
Project 1

Do stochastic processes exist?
If you wish to take this course for credit, you should keep a notebook that

contains detailed proofs of the results sketched in my handouts. You may
consult any texts you wish and you may ask me or anyone else as many
questions as you like.

Please do not just copy out standard proofs without understanding. Please
do not just copy from someone else’s notebook.

I suggest you work in groups to figure out the proofs. You should arrange
to meet with me in small groups every week to discuss any difficulties you
have with producing an account in your own words. I will also point out
refinements, if you are interested.

At the end of the semester, I will look at your notebook to make up a
grade. By that time, you should have a pretty good written account of a
significant chunk of stochastic calculus.

I will be writing these projects in note form, without worrying too much
about grammar or about making proper sentences.

1.1 Different ways to think about a stochastic process

Index set T . For example, T = N or {0, 1, . . . , N} (discrete time) or T =
[0, 1] or R or R+ (continuous time).

(i) A set of real-valued random variables {Xt : t ∈ T} all living on
the same probability space (Ω,F,P). Often require Xt to be Ft-
measurable, for some filtration {Ft : t ∈ T} with Fs ⊆ Ft ⊆ F for
s < t. That is, X is adapted to the filtration.

(ii) A map X : T × Ω → R. Often require measurability with respect to
some sigma-field on the product space. For example, if T = R+ then
X is said to be progressively measurable if the restriction of X to
[0, t]× Ω is B[0, t]⊗ Ft-measurable for each fixed t in R+.

(iii) The sample path X(·, ω) is an element of RT , for each fixed ω. Thus
X : Ω → RT . The cylinder sigma-field (a.k.a product sigma-field) FT

on RT is the smallest sigma-field for each of the coordinate projections,
πt : x 7→ x(t) is FT \B(R)-measurable. Measurability of Xt, for each
fixed t, implies X is F\FT -measurable. Why? Often want sample
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paths to concentrate in some subset of RT , such as C(T ), the set of
continuous real functions on T .

1.2 Existence

We need a probability space (Ω,F,P) for which each Xt is an F\B(R)-
measurable random variable. The Daniell-Kolmogorov theorem solves the
problem by taking Ω = RT with Xt(ω) = ω(t) for each t and each ω ∈ RT .

Start from prescribed finite-dimensional distributions (fidis). That is,
for each finite subset J of T we want the random vector XJ := (Xt : t ∈ J)
to have distribution PJ , a prescribed probability measure on B(RJ). That
is, we want P to have the property

P{ω : XJ(ω) ∈ B} = PJ(B) for each B ∈ B(RJ).

If such a P is to exist we need consistent fidis: if J ′ ⊃ J then

PJB = PJ ′(B × RJ ′\J) for each B ∈ B(RJ).<1>

Put another way, we need PJ = πJ ′JPJ ′ (image measure), where πJ ′J is the
projection from RJ ′ onto RJ .

The subset CJ of FT consists of all cylinder sets with a base in J , that is,
sets of the form A×RT\J with A ∈ B(RJ). Define C = ∪J finiteCJ . Explain
why C is a field of subsets on Ω with FT = σ(C). Define P on C by

PC = PJA if C = A× RT\J<2>

Why do we need <1> to ensure that P is well defined?
Explain why P is a finitely additive measure with PΩ = 1. Now invoke a

standard measure theory result. Compare with Folland (1999, Section 1.4).

<3> Theorem. A finitely additive measure P on the field C has an extension
to a countably additive measure on σ(C) if and only if it has the following
property: PCn ↓ 0 for each decreasing sequence {Cn} in C with ∩nCn = ∅.

1.2.1 Case: T = N

Explain the following.

(i) Consider a decreasing sequence of cylinder sets Cn. It is enough to
show that infn PCn > 0 implies ∩nCn 6= ∅.

(ii) Without loss of generality we may assume Cn = An × RN\Jn where
Jn = {1, 2, . . . , n} and An ∈ B(RJn).
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(iii) Without loss of generality we may assume each An is compact. See
Pollard (2001, Problem 2.12) for approximation of Borel sets from
inside by compact sets.

(iv) EachAn must be nonempty. Thus there exist points (xj,1, xj,2, . . . , xj,j)
in Aj for each j ∈ N. For each k, the points

(xj,1, . . . , xj,k) belong to Ak for all j ≥ k

(v) Inductively choose infinite subsets N1 ⊇ N2 ⊇ N3 . . . of N such that
there exist z1, z2, . . . for which

(xj,1, . . . , xj,k)→ (z1, . . . , zk) ∈ Ak along Nk, for each k

(vi) Conclude that z := (z1, z2, . . . ) ∈ ∩nCn.

1.2.2 Case : general T

(i) Explain why the argument just given also applies to any countable T .

(ii) Let FS be the smallest sigma-field on Ω for which each coordinate
projection Xt, for t in S, is FS\B(R)-measurable. Explain why the
P defined in <2> is a countably additive probability measure when
restricted to FS , for each countable subset S of T .

Explain why FT = ∪SFS , the union running over all countable sub-
sets S of T .

(iii) For each set B in FT there exists a countable S (depending on B) such
that B ∈ FS . Show that

AS = {B ∈ FS : if ω ∈ B and ω′
∣∣
S

= ω
∣∣
S

then ω′ ∈ B}

is a sigma-field that contains every cylinder set with base J ⊂ S.
Deduce that AS = FS .

(iv) For T = [0, 1], explain why C(T ), the set of all bounded continuous
real functions on T , cannot belong to the sigma-field FT .
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1.3 Brownian motion with continuous sample paths

A Brownian motion indexed by a subset T of the real line is a zero mean
Gaussian process {Bt : t ∈ T} with cov(Bs, Bt) = min(s, t). (Equivalently,
it has independent increments and Bt −Bs ∼ N(0, t− s) for s < t.)

Show that there exists a Brownian motion indexed by T = [0, 1] with
continuous sample paths by the following steps.

(i) Define Tk = {j/2k : j = 0, 1, . . . , 2k} and S = ∪k∈NTk (the dyadic
rationals). Use the Daniell-Kolmogorov theorem to construct a prob-
ability measure P on the cylinder sigma-field of Rs such that the co-
ordinate maps {Xs : s ∈ S} define a Brownian motion indexed by S.

(ii) Fix integers k < `. Use a reflection argument (cf. Pollard 2001, Section
4.6) to show that

P{ max
s∈T`, 0≤s≤2−k

|Xs| > x} ≤ 2P{|X2−k | > x} ≤ 2 exp(−1
2x

2/2−k).

(iii) Define t(k, j) = j/2k. Define

Mk,j(ω) := sup{|Xs(ω)−Xt(k,j)(ω)| : t(k, j) ≤ s ≤ t(k, j + 1)}

for j = 0, 1, . . . , 2k − 1. Show that

P{Mk,0 > x} ≤ 2 exp(−1
2x

2/2−k)

(iv) Define Hk := {maxj Mk,j > xk} with xk := c
√
k2−k for some positive

constant c. Show that

PHk < e−k if c is large enough.

(v) Use Borel-Cantelli to deduce that the set Ω0 := {Hk i.o.}c has P mea-
sure 1.

(vi) Explain why, for each ω ∈ Ω0, there exists a finite k0(ω) such that
maxj Mk,j(ω) ≤ xk for all k ≥ k0(ω).

(vii) Define B1(ω) := X1(ω) and for each t ∈ [0, 1),

Bt(ω) := lim
m→∞

supt<s≤t+1/m, s∈S Xs(ω)

Explain why Bt(ω) = lims↓↓tXs(ω) if ω ∈ Ω0 and t < 1. (The notation
s ↓↓ t means: s decreases to t through the set S ∩ (t, 1].)
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(viii) Explain t 7→ Bt(ω) is continuous for each ω ∈ Ω0.

(ix) Explain why {Bt(ω) : 0 ≤ t ≤ 1, ω ∈ Ω0} is a Brownian motion with
continuous sample paths.

(x) [Harder] Explain why, for each ω ∈ Ω0, there exists a finite con-
stant C0(ω) such that

sup{|Bt(ω)−Bt′(ω)| : |t−t′| < δ} ≤ C0(ω)
√
δ log(1/δ) for all 0 < δ ≤ 1.
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