.
Without loss of generality, we may also assume that M∧τk ∈ M2

0([0, 1], P) .

• Show that pM ∈ locM2
0([0, 1], Q). Hint: For s < t and F ∈ Fs show that

QF
(

pt∧τk Mt∧τk − ps∧τk Ms∧τk

) = QF
(

pt∧τk Mt∧τk − ps∧τk Ms∧τk

) {τk > s}
Argue that F{τk > s} ∈ Fs∧τk then deduce that the right-hand side of the
last equality equals PF

(
Mt∧τk − Ms∧τk

) {τk > s} = 0.

• Use the fact that q and M are both in locM2
0([0, 1], P) to explain

why the process Y := q M − V , where V := [q, M] ∈ FV0, is also
in locM2

0([0, 1], P). Hint: First explain why Yt∧τk = q • Mt∧τk + M • qt∧τk .

• Explain why both Y and V have continuous sample paths.

• Explain why pY ∈ locM2
0([0, 1], Q).

• Explain why [p, V ] ≡ 0. Hint: V is a FV0 process with continuous
sample paths.

• Deduce that pt Vt = p • Vt + V • pt .

• Deduce that M − p • V − V • p ∈ locM2
0([0, 1], Q).
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• Explain why V • p ∈ locM2
0([0, 1], Q). Hint: p is a Q-martingale.

• Explain why A := p • V is in FV0.

• Conclude that M − A ∈ locM2
0([0, 1], Q).

You should check that this recipe works for the Brownian motion example
in Section 1.

5. Things I could show if I had more time

(Actually I would also need some facts about processes with jumps.)

(i) Every local-martingale is a semimartingale.

(ii) Suppose P and Q are equivalent probability measures. If X is a
P-semimartingale then it is also a Q-semimartingale. Moreover, for
H ∈ locHBdd, the stochastic integral H • X when calculated using the
methods from Project 7 under P is the same as the stochastic integral
when calculated under Q. The last assertion can be proved using the
characterization of the stochastic integral given in Project 7.
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Project 11

Notation: Write Pt (. . .) for P(. . . | Ft ) and vart (. . .) for the corresponding
conditional variance.

1. Diffusion heuristics

The rough idea of an Itô diffusion is: {Xt : t ∈ R
+} is adapted with continuous

sample paths; and for small δ > 0, with �X = Xt+δ − Xt ,

Pt
(
�X

) ≈ δb(Xt )<1>

vart
(
�X

) ≈ δσ 2(Xt )<2>

where b(·) and σ(·) are deterministic functions. In what follows, both b and σ

will be continuous functions.
Interpret <1> to mean that

Pt (�Z) ≈ 0 where Zt = Xt −
∫ t

0
b(Xs) ds.

More precisely, interpret <1> to mean that Z is a martingale with continuous
sample paths and Z0 = 0. Similarly, interpret <2> to mean Pt (�Z)2 ≈
δσ 2(Xt ), or

Wt := [Z , Z ]t −
∫ t

0
σ 2(Xs) ds is a martingale.

Note that W has continuous paths of finite variation. From the Problems to
Project 9, we must have Wt ≡ W0 = 0. That is, [Z , Z ]t = ∫ t

0 σ 2(Xs) ds.
Put another way, we could interpret <1> and <2> to mean that

<3> Xt = x0 + Zt + b(X) • Ut where X0 = x0

with Z a (local?) martingale for which [Z , Z ] = σ 2(X) • U. Here, and
subsequently, I am abusing notation by writing b(X) for the process that takes
the value b(Xs) at time s, and so on.

Suppose there exist processes X and Z with the properties just described.
If σ(x) �= 0 for all x then 1/σ(X) is locally bounded and predictable. TheNote that σ 2(X) is adapted

and has continuous paths process B := (1/σ(X)) • Z is a local martingale, with continuous sample paths,
B0 = 0, and

[B, B] = (1/σ 2(X)) • [Z , Z ] = U.

That is, by the Lévy characterization, B is a Brownian motion for whichCompare with the argument
in Stroock & Varadhan (1979,
Section 4.5) <4> Xt = x0 + σ(X) • Bt + b(X) • Ut

Many authors would write the last representation as

<5> dXt = σ(Xt ) dBt + b(Xt ) dt

and call it a stochastic differential equation for X with initial condition X0 = x0.
If the representation <3> were valid, and if f were twice continuously

differentiable, Itô’s formula would give

f (Xt ) = f (x0) + f ′(X) • (Z + b(X) • U)t + 1
2 f

′′(X) • [Z , Z ]t

= f (x0) + f ′(X) • Zt + (
1
2σ

2(X) f ′′(X) + b(X) f ′(X)
) • Ut

This representation would imply that

<6> f (Xt ) − (
1
2σ(X)2 f ′′(X) + b(X) f ′(X)

) • Ut is a martingale
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for each suitably smooth f .
The question of whether an X satisfying <4> or <6>actually exists, and

to what extent it is uniquely determined, is the subject of a huge literature. The
small sampling that follows is based mostly on

(i) Stroock & Varadhan (1979, Chapters 4 and 5),

(ii) Durrett (1984, Chapter 9)

(iii) Chung & Williams (1990, Chapter 10).

2. Existence and uniqueness of a solution to a SDE

Seek a solution for the SDE <5> with initial condition X0 ≡ x0, for a fixed
x0 ∈ R. Suppose the functions b and σ satisfy the following conditions forSDE = stochastic differential

equation some finite constant C :

<7>

{ |b(x)| ≤ C, |σ(x)| ≤ C for all x
|b(x) − b(y)| ≤ C |x − y|, |σ(x) − σ(y)| ≤ C |x − y| for all x and y

Assume a standard Brownian motion B is given. Start by building the solutionI am so very lazy to use
the same constant for all the
bounds. on a fixed interval [0, T ]. Define X (0) ≡ x0 and, for n ≥ 0,

X (n+1)
t = x0 + σ(X (n)) • Bt + b(X (n)) • Ut

Define
�n+1(t) := P sups≤t |X (n+1)

s − X (n)
s |2.

• Show that �1(T ) ≤ c0 := 8C2T + 2C2T 2, or something like that.

• For n ≥ 1 show that

�n+1(T ) ≤ 2P supt≤T |σ(X (n)) • Bt − σ(X (n−1)) • Bt |2

+ 2P supt≤T |
∫ t

0
b(X (n)

s ) − b(X (n−1)) ds|2

≤ 8P|σ(X (n)) • BT − σ(X (n−1)) • BT |2

+ 2T 2
P

(
1

T

∫ T

0
|b(X (n)

s ) − b(X (n−1)
s )| ds

)2

≤ 8
∫ T

0
P|σ(X (n)

s ) − σ(X (n−1)
s )|2

+ 2T 2
P

(
1

T

∫ T

0
|b(X (n)

s ) − b(X (n−1)
s )| ds

)2

≤ KT

∫ T

0
�n(s) ds,

where KT is a constant that depends on T .

• Strengthen the previous result to

�n+1(t) ≤ KT

∫ t

0
�n(s) ds for all t ∈ [0, T ].

• Show that

�n+1(T ) ≤ Kn
T

∫
. . .

∫
{0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T }�1(t1) dt1dt2 . . . dtn

≤ c0(T KT )n/n!

• Deduce that
P

∑
n≥1

sups≤T |X (n+1)
s − X (n)

s | < ∞
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• Deduce that there exists an adapted process {Xt : 0 ≤ t ≤ T } with
continuous sample paths, such that

sups≤T |X (n)
s − Xs | → 0 almost surely.

• Deduce that

sups≤T
(|b(X (n)

s ) − b(Xs)| + |σ(X (n)
s ) − σ(Xs)|

) → 0 almost surely.

• Deduce that

|σ(X (n)) • B − σ(X) • B| + |b(X (n)) • U − b(X) • U| ucpc−→ 0

• Conclude that {Xt : 0 ≤ t ≤ T } satisfies the SDE <5> with initial
condition X0 ≡ x0.

• Suppose {Yt : 0 ≤ t ≤ T } is another solution to the SDE with the same
initial condition. Define

�(t) := P sups≤t |Xs − Ys |2.
Show that for some constants c1 and κ , which might depend on T ,

�(T ) ≤ (
c1κ

n/n!
)
�(T ).

Deduce that �(T ) = 0 and hence

P{ω : ∃t ≤ T with Xt (ω) �= Yt (ω)} = 0.

• Suppose {Xt : 0 ≤ t ≤ T1} and {Zt : 0 ≤ t ≤ T2} are solutions to the
SDE over different ranges, [0, T1] and [0, T2], with X0 = Z0 = x0. Show
that almost all paths X (·, ω) and Z(·, ω) agree on the interval [0, T1 ∧ T2].
Explain how this result enables us to find a unique solution (up to almost
sure equivalence) on R

+.

3. Dependence of the solution on B: strong and weak
solutions of the SDE

The solution X constructed in Section 2 depends only on the Brownian motion.
More precisely, we could choose {Ft } as the augmented Brownian filtration and
have X adapted to that filtration.

• Try to make some sense of the last assertion. Perhaps you could argue
inductively that each approximation X (n) is adapted to the augmented
filtration. I would like to show that this means we can choose Xt (ω) as
f (B∧t (ω), t) for some suitably measurable function f : C(R+)×R

+ → R.
Perhaps we could require t → f (y, t) to be continuous for each fixed y.

The idea is that B can provide both the filtration and the process for the
stochastic integral σ(X) • B. I think this is what it means for X to be a strong
solution of SDE. Clearly, if we start from a different Brownian motion then we
get a different solution.

The distribution of X is a probability measure, Qx0 , on the cylinder sigma-
field C of C(R+). More formally, if we can regard f as a C\C-measurable
map from C(R+) back into itself, then Qx0 is the image of Wiener measure W

under the map f .
I think that for some SDE’s it is possible to prove the existence of a Qx0

I am a lttle unsure of these
assertions, because I have not
worked through the whole con-
struction myself. I am relying
on what I think Durret and
Chung&Williams are asserting.

on C under which the coordinate map defines a process with continuous paths
started at x0 for which the analog of property <6> holds. Slight refinements of
the arguments in Section 1 then show how to construct a Brownian motion B
for which <4> holds.
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For a famous example where there exists a (nonunique) weak solution but
no strong solution see Chung & Williams (1990, Secton 10.4).

4. Relaxation of assumptions on b and σ

Localization arguments allow us to relax the conditions <7> on the func-
tions b(·) and σ(·) to existence of constants Cr for each R > 0 such that

<8> max
(|b(x) − b(y)|, |σ(x) − σ(y)|) ≤ CR|x − y| if max(|x |, |y|) ≤ R.

Most authors seem also to require a growth condition,

max
(|b(x)|, |σ(x)|) = O(|x |) as |x | → ∞.

Frankly, I do not really understand why the growth condition is needed.
It seems to me that assumption <8> implies existence of finite constants K R

for which
|b(x)| + |σ(x)| ≤ K R when |x | ≤ R.

Define

bR(x) := max(−K R,min(b(x), K R))

σR(x) := max(−K R,min(σ (x), K R))

An analog of <7> holds for bR and σR . There exists continuous adapted
processes for which

X (R)
t = x0 + σR(X (R)) • Bt + bR(X (R)) • Ut

Define τR := inf{t : |X (R)
t | ≥ R}. I think that

X (R)
t∧τR

= x0 + σ(X (R)) • Bt∧τR + b(X (R)) • Ut∧τR

It should be possible to paste together the solutions X (R) for an increasing
sequence of R values, invoking the uniqueness theorem from Section 2 to show
that X (2R) agrees with X (R) at least until |X (2R)| ≥ R. If the corresponding
stopping times τR were to increase to infinity as R ↑ ∞ then we would get
a solution to the original SDE. I think this is where the growth condition is
needed.

I need to read the last part of Chung & Williams (1990, Secton 10.2) more
carefully.

5. Examples

We should try to establish existence and uniqueness of the solutions to two
simple SDE’s:

(i) (geometric Brownian motion) Using the Itô formula, you showed in
Project 10 that

Xt = exp
(
σ Bt + (µ − 1

2σ
2)t

)

is a solution to the equation Xt = 1 + σ X • Bt + µX • Ut . Is it the
only solution?

(ii) (Ornstein-Uhlenbeck process) By the Itô formula, the process

Xt = e−αt
(
x0 + E • Bt

)
where Es := eαs

is a solution to the SDE d Xt = −αXt + d Bt with X0 = x0, that is,

Xt = x0 + Bt − αX • Ut
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Again, is it the only solution? Could we establish both existence and
uniqueness of a (strong) solution by appeal to the general theory?
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Doléans measures

Notation

• T1 = the set of all [0, 1]-valued stopping times
• for σ, τ ∈ T1,

((σ, τ ]] := {(t, ω) ∈ (0, 1] × � : σ(ω) < t ≤ τ(ω)}
[[σ, τ ]] := {(t, ω) ∈ (0, 1] × � : σ(ω) ≤ t ≤ τ(ω)}

and so on.

1. Introduction

The construction (Project 4) of the isometric stochastic integral H • M with respect
to a martingale M ∈ M2[0, 1], at least for bounded, predictable H , depended on the
existence of the Doléans measure µ on the predictable sigma-field P on (0, 1] × �.
To make the map H �→ H • M1 an isometry between Hsimple and a subset of
L2(�, F1, P) we needed

<1> µ(a, b] × F = P{ω ∈ F}(Mb − Ma)
2 for all 0 ≤ a < b ≤ 1 and F ∈ Fa .

This property characterizes the measure µ because the collection of all predictable�
sets of the form (a, b] × F is ∩ f -stable and it generates P.

The sigma-field P is also generated by the set of all stochastic intervals ((0, τ ]]
for τ ∈ T1. The Doléans measure is also characterized by the property�

µ((0, τ ]] = P(Mτ − M0)
2 for all τ ∈ T1.

Notice that µ depends on M only through the submartingale St := (
Mt − M0

)2
:

PF(Mb − Ma)
2 = PF(Sb − Sa) for F ∈ Fa .

In fact, analogous measures can be defined for a large class of submartingales.

<2> Definition. Let {St : 0 ≤ t ≤ 1} be a cadlag submartingale. Say that a finite
(countably-additive) measure µS, defined on the predictable sigma-field of (0, 1]×�,
is the Doléans measure for S if µ((0, τ ]] = P

(
Sτ − S0

)
for every τ in T1.

Remark.
If µS exists then Sτ − S0 must be integrable for every τ in T1. Note also

that the definition is not affected if we replace St by St − S0. Thus there is no
loss of generality in assuming that S0 ≡ 0.

I mentioned explicitly that µS must be countably-additive to draw attention to a
subtle requirement on S for µS to exist, known somewhat cryptically as property [D]:

[D] {Sτ : τ ∈ T1} is uniformly integrable.
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<3> Example. If M ∈ M2[0, 1] then the submartingale St = (Mt − M0)
2 has

property [D]. Indeed, we know from Project 2 that Mτ = P(M1 | Fτ ) for all τ ∈ T1.
Thus

0 ≤ (
Mτ − M0

)2 ≤ P

((
M1 − M0

)2 | Fτ

)
for each τ in T1.

Use the fact that {P(ξ | G) : G ⊆ F} is uniformly integrable for each integrable�
random variable ξ to complete the argument.�

<4> Example. Let {Bt : 0 ≤ t ≤ 1} be a standard Brownian motion. The submartin-
gale St := B2

t has a very simple Doléans measure, characterized by

µS(a, b] ⊗ F = PF
(
B2

b − B2
a

) = PF(b − a) for F ∈ Fa .

That is, µS = m ⊗ P, with m equal to Lebesgue measure on B[0, 1]. Of course µS

has a further extension to the product sigma-field B[0, 1] ⊗ F.
A Poisson process {Nt : 0 ≤ t ≤ 1} with intensity 1 shares with Brownian

motion the independent increment property, but the increment Nt − Ns has a
Poisson(t − s) distribution. The sample paths are constant, except for jumps of
size 1 corresponding to points of the process. The process {Nt : 0 ≤ t ≤ 1} is a
submartingale with respect to its natural filtration, with Doléans measure m ⊗ P, the�
same as the square of Brownian motion.

Clearly the Doléans measure does not uniquely determine the submartingale:
both squared Brownian motion and the Poisson process have Doléans measure
m ⊗ P. But the only square integrable martingale M with continuous sample paths
and Doléans measure µM = m ⊗ P is Brownian motion: if F ∈ Fs and s < t then
PF(M2

t − M2
s ) = µM(s, t] ⊗ F = (t − s)PF , from which it follows that M2

t − t is
a martingale with respect to {Ft }. It follows from Lévy’s characterization that M is
a Brownian motion.�

Problem [2] shows that if there exists a (countably-additive) Doléans measure µS

then S has property [D]. The proof of the converse assertion is the main subject of
this handout.

<5> Theorem. Every cadlag submartingale {St : 0 ≤ t ≤ 1} with property [D] has a
countably additive Doléans measure µS.

There are several ways to prove this assertion For example:

(i) Invoke an approximation by compact sets (Métivier 1982, Chapter 3).

(ii) For the square of a continuous M2
0[0, 1]-martingale M , prove directly the

existence of an increasing process A (the quadratic variation process) for
which M2

t − At is a martingale (Chung & Williams 1990, Section 4.4).

(iii) Do something very general, as in Dellacherie & Meyer (1982, §7.1).
I will present a different method, based on the identification of measures on P

with a certain kind of linear functional defined on the vector space HBddLip of
all adapted, continuous processes H on [0, 1] × � for which there exists a finite
constant CH such that

(i) |H(t, ω)| ≤ CH for all (t, ω).
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(ii) |H(s, ω) − H(t, ω)| ≤ CH |t − s| for all s, t , and ω.

It is easy to show that HBddLip generates a sigma-field P0 on [0, 1] × � for which�
P = {D ∩ (

(0, 1] × �
)

: D ∈ P0}.
As a consequence of the Theorem stated in Section 3, an increasing linear

functional µ : HBddLip → R is defined by the integral with respect to a finite,
countably additive measure on P0 if and only if it is sigma-smooth at 0, that is,

µ(hn) ↓ 0 for each {hn : n ∈ N} ⊆ HBddLip with hn ↓ 0 pointwise.

If µ
({0} × �

) = 0 then µ can also be thought of as a measure on P.

2. The Doléans measure as a linear functional

Let {St : 0 ≤ t ≤ 1} be a cadlag submartingale with respect to a standard filtration
{Ft : 0 ≤ t ≤ 1} on a probability space (�, F, P). Suppose S has property [D]. To
prove Theorem <5> we need to construct an increasing linear functional on H+

BddLip
that is sigma-smooth at 0.

Without loss of generality assume S0 ≡ 0.
Construct µ as a limit of simpler increasing linear functionals on H+

BddLip. For
each n in N and i = 0, 1, . . . , 2n define ti,n := i/2n and �i,n := S(ti+1,n) − S(ti,n)
and write Pi,n(· · ·) for expectations conditional on F(ti,n). Note that Pi,n�i,n ≥ 0
almost surely, by the submartingale property.

For each H in H+
BddLip, define linear functionals

µn H :=
∑

0≤i<2n

P
(
H(ti,n)�i,n

) =
∑

0≤i<2n

P
(
H(ti,n)Pi,n�i,n

)
.

The second form ensures that µn is an increasing functional on H+
BddLip.

Existence of the limit

To prove that µH := limn→∞ µn H exists for each H ∈ H+, I will show that the
sequence {µn H : n ∈ N} is Cauchy. Fix n and m with n < m. Define

Ji = { j : ti,n ≤ tj,m < ti+1,n}.
Then

|
( ∑

j∈Ji
PH(tj,m)�j,m

)
− PH(ti,n)�i,n|
= |

∑
j∈Ji

P
(
H(tj,m) − H(ti,n)

)
�j,m |

≤
∑

j∈Ji
P

(|H(tj,m) − H(ti,n)|Pj,m�j,m
)

≤
∑

j∈Ji
CH 2−n

P�j,m

= CH 2−n
∑

j∈Ji
P�i,n

Sum over i to deduce that |µm H − µn H | ≤ CH 2−n
PS1, which tends to zero as n

tends to infinity.
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A useful upper bound

The functional µ inherits linearity and the increasing property from the {µn}. For
each fixed ε > 0, property [D] will give an upper bound for µH in terms of the
stopping time

<6> τ(H, ε) := inf{t : H(t, ω) ≥ ε} ∧ 1.

Temporarily write τn for the discretized stopping time obtained by rounding τ(H, ε)

up to the next integer multiple of 2−n . Then

µn H ≤
∑

0≤i<2n
P

(
ε{ti,n < τn} + CH {ti,n ≥ τn}

)
Pi,n�i,n

≤ ε
∑

0≤i<2n
P�i,n + CH

∑
0≤i<2n

P{ti,n ≥ τn}�i,n

≤ εPS1 + CH P
(
S1 − Sτn

)
.

Let n tend to infinity. Uniform integrability of the sequence {Sτn } together with
right-continuity of the sample paths of S lets us deduce in the limit that

<7> µH ≤ εPS1 + CH P
(
S1 − Sτ(H,ε)

)
.

Sigma-smoothness

Now suppose {Hk : k ∈ N} is a sequence from H+
BddLip for which 1 ≥ Hk ↓ 0

pointwise. For a fixed ε > 0, temporarily write σk for τ(Hk, ε). By compactness
of [0, 1], the pointwise convergence of the continuous functions, Hk(·, ω) ↓ 0,
is actually uniform. For each ω, the sequence {σk(ω)} not only increases to 1, it
actually achieves the value 1 at some finite k (depending on ω). Uniform integrability
of {Sσk : k ∈ N} and the analog of <7> for each Hk then give

µHk ≤ εPS1 + CH P
(
S1 − Sσk

) → εPS1 as k → ∞.

The sigma-smoothness of µ follows. The functional corresponds to the integral with
respect to a finite measure on P, with total mass µ[[0, 1]] = limn µn[[0, 1]] = PS1.

Identification as a Doléans measure

It remains to prove that

(a) µ{0} × � = 0

(b) µ[[0, τ ]] = PSτ for τ ∈ T1.

Consider first the proof of (b). For given ε > 0, approximate [[0, τ ]] by the
continuous process

Hε(t, ω) = min
(
1, (τ (ω) + ε − t)+ /ε

)
for 0 ≤ t ≤ 1.

0 1τ τ+ε

Hε 1–Hε

ε
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It is adapted because {Hε(t, ω) ≤ c} = {τ ≤ t − ε(1 − c)} ∈ Ft , for each
fixed t and constant 0 ≤ c < 1. It belongs to H+

BddLip, with CHε
= 1/ε, and

[[0, τ ]] ≤ Hε ≤ [[0, τ + ε]].
When 2−n < ε, direct calculation shows that µn Hε ≤ PSτ+2ε , which in the

limit implies µHε ≤ PSτ+2ε . By Dominated Convergence,

µ[[0, τ ]] = limε→0 µHε ≤ PSτ .

Inequality <7> applied with τε := τ(1 − Hε, ε) gives

µ((τ + ε, 1]] ≤ µ
(
1 − Hε

) ≤ εPS1 + P
(
S1 − Sτε

)
,

which, in the limit as ε tends to zero, implies µ(τ, 1]] ≤ P
(
S1 − Sτ

)
. From the fact

that
PS1 = µ[[0, 1]] = µ[[0, τ ]] + µ((τ, 1]] ≤ PSτ + P

(
S1 − Sτ

)
,

conclude that µ[[0, τ ]] = PSτ .
Specialize to the case τ ≡ 0 to get (a).�

3. Measures as linear functionals

The following material on the Daniell construction of integrals is taken almost
verbatim from Pollard (2001, Appendix A), where proofs are given.

<8> Definition. Call a class H+ of nonnegative real functions on a set X a lattice
cone if it has the following properties. If h, h1 and h2 belong to H+, and α1 and
α2 are nonegative real numbers, then:

(H1) α1h1 + α2h2 belongs to H+;

(H2) h1\h2 := (h1 − h2)
+ belongs to H+;

(H3) the pointwise minimum h1 ∧ h2 and maximum h1 ∨ h2 belong to H+;

(H4) h ∧ 1 belongs to H+.

For a lattice cone H+, let K0 denote the class of all sets of the form
K = {h ≥ α}, with h ∈ H+ and a constant α > 0. Notice that K = {h′ = 1} and
K ≤ h′ ≤ 1, where h′ = 1 ∧ (h/α). Let K denote the ∩c-closure of K0. That is, a
set K in K has a representation

<9> K =
⋂

i∈N
{hi ≥ αi }.

The sets in K are precisely those whose indicator functions are limits of decreasing
sequences of functions in H+. The class K plays a role similar to that of the
compact sets for measures on B(Rk). In particular, the class

F(K) = {F ⊆ X : F ∩ K ∈ K for all K ∈ K}
has properties analogous to the closed sets, and

B(K) = sigma-field generated by F(K)

is analogous to the Borel sigma-field. Each member of H+ is B(K)-measurable.
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<10> Theorem. Let H+ be a lattice cone, and T : H+ → R
+ be a map for which

(T1) for nonnegative real numbers α1, α2 and functions h1, h2 in H+, T (α1h1 +
α2h2) = α1T h1 + α2T h2;

(T2) if h1 ≤ h2 pointwise then T h1 ≤ T h2.

(T3) T hn ↓ 0 whenever the sequence {hn} in H+ decreases pointwise to zero.

(T4) T (h ∧ n) → T h as n → ∞, for each h in H+.

Then the set function defined by

µK := inf{T h : K ≤ h ∈ H+} for K ∈ K,

µB := sup{µK : B ⊇ K ∈ K}
is a countably additive measure on B(K) for which T h = µh for all h in H+.

4. Problems

[1] Let {Xi : 0 ≤ i ≤ n} be a submartingale with X0 ≡ 0. For a fixed λ ∈ R
+, define

stopping times σ := min{i : Xi ≤ −λ} ∧ 1 and τ := min{i : Xi ≥ λ} ∧ 1.

(i) Show that

λP{maxi Xi > λ} ≤ PXτ {Xτ ≥ λ} ≤ PX1{Xτ ≥ λ} ≤ P|Xn|.
(ii) Show that

λP{mini Xi < −λ} ≤ P(−Xσ ){Xσ ≤ −λ}
≤ −PXσ + PXn{Xσ > −λ} ≤ P|Xn|.

(iii) Suppose {Yt : 0 ≤ t ≤ 1} is a cadlag submartingale with Y0 ≡ 0. Show
that λP{supt |Yt | > λ} ≤ 2P|Y1|.

[2] Suppose a cadlag martingale {St : 0 ≤ t ≤ 1}, with S0 ≡ 0, has a Doléans measure µ

in the sense of Definition <2>, that is, µ((0, τ ]] = PSτ for every τ ∈ T1. Show that
S has property [D] by following these steps.

(i) For a given τ ∈ T1, let τn be the stopping time obtained by rounding up
to the next integer multiple of 2−n .

(ii) Invoke the Stopping Time Lemma to show that 0 ≤ PSτn and PS+
τn

≤ PS+
1

for each τ ∈ T1. Deduce that P|Sτn | ≤ κ := 2PS+
1 < ∞.

(iii) Invoke Fatou’s lemma to show that supτ∈T1
P|Sτ | ≤ κ .

(iv) For each C ∈ R
+, show that

PSτn {Sτn > C} ≤ PS1{Sτn > C} ≤ PS1{S1 >
√

C} + κ/
√

C .

Invoke Fatou, then deduce that supτ∈T1
PSτ {Sτ > C} → 0 as C → ∞.

(v) Show that every cadlag function on [0, 1] is bounded in absolute value.
Deduce that the stopping time σC := inf{t : St < −C} ∧ 1 has σC(ω) = 1
for all C large enough (depending on ω). Deduce that µ((σC , 1]] → 0 as
C → ∞.
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(vi) For a given τ ∈ T1 and C ∈ R
+, define Fτ := {Sτ < −C}. Show that

τ ′ := τ Fc
τ + Fτ is a stopping time for which

P
(
S1 − Sτ

)
Fτ = P

(
Sτ ′ − Sτ

) = µ((τ, τ ′]] ≤ µ((σC , 1]],

Hint: Show that if ω ∈ Fτ then σC(ω) ≤ τ(ω) and if ω ∈ Fc
τ then

τ(ω) = τ ′(ω).

(vii) Deduce that supτ∈T1
P

( − Sτ

) {Sτ < −C} → 0 as C → ∞.

[3] Let {St : t ∈ R
+} be a submartingale of class [D]. Show that there exists an

integrable random variable S∞ for which P
(
S∞ | Ft

) ≥ St → S∞ almost surely and
in L1 by following these steps.

(i) Show that the uniformly integrable submartingale {Sn : n ∈ N} converges
almost surely and in L1 to an S∞ for which P

(
S∞ | Fn

) ≥ Sn .

(ii) For t ≤ n, show that St ≤ P
(
P(S∞ | Fn) | Ft

) = P
(
S∞ | Ft

)
.

(iii) For t ≥ n, show that

P(St − Sn)
− ≤ P(St − Sn)

+ ≤ P(S∞ − Sn)
+ → 0 as n → ∞.

(iv) For each k ∈ N, choose n(k) for which P|S∞ − Sn(k)| ≤ 4−k . Invoke
Problem [1] to show that

∑
k P{supt≥n(k) |St − Sn(k)| > 2−k} < ∞.

(v) Deduce that St → S∞ almost surely.

5. Notes

My exposition in this Chapter is based on ideas drawn from a study of Métivier (1982,
§13), Dellacherie & Meyer (1982, Chapter VII), and Chung & Williams (1990,
Chapter 2). The construction in Section 2 appears new, although it is clearly closely
related to existing methods.
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Analytic sets

For a discrete-time process {Xn} adapted to a filtration {Fn : n ∈ N},
the prime example of a stopping time is τ = inf{n ∈ N : Xn ∈ B}, the first
time the process enters some Borel set B. For a continuous-time process {Xt }
adapted to a filtration {Ft : t ∈ R

+}, it is less obvious whether the analogously
defined random variable τ = inf{t : Xt ∈ B} is a stopping time. (Also it is not
necessarily true that Xτ is a point of B.) The most satisfactory resolution of
the underlying measure-theoretic problem requires some theory about analytic
sets. What follows is adapted from Dellacherie & Meyer (1978, Chapter III,
paras 1–33, 44–45). The following key result will be proved in this handout.

<1> Theorem. Let A be a B(R+) ⊗ F-measurable subset of R
+ × � and let

(�, F, P) be a complete probability space. Then:

(i) The projection π� A := {ω ∈ � : (t, ω) ∈ A for some t in R
+} belongs

to F.

(ii) There exists an F-measurable random variable ψ : � → R
+ ∪ {∞}

such that ψ(ω) < ∞ and (ψ(ω), ω) ∈ A for almost all ω in the
projection π� A, and ψ(ω) = ∞ for ω /∈ π� A.

Remark. The map ψ in (ii) is called a measurable cross-section
of the set A. Note that the cross-section Aω := {t ∈ R+ : (t, ω) ∈ A} is
empty when ω /∈ π� A. It would be impossible to have (ψ(ω), ω) ∈ A for
such an ω.

The proofs will exploit the properties of the collection of analytic subsets
of [0, ∞] × �. As you will see, the analytic sets have properties analogous to
those of sigma-fields—stability under the formation of countable unions and
intersections. They are not necessarily stable under complements, but they do
have an extra stability property for projections that is not shared by measurable
sets. The Theorem is made possible by the fact that the product-measurable
subsets of R

+ × � are all analytic.

1. Notation

A collection D of subsets of a set X with ∅ ∈ D is called a paving on X. A
paving that is closed under the formation of unions of countable subcollections
is said to be a ∪c-paving. For example, the set Dσ of all unions of countable
subcollections of D is a ∪c-paving. Similarly, the set Dδ of all intersections
of countable subcollections of D is a ∩c-paving. Note that Dσδ := (Dσ )δ is a
∩c-paving but it need not be stable under ∪c.

Let T be a compact metric space equipped with the paving K(T ) of
compact subsets and its Borel sigma-field B(T ), which is generated by K(T ).

Remark. In fact, K(T ) is also the class of closed subsets of the
compact T .

For Theorem <1>, the appropriate space will be T = [0, ∞]. The sets in
B(R+)⊗F can be identified with sets in B(T )⊗F. The compactness of T will
be needed to derive good properties for the projection map π� : T × � → �.

An important role will be played by the ∩ f -paving

K(T ) × F := {K × F : K ∈ K(T ), F ∈ F} on T × �

and by the paving R that consists of all finite unions of sets from K(T ) × F.
That is, R is the ∪ f -closure of K(T ) × F. Note (Problem [1]) that R is a
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(∪ f, ∩ f )-paving on T × �. Also, if R = ∪i Ki × Fi then, assuming we have
discarded any terms for which Ki = ∅,

π�(R) = ∪iπ�

(
Ki × Fi

) = ∪i Fi ∈ F.

Remark. If E and F are sigma-fields, note the distinction between

E × F = {E × F : E ∈ E, F ∈ F}
and E ⊗ F := σ(E × F).

2. Why compact sets are needed

Many of the measurability difficulties regarding projections stem from the fact
that they do not “preserve set-theoretic operations” in the way that inverse
images do: π�

( ∪i Ai
) = ∪iπ� Ai but π�

( ∩i Ai
) ⊆ ∩iπ� Ai . Compactness of

cross-sections will allow us to strengthen the last inclusion to an equality.

<2> Lemma. [Finite intersection property] Suppose K0 is a collection of compact
subsets of a metric space X for which each finite subcollection has a nonemptyalso works for any Hausdorff

topological space intersection. Then ∩K0 
= ∅.

Proof. Arbitrarily choose a K0 from K0. If ∩K0 were empty then the sets
{K c : K ∈ K0} would be an open cover of K0. Extract a finite subcover
∪m

i=1 K c
i . Then ∩m

i=0 Ki = ∅, a contradiction.�
<3> Corollary. Suppose {Ai : i ∈ N} is a decreasing sequence of subsets

of T × � for which each ω-cross-section Ki (ω) := {t ∈ T : (t, ω) ∈ Ai } is
compact. Then π�

( ∩i∈N Ai
) = ∩i∈Nπ� Ai .

Proof. Suppose ω ∈ ∩i∈Nπ� Ai . Then {Ki (ω) : i ∈ N} is a decreasing
sequence of compact, nonempty (because ω ∈ π� Ai ) subsets of T . The finite
intersection property of compact sets ensures that there is a t in ∩i∈NKi (ω).
The point (t, ω) belongs to ∩i∈N Ai and ω ∈ π�

( ∩i Ai
)
.�

Remark. For our applications, we will be dealing only with sequences,
but the argument also works for more general collections of sets with
compact cross-sections.

<4> Corollary. If B = ∩i∈N Ri with Ri ∈ R then π� B = ∩i∈Nπ� Ri ∈ F.

Proof. Note that the cross-section of each R-set is a finite union of compact
sets, which is compact. Without loss of generality, we may assume that
R1 ⊇ R2 ⊇ . . .. Invoke Corollary <3>.�

3. Measurability of some projections

For which B ∈ B(T ) ⊗ F is it true that π�(B) ∈ F? From Corollary <4>,
we know that it is true if B belongs to Rδ . The following properties of outer
measures (see Problem [2]) will allow us to extend this nice behavior to sets
in Rσδ:

(i) If A1 ⊆ A2 then P
∗(A1) ≤ P

∗(A2)

(ii) If {Ai : i ∈ N} is an increasing sequence then P
∗ (

Ai
) ↑ P

∗ ( ∪i∈N Ai
)
.

(iii) If {Fi : i ∈ N} ⊆ F is a decreasing sequence then

P
∗ (

Fi
) = PFi ↓ P

( ∩i∈N Fi
) = P

∗ ( ∩i∈N Fi
)
.

For each subset D of T × � define �∗(D) := P
∗π� D, the outer measure

of the projection of D onto �. If Di ↑ D then π� Di ↑ π� D. If Ri ∈ R and
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Ri ↓ B then π� Ri ∈ F and π� Ri ↓ π� B ∈ F. The properties for P
∗ carry over

to analogous properties for �∗:

(i) If D1 ⊆ D2 then �∗(D1) ≤ �∗(D2)

(ii) If {Di : i ∈ N} is an increasing sequence then �∗ (
Di

) ↑ �∗ ( ∪i∈N Di
)
.

(iii) If {Ri : i ∈ N} ⊆ R is a decreasing sequence then �∗ (
Ri

) ↓
�∗ ( ∩i∈N Ri

)
.

With just these properties, we can show that π� behaves well on a much larger
collection of sets than R.

<5> Lemma. If A ∈ Rσδ then �∗(B) = sup{�∗(B) : B ∈ Rδ}. Consequently,
the set π� A belongs to F.

Proof. Write A as ∩i∈N Di with Di = ∪j∈N Ri j ∈ Rσ . As R is ∪ f -stable, we
may assume that Ri j is increasing in j for each fixed i .

Suppose �∗(A) > M for some constant M . Invoke (ii) for the sequence
{AR1 j }, which increases to AD1 = A, to find an index j1 for which the
set R1 := R1 j1 has �∗ (

AR1
)

> M .
The sequence {AR1 R2 j } increases to AR1 D2 = AR1. Again by (ii), there

exists an index j2 for which the set R2 = R2 j2 has �∗(AR1 R2) > M . And so
on. In this way we construct sets Ri in R for which

�∗(R1 R2 . . . Rn) ≥ �∗(AR1 R2 . . . Rn) > M

for every n. The set BM := ∩i∈N Ri belongs to Rδ; it is a subset of ∩i∈N Di = A;
and, by (iii), �∗(B) ≥ M .

By Corollary <4>, the set BM projects to a set FM := π� BM in F and
hence PFM = �∗ B ≥ M . The set π� A is inner regular, in the sense that

P
∗π� A = �∗ A = sup{PF : π� A ⊇ F ∈ F}

It follows (Problem [2]) that the set π� A belongs to F.�
The properties shared by P

∗ and �∗ are so useful that they are given a
name.

<6> Definition. Suppose S is a paving on a set S. A function � defined for all
subsets of S and taking values in [−∞, ∞] is said to be a Choquet S-capacity
if it satisfies the following three properties.

(i) If D1 ⊆ D2 then �(D1) ≤ �(D2)

(ii) If {Di : i ∈ N} is an increasing sequence then �
(
Di

) ↑ �
( ∪i∈N Di

)
.

(iii) If {Si : i ∈ N} ⊆ S is a decreasing sequence then �
(
Si

) ↓ �
( ∩i∈N Si

)
.

The outer measure P
∗ is a Choquet F-capacity defined for the subsets

of �. Moreover, if � is any Choquet F-capacity defined for the subsets of �

then �∗(D) := �(π� D) is a Choquet R-capacity defined for the subsets
of T × �. The argument from Lemma <5> essentially shows that if A ∈ Rσδ

then �∗(B) = sup{�∗(B) : B ∈ Rδ} for every such �∗, whether defined via P
∗

or not.

4. Analytic sets

The paving of S-analytic sets can be defined for any paving S on a set S. For
our purposes, the most important case will be S = T × � with S = R.
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<7> Definition. Suppose S is a paving on a set S. A subset A of S is said
to be S-analytic if there exists a compact metric space E and a subset D
in

(
K(E) × S

)
σδ

for which A = πS D. Write A(S) for the set of all S-analytic
subsets of S.

Remark. Note that Rσδ = (K(T ) × F)σδ . The σ takes care of the ∪ f
operation needed to generate R from K(T ) × F. The R-analytic sets are
also called K(T ) × F-analytic sets.

In fact, it is possible to find a single E that defines all the S-analytic
subsets, but that possibility is not important for my purposes. What is important
is the fact that A(S) is a (∪c, ∩c)-paving: see Problem [3].

When E is another compact metric space, Tychonoff’s theorem (see
Dudley 1989, Section 2.2, for example) ensures not only that the product space
E × T is a compact metric space but also that K(E) × K(T ) ⊆ K(E × T ).

Lemma <5>, applied to T̃ := E × T instead of T and with R̃ the
∪ f -closure of K(E × T ) × F, implies that

<8> π̃� D ∈ F for each D in R̃σδ.

Here π̃� projects E × T × � onto �. We also have

R̃σδ ⊇ (
K(E) × K(T ) × F

)
σδ

= (
K(E) × R

)
σδ

where R is the ∪ f -closure of K(T ) × F, as in Section 3. As a special case of
property <8> we have

<9> π̃� D ∈ F for each D in
(
K(E) × R

)
σδ

.

Write π̃� as a composition of projection π� ◦ π̃T ×�, where π̃T ×� projects
E × T × � onto T × �. As E ranges over all compact metric spaces and D
ranges over all the

(
K(E) × R

)
σδ

sets, the projections A := π̃T ×� D range over
all R-analytic subsets of T × �. Property <9> is equivalent to the assertion

<10> π� A ∈ F for all A ∈ A(R).

In fact, the method used to prove Lemma <5> together with an analogue
of the argument just outlined establishes an approximation theorem for analytic
sets and general Choquet capacities.

<11> Theorem. Suppose S is a (∪ f, ∩ f )-paving on a set S and Let � is a
Choquet S-capacity on S. Then �(A) = sup{�(B) : A ⊇ B ∈ Sδ}. for each A
in A(S).

To prove assertion (i) of Theorem <1>, we have only to check that

B(T ) ⊗ F ⊆ A(R)

for the special case where T = [0, ∞]. By Problem [3], A(R) is a (∪c, ∩c)-
paving. It follows easily that

H := {H ∈ B(T ) ⊗ F : H ∈ A(R) and H c ∈ A(R) }
is a sigma-field on T × �. Each K × F with K ∈ K(T ) and F ∈ F belongs
to H because K(T ) × F ⊆ R ⊆ A(R) and

(K × F)c = (
K × Fc

) + (
K c × �

)
K c = ∪i∈N{t : d(t, K ) ≥ 1/ i} ∈ K(T )σ

It follows that H = σ(K(T ) × F) = B(T ) ⊗ F and B(T ) ⊗ F ⊆ A(R).
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5. Existence of measurable cross-sections

The general Theorem <11> is exactly what we need to prove part (ii) of
Theorem <1>.

Once again identify A with an R-analytic subset of T × �, where
T = [0, ∞]. The result is trivial if α1 := Pπ� A = 0, so assume α1 > 0.

Invoke Theorem <11> for the R-capacity defined by �∗(D) = P
∗(π� D).

Find a subset with A ⊇ B1 ∈ Rδ and P
(
π� B1

) = �∗(B1) ≥ α1/2. Define

ψ1(ω) := inf{t ∈ R
+ : (t, ω) ∈ B1}.

Because the set B1 has compact cross-sections, the infimum is actually achieved
for each ω in π� B1. For ω /∈ π� B1 the infimum equals ∞. Define

A2 := {(t, ω) ∈ A : ω /∈ π� B1} = A ∩ (
T × (π� B1)

c
)

Note that A2 ∈ A(R) and α2 := Pπ� A2 ≤ α1/2. Without loss of generality
suppose α2 > 0. Find a subset with A2 ⊇ B2 ∈ Rδ and P

(
π� B2

) = �∗(B2) ≥
α2/2. Define ψ2(ω) as the first hitting time on B2.

T

πΩA

A

B1

B2
πΩA2

And so on. The sets {π� Bi : i ∈ N} are disjoint, with F := ∪i∈Nπ� Bi a
subset of π� A. By construction αi ↓ 0, which ensures that P

(
(π� A)\F

) = 0.If αi = 0 for some i , the con-
struction requires only finitely
many steps. Define ψ := infi∈N ψi . On B we have (ψ(ω), ω) ∈ A.�

6. Problems

[1] Suppose S is a paving (on a set S), which is ∩ f -stable. Let S∪ f consists of
the set of all unions of finite collections of sets from S. Show that S∪ f is a
(∪ f, ∩ f )-paving. Hint: Show that (∪i Si ) ∩ (∪j Tj ) = ∪i, j (Si ∩ Tj ).

[2] The outer measure of a set A ⊆ � is defined as PA := inf{PF : A ⊆ F ∈ F}.
(i) Show that the infimum is achieved, that is, there exists an F ∈ F for

which A ⊆ F and P
∗ A = PF . Hint: Consider the intersection of a

sequence of sets for which PFn ↓ P
∗ A.

(ii) Suppose {Dn : n ∈ N} is an increasing sequence of sets (not
necessarily F-measurable) with union D. Show that P

∗ Dn ↑ P
∗ D.

Hint: Find sets with Di ⊆ Fi ∈ F and P
∗ Di = PFi . Show that

∩i≥n Fi ↑ F ⊇ D and PF ≤ supi∈N
P

∗ Di .

(iii) Suppose D is a subset of � for which P
∗ D = sup{PF0 : D ⊇ F0 ∈ F}.

Show that D belongs to the P-completion of F (or to F itself if F is
P-complete). Hint: Find sets F and Fi in F for which Fi ⊆ D ⊆ F
and PFi ↑ P

∗ D = PF . Show that F\ ( ∪i∈N Fi
)

has zero P-measure.

[3] Suppose {Aα : α ∈ N} ⊆ A(S). Show that ∪α Aa ∈ A(S) and ∩α Aa ∈ A(S), by
the following steps. Recall that there exist compact metric spaces {Eα : α ∈ N},
each equipped with its paving Kα of compact subsets, and sets Dα ∈ (

Kα × S
)
σδ

for which Aα = πS Dα .D&M Theorem 3.8
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(i) Define E := ×α∈N Eα and E−β = ×α∈N\{β}Eα . Show that E is a
compact metric space.

(ii) Define D̃ := Dα × E−α . Show that D̃α ∈ (
K(E) × S

)
σδ

and that
Aα = π̃S D̃α , where π̃S denotes the projection map from E × S to S.

(iii) Show that ∩α Aα = π̃S
( ∩α D̃α

)
and ∩α D̃α ∈ (

K(E) × S
)
σδ

.

(iv) Without loss of generality suppose the Eα spaces are disjoint—
otherwise replace Eα by {α} × Eα . Define H = ∪α∈N Eα and
E∗ := H ∪ {∞}. Without loss of generality suppose the metric dα

on Eα is bounded by 2−α . Define

d(x, y) = d(y, x) :=
{ dα(x, y) if x, y ∈ Eα

2−α + 2−β if x ∈ Eα , y ∈ Eβ with α 
= β

2−α if y = ∞ and x ∈ Eα

Show that E∗ is a compact metric space under d.

(v) Suppose Dα = ∩i∈N Bαi with Bαi ∈ (Kα × S)σ . Show that ∪α Dα =
∩i ∪α Bα,i . Hint: Consider the intersection with Eα × S.

(vi) Deduce that ∪α Dα ∈ (K(E∗) × S)σδ .

(vii) Conclude that ∪α Aα = πS ∪α Dα ∈ A(S).
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Brownian motion: introduction

A standard Brownian motion on R
+ for a filtration {Ft : t ∈ R

+} is an
adapted process for which

(i) all sample paths are continuous

(ii) X (0, ω) = 0 for all ω

(iii) for each pair s, t with 0 ≤ s ≤ t ,

Xt − Xs is N (0, t − s) distributed independent of Fs

Properties (ii) and (iii) together imply: for each 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk , the
random vector (Xt1 , . . . , Xtk ) has a multivariate normal distribution with zero
means and covariances given by

cov(Xs, Xt ) = min(s, t)

Abbreviate P(. . . | Ft ) to Pt (. . .).

Useful facts: some rigorous proofs to follow

(i) For a fixed τ ≥ 0 define Zt = Bτ+t − Bτ for t ≥ 0. Then Z is a standard
Brownian motion independent of Fτ .

(ii) (Strong Markov property) Same assertion as in (i) except that τ is a
stopping time.

(iii) (Time reversal) Define Zt = t B1/t for t > 0, with Z0 = 0. Then
{Zt : t ∈ R

+} is a also a standard Brownian motion.

(iv) Both {(Bt , Ft ) : t ∈ R
+} and {(B2

t − t, Ft ) : t ∈ R
+} are martingales.

(v) For each real θ , the process Yt = exp
(
θ Xt − 1

2θ2t
)

is a martingale.
(For complex θ , would it be a complex martingale?)

<1> Lévy’s martingale characterization of Brownian motion. Suppose
{Xt : 0 ≤ t ≤ 1} is a martingale with continuous sample paths and X0 = 0.
Suppose also that X2

t − t is a martingale. Then X is a Brownian motion.

Heuristics of the proof that X1 ∼ N (0, 1). The two martingale assuptions
give two properties of the increment �X = Xt − Xs , for s < t :

<2> Ps�X = 0 and Ps(�X)2 = t − s.

Let f (x, t) be a smooth function of two arguments, x ∈ R and t ∈ [0, 1].
Define

fx = ∂ f

∂x
and fxx = ∂2 f

∂2x
and ft = ∂ f

∂t
.

Let h = 1/n for some large positive integer n. Define ti = ih for i = 0, 1, . . . , n.
Write �i X for X (ti + h) − X (ti ). Then

P f (X1, 1) − P f (X0, 0)

=
∑
i<n

(
P f (Xti +h, ti + h) − E f (Xti , ti )

)

≈
∑
i<n

P
(
(�i X) fx (Xti , ti ) + 1

2 (�i X)2 fxx (Xti , ti ) + h ft (Xti , ti )
)

=
∑
i<n

(
0 + 1

2 hP fxx (Xti , ti ) + hP ft (Xti , ti )
)

≈
∫ 1

0

(
1
2 P fxx (Xs, s) + P ft (Xs, s)

)
ds if h is small by <2>.
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We need to formalize the passage to the limit to get

P f (X1, 1) − P f (X0, 0) =
∫ 1

0

(
1
2 P fxx (Xs, s) + P ft (Xs, s)

)
ds.

Specialize to the case f (x, s) = exp
(
θx − 1

2θ2s
)
, with θ a fixed constant.

By direct calculation,

fx = θ f (x, s) and fxx = θ2 f (x, s) and ft = − 1
2θ2 f (x, s)

Thus

Peθ X1 e−θ2/2 − 1 =
∫ 1

0
0 ds = 0.

That is, X1 has the moment generating function exp(θ2/2), which identifies it
as having a N (0, 1) distribution.�

As you will see, we are effectively proving a martingale central limit
theorem. Look at the handout martingaleCLT.pdf before we start on a
rigorous proof.
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