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Appendix C
Doléans measures

Introduction

Once again all random processes will live on a fixed probability space (€2, &, P)
equipped with a filtration {F; : 0 < ¢ < 1}. We should probably assume the
filtration is standard even though it does not seem essential for this project.

The construction (Project 6) of the isometric stochastic integral H o M
with respect to a martingale M € M3[0,1], at least for bounded, pre-
dictable H, depended on the existence of the Doléans measure p on the
predictable sigma-field P on &; := Q x (0, 1]. To make the map H — H e M;
an isometry between Hgmple and a subset of L2(Q,F1,P) we needed

w(a,b) x F =P{w € F}(M, — M,)? forall0 <a<b<1and F € 3F,.

This property characterizes the measure u because the collection of all pre-
dictable sets of the form (a,b] x F' is Nf-stable and it generates P.

The sigma-field P is also generated by the set of all stochastic inter-
vals ((0,7]] for 7 € Ty, the set of all [0, 1]-valued stopping times for the
filtration. The Doléans measure is also characterized by the property

p((0,7]] = PM?  forall T € T;.

Notice that p depends on M only through the submartingale S; := M?. In
fact, analogous measures can be defined for a large class of submartingales.

Definition. Let {S; : 0 <t < 1} be a cadlag submartingale with Sy = 0.
Say that a finite (countably-additive) measure pg, defined on the predictable
sigma-field P on &, is the Doléans measure for S if u((0,7]] = PS; for
every T in T1, the set of all [0, 1]-valued stopping times for the filtration.

Remark. If pg exists then S; must be integrable for every 7 in T7. In
fact we will need the uniform integrability only for stopping times with
a finite range (Métivier 1982, page 80).

I mentioned explicitly that pug must be countably-additive to draw at-
tention to a subtle requirement on S for pg to exist, known somewhat cryp-
tically as property [D]:

[D]  the set of random variables {S- : 7 € T1} is uniformly integrable.
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Problem [2] shows that if there exists a (countably-additive) Doléans mea-
sure pg then S has property [D]. The proof of the converse assertion is the
main subject of this Appendix.

Theorem. Every cadlag submartingale {S; : 0 < t < 1} with property [D]
has a countably additive Doléans measure ug on the predictable sigma-field P
on & :=Q x (0,1].

Remark. Alert readers will be thinking—correctly—that property [D] must
be used somewhere to convert a pointwise convergence along a sequence of
stopping times into an L' convergence.

Example. If M € M32[0,1] then the submartingale S; = M? has prop-
erty [D]. Indeed, we know from Project 4 that M, = P(M; | ;) for
all7 € 73. Thus 0 < M2 < P (M12 | 3'}) for each 7 in J7. Use the fact
that {P(§ | §) : G a sub-sigma-field of F} is uniformly integrable for each
integrable random variable £ to complete the argument.

Remark. If T write pg for the Dol’eans measure then I should write g2
instead of the pp; used in Project 6. Indeed, Definition 2 would give puy =0
if applied directly to the submartingale M. You might want to go back and
make the necessary changes.

Example. Let {B; : 0 < t < 1} be a standard Brownian motion. The
submartingale S; := B? has a very simple Doléans measure, characterized
by

ps(a,b)® F =PF (B — BY) =PF(b—a)  for F € F,.

That is, ps = P ® m, with m equal to Lebesgue measure on B(0,1]. Of
course g has a further extension to the product sigma-field ¥ ® B(0, 1].

A Poisson process { Ny : 0 < ¢ < 1} with intensity 1 shares with Brownian
motion the independent increment property. It is a submartingale with
sample paths that are constant, except for jumps of size 1 corresponding to
points of the process; the increment N; — N has a Poisson(t—s) distribution.
It has Doléans measure puy = P ® m, the same as the square of Brownian
motion.

Clearly the Doléans measure does not uniquely determine the submartin-
gale. But the only square integrable martingale M with continuous sample
paths and Doléans measure pjy2 = P ® m is Brownian motion: if F' € J;
and s < t then PF(M? — M2) = ppp2F x (s,t] = (t — s)PF, from which it
follows that M2 — t is a martingale with respect to {J;}. It follows from
Lévy’s characterization that M is a Brownian motion.
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Existence of the Doléans measure for class [D]

There are several ways to prove that a cadlag submartingale {S; : 0 < ¢ < 1}
of class [D] has a countably additive Doléans measure. For example:

(i) Invoke an approximation by compact sets (see Métivier 1982, Chap-
ter 3 or Chung and Williams 1990, Section 2.8, for example).

(ii) For the square of a continuous M3[0, 1]-martingale M, prove directly
the existence of an increasing process A (the quadratic variation pro-
cess) for which M? — A; is a martingale (Chung and Williams 1990,
Section 4.4).

(iii) Do something very general, as in Dellacherie and Meyer (1982, §7.1).

I will present a different method, based on the identification of mea-
sures on P with a certain kind of linear functional defined on the vector
space Hpqdrip of all adapted, continuous processes H on (0, 1] x 2 for which
there exists a finite constant C'y such that

(i) |H(t,w)| < Cqg for all (t,w).
(i) |H(s,w)— H(t,w)| < Cglt — s| for all s, t, and w.

The limit H(0,w) := limy| o H (¢, w) exists for each w. Each member of Hpqqrip
is predictable. Also, as you saw in Project 6, Hpqqri, generates the sigma-
field P.

Theorem. There exists a one-to-one correspondence between finite mea-
sures on P and increasing linear functionals p : Hpqarip — R for which

w(hg) L O for each {hy : nk € N} C Hpgarip with by | 0 pointwise.

See Pollard (2001, Appendix A) for a proof.

PROOF (OF THEOREM 3) Construct u as a limit of simpler functionals. For
each n in N and ¢ = 0,1,...,2" define ¢;,, := i/2". Write P;,(---) for
expectations conditional on F(t; ). Define A; ,, := S(tit1,,) — S(tin). Note
that P; ,A; , > 0 almost surely, by the submartingale property. For each H
in Hpadrip, define

pinH = ZOSK% P (H(tin)Ain) = Zogz‘<2n P (H(tin)Pinlin) -

Clearly, ju, is a linear functional on Hpqqr,ip- The second expression for i, H
ensures that u, is increasing in H.
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The proof involves four steps:

(a) Show that pH := lim, o pt, H exists for each H € Hpgarip. Note that
w inherits its linearity and the increasing property from .

(b) For each nonnegative H € Hpqqrip and each € > 0 define 7(H,¢) :=
inf{t : H(t,w) > e} A 1. Show that uH < ePS; + CulP (51 — Sr(m,0))-

(c) Show that p(hy) | 0 if hg | O pointwise.

(d) Show that p((0,7]] = PS; for each 7 € T3.

Proof of (a).

For each H € H, show that the sequence {u,H : n € N} is Cauchy. Fix n
and m with n < m. Define J; := {j : t; , <tjm < tit1n}. Then

(3,0, P s) =P
= | Zjeji P (H(tjm) = H(tin)) Ajml
< Zje 5 P (H (tm) = H (i) [PmAjm)
< Zjeji Cu2 "PA;j,,

=Cyg2™" Zje] PAi,n

(3

Sum over i to deduce that |, H — pup, H| < Cr2~"PS;, which tends to zero
as n tends to infinity.

Proof of (b).

Temporarily write 7, for the discretized stopping time obtained by rounding
7(H,€) up to the next integer multiple of 27". Then

pnH < ZO§i<2" P (5{ti,n < Tn} + OH{ti,n > Tn}) ]P)i,nAi,n

= ZO§i<2” PAin+Cn ZO§i<2n P{tin = T} Ain
< €PS; + CxP (51— S-,).

Let n tend to infinity. Uniform integrability of the sequence {S;, } together
with right-continuity of the sample paths of S gives the asserted inequality.
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Proof of (c).

For a fixed € > 0, temporarily write o for 7(Hy, €). By compactness of [0, 1],
the pointwise convergence of the continuous functions, Hy(-,w) | 0, is actu-
ally uniform. For each w, the sequence {ox(w)} not only increases to 1, it
actually achieves the value 1 at some finite k& (depending on w). Uniform
integrability of {S,, : kK € N} and the analog of (b) for each Hy, then give

wHp SEPSquCHP(Sl*SUk) — €PSy as k — oo.

By Theorem 6, the functional corresponds to the integral with respect
to a finite measure on P, with total mass x((0, 1] = lim,, p,((0, 1] = PS.

Proof of (d).
For a given ¢ > 0, approximate ((0, 7] by

H(t,w) := min (1, ( YFe—t)" /€) for0 <t <1
\ €
0 T The 1

Note that {(w,t) € & : H(w,t) > 1 —c} = ((0,7 + ce]] for each 0 < ¢ < 1,
which ensures that H, is predictable. It belongs to Hpaqrip with Cg, = 1/e,
and p((0,7]] < pHe < p((0, 7 + €]]. When 27" <,

]:P)ST+2E > PZ.{ti,n <7+ 6}[F)i,nAz n
(]
> ,unHe
> Pzi{ti,n < T}Pi,nAi,n > PS;.
In the limit as n — oo we get PS; o > uHe > PS;.
As € — 0, the countable additivity of u gives u((0,7 + €]] — w((0,7]].

Property[D] and right-continuity of the sample paths gives PS; 9. — PS;.
It follows that u((0, )] = PS;.
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Problems

1] Let {X;: 0 < i < n} be a submartingale with Xy = 0. For a fixed A € RT,
define stopping times

o:=min{i: X; <-A} A1 and 7:=min{i: X; > A} A L
(i) Show that

AP{max; X; > A} < PX{X, > \} < PX1{X, > A} < P|X,|.

(ii) Show that

AP{min; X; < —A} < P(—X,){X, < —A}
< —PX, +PX,{X, > —A} < P|X,|.

(iii) Suppose {Y; : 0 <t < 1} is a cadlag submartingale with Yy = 0. Show that
AP{sup, |Y;| > A} < 2P|Y}].

2] Suppose a cadlag martingale {S; : 0 < ¢ < 1}, with Sy = 0, has a Doléans
measure g in the sense of Definition <2>, that is, u((0,7]] = PS, for ev-
ery 7 € T1. Show that S has property [D] by following these steps.

(i) For a given 7 € 77, let 7, be the stopping time obtained by rounding up to
the next integer multiple of 27,

(ii) Invoke the Stopping Time Lemma to show that 0 < PS;, and PS} < PS
for each 7 € T7. Deduce that P|S,,| < k := 2PS]” < oo.

(iii) Invoke Fatou’s lemma to show that sup,cq, P|S;| < k.
(iv) For each C' € R, show that

PS; {S;, > C} <PS{S, > C} <PS{S; >VC}+k/VC.

Invoke Fatou, then deduce that sup,cq, PS:{S; > C} — 0 as C — oo.

(v) Show that every cadlag function on [0, 1] is bounded in absolute value. De-
duce that the stopping time o¢ := inf{t : Sy < —C} A1 has o¢(w) =1 for
all C large enough (depending on w). Deduce that u((o¢, 1] — 0 as C — oc.

(vi) For a given 7 € T3 and C € R, define F, := {S; < —C}. Show that
7' := 7F¢ + F; is a stopping time for which

P(S1—S;)Fr =P (S — S;) = p((r,7]) < p((oc, 1],
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Hint: Show that if w € F; then o¢(w) < 7(w) and if w € F¢ then 7(w) =
7 (w).

(vii) Deduce that sup,cq, P (- S-) {S; < —C} — 0 as C — oo.

3] Let {S; : t € R"} be a submartingale of class [D]. Show that there exists
an integrable random variable S, for which P (Soo | 3",5) > Sy — S almost
surely and in L' by following these steps.

(i) Show that the uniformly integrable submartingale {S,, : n € N} converges
almost surely and in L' to an S, for which P (Soo | an) > S,.

(ii) For ¢ < n, show that S; <P (P(Se | Fn) | Ft) =P (S | Fr)-
(iii) For t > n, show that

P(S; — Sp)” <P(S; — Sp)T <P(Soo — Sp)T — 0 as n — oo.

(iv) For cach k € N, choose n(k) for which P|Ss — S| < 47%. Invoke Prob-
lem [1] to show that > ) P{supi>, ) [St — Sna| > 27F} < 0.
(v) Deduce that S; — S almost surely.

C.3 Notes

My exposition in this Chapter is based on ideas drawn from a study of
Métivier (1982, §13), Dellacherie and Meyer (1982, Chapter VII), and Chung
and Williams (1990, Chapter 2). The construction in Section 2 appears new,
although it is clearly closely related to existing methods.
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