
Appendix C

Doléans measures

C.1 Introduction

Once again all random processes will live on a fixed probability space (Ω,F,P)
equipped with a filtration {Ft : 0 ≤ t ≤ 1}. We should probably assume the
filtration is standard even though it does not seem essential for this project.

The construction (Project 6) of the isometric stochastic integral H •M
with respect to a martingale M ∈ M2

0[0, 1], at least for bounded, pre-
dictable H, depended on the existence of the Doléans measure µ on the
predictable sigma-field P on S1 := Ω×(0, 1]. To make the map H 7→ H •M1

an isometry between Hsimple and a subset of L2(Ω,F1,P) we needed

µ(a, b]× F = P{ω ∈ F}(Mb −Ma)2 for all 0 ≤ a < b ≤ 1 and F ∈ Fa.<1>

This property characterizes the measure µ because the collection of all pre-
dictable sets of the form (a, b]× F is ∩f -stable and it generates P.

The sigma-field P is also generated by the set of all stochastic inter-
vals ((0, τ ]] for τ ∈ T1, the set of all [0, 1]-valued stopping times for the
filtration. The Doléans measure is also characterized by the property

µ((0, τ ]] = PM2
τ for all τ ∈ T1.

Notice that µ depends on M only through the submartingale St := M2
t . In

fact, analogous measures can be defined for a large class of submartingales.

<2> Definition. Let {St : 0 ≤ t ≤ 1} be a cadlag submartingale with S0 ≡ 0.
Say that a finite (countably-additive) measure µS, defined on the predictable
sigma-field P on S, is the Doléans measure for S if µ((0, τ ]] = PSτ for
every τ in T1, the set of all [0, 1]-valued stopping times for the filtration.

Remark. If µS exists then Sτ must be integrable for every τ in T1. In
fact we will need the uniform integrability only for stopping times with
a finite range (Métivier 1982, page 80).

I mentioned explicitly that µS must be countably-additive to draw at-
tention to a subtle requirement on S for µS to exist, known somewhat cryp-
tically as property [D]:

[D] the set of random variables {Sτ : τ ∈ T1} is uniformly integrable.
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Problem [2] shows that if there exists a (countably-additive) Doléans mea-
sure µS then S has property [D]. The proof of the converse assertion is the
main subject of this Appendix.

<3> Theorem. Every cadlag submartingale {St : 0 ≤ t ≤ 1} with property [D]
has a countably additive Doléans measure µS on the predictable sigma-field P

on S := Ω× (0, 1].

Remark. Alert readers will be thinking—correctly—that property [D] must
be used somewhere to convert a pointwise convergence along a sequence of
stopping times into an L1 convergence.

<4> Example. If M ∈ M2
0[0, 1] then the submartingale St = M2

t has prop-
erty [D]. Indeed, we know from Project 4 that Mτ = P(M1 | Fτ ) for
all τ ∈ T1. Thus 0 ≤ M2

τ ≤ P
(
M2

1 | Fτ
)

for each τ in T1. Use the fact
that {P(ξ | G) : G a sub-sigma-field of F} is uniformly integrable for each
integrable random variable ξ to complete the argument.

�

Remark. If I write µS for the Dol’eans measure then I should write µM2

instead of the µM used in Project 6. Indeed, Definition 2 would give µM ≡ 0
if applied directly to the submartingale M . You might want to go back and
make the necessary changes.

<5> Example. Let {Bt : 0 ≤ t ≤ 1} be a standard Brownian motion. The
submartingale St := B2

t has a very simple Doléans measure, characterized
by

µS(a, b]⊗ F = PF
(
B2
b −B2

a

)
= PF (b− a) for F ∈ Fa.

That is, µS = P ⊗ m, with m equal to Lebesgue measure on B(0, 1]. Of
course µS has a further extension to the product sigma-field F ⊗B(0, 1].

A Poisson process {Nt : 0 ≤ t ≤ 1} with intensity 1 shares with Brownian
motion the independent increment property. It is a submartingale with
sample paths that are constant, except for jumps of size 1 corresponding to
points of the process; the increment Nt−Ns has a Poisson(t−s) distribution.
It has Doléans measure µN = P ⊗ m, the same as the square of Brownian
motion.

Clearly the Doléans measure does not uniquely determine the submartin-
gale. But the only square integrable martingale M with continuous sample
paths and Doléans measure µM2 = P ⊗ m is Brownian motion: if F ∈ Fs
and s < t then PF (M2

t −M2
s ) = µM2F × (s, t] = (t − s)PF , from which it

follows that M2
t − t is a martingale with respect to {Ft}. It follows from

Lévy’s characterization that M is a Brownian motion.
�
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C.2 Existence of the Doléans measure for class [D]

There are several ways to prove that a cadlag submartingale {St : 0 ≤ t ≤ 1}
of class [D] has a countably additive Doléans measure. For example:

(i) Invoke an approximation by compact sets (see Métivier 1982, Chap-
ter 3 or Chung and Williams 1990, Section 2.8, for example).

(ii) For the square of a continuous M2
0[0, 1]-martingale M , prove directly

the existence of an increasing process A (the quadratic variation pro-
cess) for which M2

t − At is a martingale (Chung and Williams 1990,
Section 4.4).

(iii) Do something very general, as in Dellacherie and Meyer (1982, §7.1).

I will present a different method, based on the identification of mea-
sures on P with a certain kind of linear functional defined on the vector
space HBddLip of all adapted, continuous processes H on (0, 1]×Ω for which
there exists a finite constant CH such that

(i) |H(t, ω)| ≤ CH for all (t, ω).

(ii) |H(s, ω)−H(t, ω)| ≤ CH |t− s| for all s, t, and ω.

The limitH(0, ω) := limt↓↓0H(t, ω) exists for each ω. Each member of HBddLip

is predictable. Also, as you saw in Project 6, HBddLip generates the sigma-
field P.

<6> Theorem. There exists a one-to-one correspondence between finite mea-
sures on P and increasing linear functionals µ : HBddLip → R for which

µ(hk) ↓ 0 for each {hk : nk ∈ N} ⊆ HBddLip with hk ↓ 0 pointwise.

See Pollard (2001, Appendix A) for a proof.

Proof (of Theorem 3) Construct µ as a limit of simpler functionals. For
each n in N and i = 0, 1, . . . , 2n define ti,n := i/2n. Write Pi,n(· · · ) for
expectations conditional on F(ti,n). Define ∆i,n := S(ti+1,n)−S(ti,n). Note
that Pi,n∆i,n ≥ 0 almost surely, by the submartingale property. For each H
in HBddLip, define

µnH :=
∑

0≤i<2n
P
(
H(ti,n)∆i,n

)
=
∑

0≤i<2n
P
(
H(ti,n)Pi,n∆i,n

)
.

Clearly, µn is a linear functional on HBddLip. The second expression for µnH
ensures that µn is increasing in H.
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The proof involves four steps:

(a) Show that µH := limn→∞ µnH exists for each H ∈ HBddLip. Note that
µ inherits its linearity and the increasing property from µn.

(b) For each nonnegative H ∈ HBddLip and each ε > 0 define τ(H, ε) :=
inf{t : H(t, ω) ≥ ε} ∧ 1. Show that µH ≤ εPS1 + CHP

(
S1 − Sτ(H,ε)

)
.

(c) Show that µ(hk) ↓ 0 if hk ↓ 0 pointwise.

(d) Show that µ((0, τ ]] = PSτ for each τ ∈ T1.

Proof of (a).

For each H ∈ H, show that the sequence {µnH : n ∈ N} is Cauchy. Fix n
and m with n < m. Define Ji := {j : ti,n ≤ tj,m < ti+1,n}. Then

|
(∑

j∈Ji
PH(tj,m)∆j,m

)
− PH(ti,n)∆i,n|

= |
∑

j∈Ji
P
(
H(tj,m)−H(ti,n)

)
∆j,m|

≤
∑

j∈Ji
P
(
|H(tj,m)−H(ti,n)|Pj,m∆j,m

)
≤
∑

j∈Ji
CH2−nP∆j,m

= CH2−n
∑

j∈Ji
P∆i,n

Sum over i to deduce that |µmH − µnH| ≤ CH2−nPS1, which tends to zero
as n tends to infinity.

Proof of (b).

Temporarily write τn for the discretized stopping time obtained by rounding
τ(H, ε) up to the next integer multiple of 2−n. Then

µnH ≤
∑

0≤i<2n
P
(
ε{ti,n < τn}+ CH{ti,n ≥ τn}

)
Pi,n∆i,n

≤ ε
∑

0≤i<2n
P∆i,n + CH

∑
0≤i<2n

P{ti,n ≥ τn}∆i,n

≤ εPS1 + CHP (S1 − Sτn) .

Let n tend to infinity. Uniform integrability of the sequence {Sτn} together
with right-continuity of the sample paths of S gives the asserted inequality.
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Proof of (c).

For a fixed ε > 0, temporarily write σk for τ(Hk, ε). By compactness of [0, 1],
the pointwise convergence of the continuous functions, Hk(·, ω) ↓ 0, is actu-
ally uniform. For each ω, the sequence {σk(ω)} not only increases to 1, it
actually achieves the value 1 at some finite k (depending on ω). Uniform
integrability of {Sσk : k ∈ N} and the analog of (b) for each Hk then give

µHk ≤ εPS1 + CHP (S1 − Sσk)→ εPS1 as k →∞.

By Theorem 6, the functional corresponds to the integral with respect
to a finite measure on P, with total mass µ((0, 1]] = limn µn((0, 1]] = PS1.

Proof of (d).

For a given ε > 0, approximate ((0, τ ]] by

Hε(t, ω) := min
(
1, (τ(ω) + ε− t)+ /ε

)
for 0 ≤ t ≤ 1.

10

Hε

τ τ+ε

ε

Note that {(ω, t) ∈ S : Hε(ω, t) ≥ 1 − c} = ((0, τ + cε]] for each 0 ≤ c < 1,
which ensures that Hε is predictable. It belongs to HBddLip with CHε = 1/ε,
and µ((0, τ ]] ≤ µHε ≤ µ((0, τ + ε]]. When 2−n < ε,

PSτ+2ε ≥ P
∑

i
{ti,n ≤ τ + ε}Pi,n∆i,n

≥ µnHε

≥ P
∑

i
{ti,n ≤ τ}Pi,n∆i,n ≥ PSτ .

In the limit as n→∞ we get PSτ+2ε ≥ µHε ≥ PSτ .
As ε → 0, the countable additivity of µ gives µ((0, τ + ε]] → µ((0, τ ]].

Property[D] and right-continuity of the sample paths gives PSτ+2ε → PSτ .
It follows that µ((0, τ ]] = PSτ .

�
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Problems

[1] Let {Xi : 0 ≤ i ≤ n} be a submartingale with X0 ≡ 0. For a fixed λ ∈ R+,
define stopping times

σ := min{i : Xi ≤ −λ} ∧ 1 and τ := min{i : Xi ≥ λ} ∧ 1.

(i) Show that

λP{maxiXi > λ} ≤ PXτ{Xτ ≥ λ} ≤ PX1{Xτ ≥ λ} ≤ P|Xn|.

(ii) Show that

λP{miniXi < −λ} ≤ P(−Xσ){Xσ ≤ −λ}
≤ −PXσ + PXn{Xσ > −λ} ≤ P|Xn|.

(iii) Suppose {Yt : 0 ≤ t ≤ 1} is a cadlag submartingale with Y0 ≡ 0. Show that
λP{supt |Yt| > λ} ≤ 2P|Y1|.

[2] Suppose a cadlag martingale {St : 0 ≤ t ≤ 1}, with S0 ≡ 0, has a Doléans
measure µ in the sense of Definition <2>, that is, µ((0, τ ]] = PSτ for ev-
ery τ ∈ T1. Show that S has property [D] by following these steps.

(i) For a given τ ∈ T1, let τn be the stopping time obtained by rounding up to
the next integer multiple of 2−n.

(ii) Invoke the Stopping Time Lemma to show that 0 ≤ PSτn and PS+
τn ≤ PS+

1

for each τ ∈ T1. Deduce that P|Sτn | ≤ κ := 2PS+
1 <∞.

(iii) Invoke Fatou’s lemma to show that supτ∈T1
P|Sτ | ≤ κ.

(iv) For each C ∈ R+, show that

PSτn{Sτn > C} ≤ PS1{Sτn > C} ≤ PS1{S1 >
√
C}+ κ/

√
C.

Invoke Fatou, then deduce that supτ∈T1
PSτ{Sτ > C} → 0 as C →∞.

(v) Show that every cadlag function on [0, 1] is bounded in absolute value. De-
duce that the stopping time σC := inf{t : St < −C} ∧ 1 has σC(ω) = 1 for
all C large enough (depending on ω). Deduce that µ((σC , 1]]→ 0 as C →∞.

(vi) For a given τ ∈ T1 and C ∈ R+, define Fτ := {Sτ < −C}. Show that
τ ′ := τF cτ + Fτ is a stopping time for which

P
(
S1 − Sτ

)
Fτ = P

(
Sτ ′ − Sτ

)
= µ((τ, τ ′]] ≤ µ((σC , 1]],
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Hint: Show that if ω ∈ Fτ then σC(ω) ≤ τ(ω) and if ω ∈ F cτ then τ(ω) =
τ ′(ω).

(vii) Deduce that supτ∈T1
P
(
− Sτ

)
{Sτ < −C} → 0 as C →∞.

[3] Let {St : t ∈ R+} be a submartingale of class [D]. Show that there exists
an integrable random variable S∞ for which P

(
S∞ | Ft

)
≥ St → S∞ almost

surely and in L1 by following these steps.
(i) Show that the uniformly integrable submartingale {Sn : n ∈ N} converges

almost surely and in L1 to an S∞ for which P
(
S∞ | Fn

)
≥ Sn.

(ii) For t ≤ n, show that St ≤ P
(
P(S∞ | Fn) | Ft

)
= P

(
S∞ | Ft

)
.

(iii) For t ≥ n, show that

P(St − Sn)− ≤ P(St − Sn)+ ≤ P(S∞ − Sn)+ → 0 as n→∞.

(iv) For each k ∈ N, choose n(k) for which P|S∞ − Sn(k)| ≤ 4−k. Invoke Prob-
lem [1] to show that

∑
k P{supt≥n(k) |St − Sn(k)| > 2−k} <∞.

(v) Deduce that St → S∞ almost surely.

C.3 Notes

My exposition in this Chapter is based on ideas drawn from a study of
Métivier (1982, §13), Dellacherie and Meyer (1982, Chapter VII), and Chung
and Williams (1990, Chapter 2). The construction in Section 2 appears new,
although it is clearly closely related to existing methods.
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