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Brownian Motion

Lect 22, Wednesday 8 April

11.1 Random elements of C[0,∞)

Suppose {Xt : t ∈ R+} is a process with continuous sample paths. That is,
for each fixed ω the sample path X(ω, ·) is a member of C[0,∞), the set of all
continuous real functions (not necessarily bounded) on R+. Equip C[0,∞)
with its cylinder sigma-field C, which is defined as the smallest sigma-
field on C[0,∞) for which each coordinate map πt is C\B(R)-measurable. For fixed t ∈ R+,

πt(x) := x(t) for
x ∈ C[0,∞).Then ω 7→ X(ω, ·) is an F\C-measurable map from Ω into C[0,∞)—see

Problem [1]. Equip C[0,∞) with its metric for uniform convergence on
compacta,

d(x, y) =
∑

k∈N
2−k min

(
1, sup0≤t≤k |x(t)− y(t)|

)
(i) Show that d makes C[0,∞) a separable metric space.

(ii) Show that the Borel sigma-filed for d coincides with the cylinder sigma-
firld C.

The distribution of X is a probability measure defined on C, the image
of P under the map ω 7→ X(ω, ·). For example, for a standard Brownian
motion, the distribution is called Wiener measure, which I will denote by
the symbol W. In other words, if B is a standard Brownian motion, and at
least if f : C[0,∞)→ R+ is a C\B(R+)-measurable function, then Note: “at least”

is an invitation for
you to extend the
result to a larger
set of functions

Pωf(X(ω, ·)) = Wxf(x).

Sometimes I will slip into old-fashioned terminology and call a real-valued
(or extended-real-valued) function a functional if it is defined on a space
of functions.

The stochastic process {Xt : t ∈ R+} defines on Ω a natural filtration
(sometimes called a raw filtration),

F◦t := σ{Xs : 0 ≤ s ≤ t} for t ∈ R+

with F◦∞ := σ{Xs : s ∈ R+}. Problem [2] shows that each F◦∞-measurable
random variable on Ω can be expressed as a composition h(X(ω, ·)) with h
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a C-measurable functional on C[0,∞). Moreover, if for each fixed τ ∈ R+

we define the stopping operator Kτ : C[0,∞)→ C[0,∞) by

(Kτx)(t) = x(τ ∧ t) for t ∈ R+,

then each F◦t -measurable random variable on Ω can be expressed as a com-
position h(KtX(ω, ·)) with h a C-measurable functional on C[0,∞).

11.2 Decomposition of Brownian motion sample paths

Sometimes it is useful to have the underlying filtration on (Ω,F,P) built
into the definition of the Brownian motion.

<1> Definition. A process {Bt : t ∈ R+} with continuous sample paths is called
a Brownian motion with respect to a filtration {Ft : t ∈ R+} if

(i) B is adapted to the filtration

(ii) for each s < t, the increment Bt −Bs is N(0, t− s) distributed and is
independent of Fs

Remark. It is not necessary to add the further requirement that the B
process should have independent increments (as in the definition given
in Chapter 1) because it follows directly from (ii).

Not surprisingly, a Brownian motion B in the sense of Chapter 1
is also a Brownian motion with respect to its natural filtration. As
you will see in the next Section, it is useful that B is also a Brownian
motion, in the sense of Definition <1>, with respect to a slightly
larger, standard filtration.

For a fixed τ ∈ R+, a generating class argument would show that the
restarted process RτB, defined by

RτB(t) := B(τ + t)−B(τ) for t ∈ R+,

is also a Brownian motion, which is independent of Fτ . This property has a
few useful consequences. Define the shift operator Sτ by

(Sτx)(t) =
{

0 for 0 ≤ t < τ
x(t− τ) for t ≥ τ

Then:
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(i) B has the same distribution as KτB+Sτ B̃, where B̃ is a new standard
Brownian motion that is independent of B.

(ii) At least for each C-measurable functional h : C[0,∞)→ R+,

P
(
h(B) | Fτ

)
= Wxh(KτB + Sτx) almost surely.

That is, for each X ∈M+(Ω,Fτ ) and each h as in (ii),

PXh(B) = Pω
(
X(ω)Wxh(KτB(ω, ·) + Sτx)

)
(iii) At least for each B(R) ⊗ C-measurable map f : R × C[0,∞) → R+,

and each Fτ -measurable random variable Y ,

Pf(Y,B) = PωWxf(Y,KτB + Sτx)

See Pollard (2001, Chapter 9) for extensions of the these assertions—
the so-called strong Markov property for Brownian motion—when τ is a
stopping time.

11.3 The Brownian filtration

Let {F◦t : t ∈ R+} be the natural filtration for a Brownian motion B (with
continuous paths) defined on a complete probability space (Ω,F,P). Com-
plete this filtration by adding the set N of all P-negligible subsets of Ω to
the generating class,

Ft = σ
(
F◦t ∪N

)
.

<2> Theorem. The process B is also a Brownian motion with respect to the
completed filtration, which is standard.

Proof The first assertion is easy to prove. Suppose s < t and F ∈ Fs.

(i) Explain why there exists a set F ∗ in F◦s for which P|F − F ∗| = 0.

(ii) Show that

PF ∗f
(
Bt −Bs

)
=
(
PF ∗

) (
Pf(Z)

)
where Z ∼ N(0, t− s)

at least for each bounded B(R)-measurable funtion f .

The standard property of the completed filtration requires a little more work.
Consider an F in Fs+.
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(iii) Let sn = s+ n−1. Explain why there exist sets Fn ∈ Fsn and Nn ∈ N

such that |F − Fn| = Nn for every n.

(iv) Let F ∗ = lim supn→∞ Fn. Show |F − F ∗| ≤ ∪nNn ∈ N and F ∗ ∈ F◦s+.

(v) Suppose h is a bounded continuous functional and k is a bounded
C-measurable functional, both defined on X := C[0,∞). Show that

Pk(KsB)F ∗h(RsnB) = Pk(KsB)F ∗Wh for each n.

(vi) Let X := KsB and Y := RsB. Note that X and Y are independent.
Let n tend to infinity in the previous step to deduce that Pk(X)F ∗h(Y ) =
Pk(X)F ∗Ph(Y ).

(vii) Explain why F ∗ = g(X,Y ) for some bounded, product measurable
functional on X× X.

(viii) Define G(x) := Wyg(x, y). Explain why Pk(X)F ∗ = Pk(X)G(X).

(ix) Deduce that Pk(X) (F ∗ −G(X))h(Y ) = 0.

(x) Use a generating class argument to show the k(X)h(Y ) in the previous
equality can be replaced by f(X,Y ), for a general bounded, product
measurable f .

(xi) By an appropriate choice of f , deduce that F ∈ Fs.

�

From now on I will refer to the completed natural filtration as the Brow-
nian filtration. processes adapted to his filtration is not only standard, it
also force Some important processes—local martingales—that are adapted
to the Brownian filtration have two rather surprising properties: they have
continuous sample paths and they can be represented as stochastic integrals.
These two results are proved in the next Section.

11.4 Surprising properties for local martingales

Lect 23, Monday 12 April

<3> Definition. A cadlag process {Mt : t ∈ R+} is said to be a local martingale
if there exist stopping times {τk : k ∈ N} with supk τk = ∞ for which each
M∧τk −M0 is a martingale.
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<4> Theorem. Every local martingale with respect to the Brownian filtration
has almost all of its sample paths continuous. Consequently, every local
martingale is also a locally square-integrable martingale.

Proof Without loss of generality, assume the local martingale M starts
with M0 ≡ 0.

First consider the case of a cadlag martingale {Xt : t ∈ R+} with respect
to the Brownian filtration. It is enough to show that almost all sample paths
are continuous on each bounded interval [0, k]. For simplicity suppose k = 1.

(i) Explain whyX1 can be expressed as f(B) for some C\B(R)-measurable,
W-integrable functional f on C[0,∞).

(ii) If f is bounded and continuous (for the uccp metric), show that t 7→
f(KtB + Sty) is continuous, for each fixed y in C[0,∞). Use the
representation Xt = PtX1 = Wyf(KtB + Sty) almost surely, for each
fixed t in [0, 1], to show that X(ω, ·) is continuous on [0, 1] for almost
all ω.

(iii) For the general f , show that there exists a sequence of bounded, con-
tinuous functionals {fn} for which W|f − fn| ≤ 4−n. Hint: This ap-
proximation is a consequence of general properties of Borel probability
measures defined on metric spaces.

(iv) Let Xn be a version of the martingale Ptfn(B), for 0 ≤ t ≤ 1, with
continuous sample paths. Show that {|Xn(t)−X(t)| : 0 ≤ t ≤ 1} is a
uniformly integrable submartingale with cadlag sample paths.

(v) Define stopping times τn := 1 ∧min{t : |Xn(t)−X(t)| ≥ 2−n}. Show
that

P{sup0≤t≤1 |Xn(t)−X(t)| > 2−n} ≤ 2nP|Xn(τn)−X(τn)|
≤ 2nP|Xn(1)−X(1)|
= 2nP|fn(B)− f(B)|
≤ 2−n

(vi) Deduce that
∑

n P{sup0≤t≤1 |Xn(t) − X(t)| > 2−n} < ∞ and hence
sup0≤t≤1 |Xn(t)−X(t)| → 0 almost surely.

(vii) Conclude that almost all sample paths of X are continuous.
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(viii) Extend the argument to the case of a local martingale. Hint: If M∧τk
has (almost all) continuous paths on [0, 1] for each k, and if τk ↑ ∞,
what do you know about almost all paths of M?

�

The other surprising property is little more than an application of the Itô
formula. To simplify the argument, work on a bounded interval. Remember
that the submartingale {B2

t : 0 ≤ t ≤ 1} has Doléans measure µ = P ⊗ m,
where m denotes Lebesgue mesure on [0, 1].

Lect 24, Wednesday 14 April

<5> Theorem. For each X ∈ L2(Ω,F1,P), where {Ft : 0 ≤ t ≤ 1} is the
Brownian filtration, there exists an H ∈ L2(µ) such that X − PX = H •B1

almost surely.

Proof (Sketch) Without loss of generality, suppose PX = 0.

(i) Explain why R := {H • B1 : H ∈ L2(µ)} is a closed vector subspace
of L2(P,F1).

(ii) Let Z denote the component of X that is orthogonal to R. That is,
X = Z + K • B1 for some K ∈ L2(µ) and PZ(H • B)1 = 0 for all H
in L2(µ). Show that PZ = 0.

(iii) Explain why it is enough to prove Z = 0 almost surely.

(iv) Explain why it suffices to show PZf(B) = 0 for all bounded, C-
measurable functionals f on C[0, 1].

(v) Explain why it suffices to consider functionals f that depend on B
only through its increments Yj = Btj+1 − Btj for a fixed set of times
0 = t0 < t1 < · · · < tk = 1. That is, why is it enough to prove
PZg(Y) = 0 for all bounded, measurable functions g on Rk?

(vi) Invoke Problem [6] to show that it is enough to prove PZ exp(iθ′Y) = 0
for all θ in Rk.

(vii) Work with stochastic integral notation. Show that θ′Y = H • B1,
where H :=

∑k−1
j=0 θj((tj , tj+1]].
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(viii) Show that H •B has a deterministic quadratic variation process, At :=
[H •B,H •B]t =

∫ t
0 H

2(s) ds.

(ix) Use Itô to show that

W1 = 1 + i(WH) •B1 where Wt := exp(iH •Bt + 1
2At).

(x) Deduce that
exp(A1/2)PZ exp(iθ ·Y) = 0.

(xi) Are we done?

�

<6> Corollary. For each local martingale M adapted to the Brownian filtration
there exists an H in locL2(µ) such that Mt = M0 +H •Bt for 0 ≤ t ≤ 1.

Proof Without loss of generality, suppose M0 = 0. Define stopping times
τk := 1 ∧ inf{t : |Mt| ≥ k}.

(i) Why does M∧τk belong to M2
0[0, 1]?

(ii) For each k, explain why there exists an Hk ∈ L2(µ) such that

Mt∧τk =
(
Hk((0, τk]]

)
•Bt for 0 ≤ t ≤ 1.

(iii) Deduce that (Hk((0, τk]]) •B1 = (Hk+1((0, τk]] •B1 almost surely. Am I just
repeating the
construction for
the locM2

0[0, 1]
stochastic
integral?

(iv) Deduce that Hk((0, τk]]−Hk+1((0, τk]] = 0 almost everywhere [µ].

(v) Show that the Hk processes can be pasted together to create an H
in locL2(µ) for which Mt = H •Bt almost surely.

�

Remark. Should I extend to general F1-measurable random variables,
perhaps using the method of Dudley (1977), getting a representation
Y0 +H •B1 with H ∈ locHBdd.
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11.5 Change of measure for Brownian motion

Let {Bt : 0 ≤ t ≤ 1} be a Brownian motion with respect to a standard
filtration {Ft : 0 ≤ t ≤ 1} on (Ω,F,P). Write U for its quadratic variation
process, Ut = t.

For each α ∈ R, the process

qt = exp
(
αBt − 1

2α
2t
)

for 0 ≤ t ≤ 1

is a nonnegative martingale, with Pqt = Pq0 = 1. Define a new probability
measure Qα on F1 by specifying q1 to be its density with respect to P. That
is, QαX = P(Xq1), at least for all bounded random variables X.

(i) Show that Qα is equivalent to P, in the sense that both measures have
the same collection N of negligible sets.

(ii) Show that QαX = P(Xqt) if X is Ft-measurable. Explain why qt is a
Radon-Nikodym density for Qα with respect to P when both measures
are restricted to Ft.

(iii) Define B∗t := Bt − αt. For fixed s and t = s + δ, define Y1 := Bs,
Y2 := Bt − Bs, and Y3 := B1 − Bt. For a fixed F in Fs and θ ∈ R,
show that

QαF exp (iθ(Y2 − αδ))
= P(Fqs exp

(
(iθ + α)Y2 − iαθδ + αY3 − 1

2α
2(1− s)

)
= QαF exp

(
−1

2θ
2δ
)

(iv) Deduce that, under Qα, the B∗ process is a standard Brownian motion.

11.6 The Black-Scholes formula

Stock prices (in units so that S0 ≡ 1) are sometimes modeled by a continuous
process driven by a Brownian motion, B, on [0, 1];

St = exp((µ− 1
2σ

2)t+ σBt) for 0 ≤ t ≤ 1<7>

for constants σ > 0 (assumed known) and µ (unknown). That is,

St = ψµ,σ(Bt,Ut) where ψµ,σ(x, y) := exp(σx+ (µ− 1
2σ

2)y)
= 1 + σS •Bt + µS • Ut by the Itô formula.
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In more traditional notation,

dSt = σSt dBt + µSt dt, or
dSt
St

= σ dBt + µdt.

Roughly speaking, the relative increments of S behave like the increments
of a Brownian motion with drift µ.

Remark. Throughout this Section I will ignore inflation. Equivalently, I could
express the value of stock as a multiple of a bond price.

Question: SupposeX = f(S), with f a C-measurable functional on C[0, 1].
How much should one pay at time 0 in order to receive the amount X at
time 1? Call this fair price C0, a constant that is declared at time 0.

To answer the question I will first assume that µ is zero, so that

St = ψ0,σ(Bt,Ut) = 1 + σS •Bt for 0 ≤ t ≤ 1.<8>

A change-of-measure will later restore the µ. I will also assume PX2 <∞.
Think of ψ0,σ as defining a continuous map Ψσ from C[0, 1] to C[0, 1],

Ψσ(x)(t) = exp
(
σx(t)− 1

2σ
2t
)

for 0 ≤ t ≤ 1.

Then X = f(ΨσB), a C-measurable functional of the whole Brownian mo-
tion path. By Theorem <5>, there exists a predictable process H, which is
square-integrable with respect to the Doléans measure, such that

X = c+H •B1 where c := PX.<9>

The process (σS)−1 is locally bounded. If we integrate this process with
respect to the semimartingale S we get, via <8>,

B =
1
σS
• S and X = c+K • S1 where Kt := Ht/(σSt)

Temporarily suppose K is of the form
∑

j≤k hj(ω)((τj , τ ′j ]] for stopping
times τj ≤ τ ′j and F(τj)-measurable random variables hj(ω). Engage in the
following trades:

a) At time zero pay C0 in order to receive the random amount X at time 1.

b) For j = 1, 2, . . . , k, pay hj at time τj , at price S(τj) per share, then sell
the same shares at time τ ′j at price S(τ ′j) per share.
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The total profit at time 1 from the trading will be

X − C0 +
∑

j≤k
hj
(
S(τ ′j)− S(τj)

)
= X − C0 −K • S1 = c− C0.

If c > C0 we would be very happy: pure profit without risk. If c < C0, take
the other side of each trade to make a profit of C0− c without risk. The set
of trades in either case would be called an arbitrage scheme. Only if C0 = c
does the opportunity to make a riskless profit by arbitrage disappear. The
fair price for X at time zero should be c = PX.

Lect 25, Monday 19 April

It is traditional to interpret more general K processes as defining a limit
of a sequence of discrete trades, or an idealized scheme for continuous trad-
ing, that would again force C0 = PX as the fair price.

For the arbitrage threat to be credible, the trading scheme K needs to be
determined explicitly. I know how to find K if X is of the form X = g(L1)
where Lt := logSt = σBt − 1

2σ
2. First note that

L1 = Lt + σ(B1 −Bt)− 1
2(1− t) = Lt + γZ − 1

2γ
2

where γ := σ
√

1− t and Z := (B1 − Bt)/
√

1− t ∼ N(0, 1) if t > 0. Then
the martingale Xt := PtX has the representation

Xt = G(Lt, σ
√

1− t) = G(σBt − 1
2σ

2t, σ
√

1− t)

where

G(x, γ) = Pg(x+ γZ − 1
2γ

2)

=
∫ ∞
−∞

g(x+ γz − 1
2γ

2)φ(z) dz with φ(z) =
exp

(
−1

2z
2
)

√
2π

= γ−1

∫ ∞
−∞

g(y)φ

(
y − x− 1

2γ
2

γ

)
dy for γ > 0

and G(x, 0) = g(x).
The final integral representation for G shows that Xt is a very smooth

function of Bt and Ut for all 0 ≤ t < 1. Apply the Itô formula.

Xt = C0 + σGx •Bt +W • Ut for 0 ≤ t < 1,

where W is some locally bounded, predictable process involving Gxx and Gt.
We don’t need to calculate W explicitly, because the fact that Xt − C0 −
σGx •Bt is a local martingale forces W •U = 0 (Problem [5]). In particular,
H = σGx is the predictable process for which X = C0 + H • Bt and C0 =
G(0, σ).
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Remark. Does it matter that we might have trouble defining H1? Does con-
tinuity of the sample paths of X take care of the problem?

You might try to explain why Xt is the fair price to pay at time t in
order to receive X at time 1.

Now consider the case where µ is unknown, possibly nonzero. Let Q
be the probability measure with density exp(αB1 − 1

2α
2) with respect to P,

where α = µ/σ. From Section 5 we know that B∗t = Bt − αt is a Brownian
motion under Q. Also the process

St = exp
(
σBt − 1

2σ
2t
)

= exp
(
σB∗t + (µ− 1

2σ
2)t
)

is a Q-semimartingale with the distribution specified by <7>
The characterization of the stochastic integral in Theorem 8.5 should

convince you that the representation X = C0 + K • S1 derived under P is
also valid under Q. (By mutual absolute continuity of P and Q, uccp means
the same thing under both measures.) We still have a trading strategy K,
which does not depend on the unknown µ, to enforce C0 as the fair price
for X.

<10> Example. A European option gives the buyer the right to pay an amount K
at time 1 in order to receive one unit of stock, regardless of the stock price
at that time. If S1 ≤ K the option will be worthless; if S1 > K it returns
a profit of S1 −K. In short, the option returns X = (S1 −K)+ at time 1.
That is, it corresponds to the function g(x) = (ex −K)+.

Calculate. Note that

exp
(
x+ γz − 1

2γ
2
)
≥ K iff z ≥ r :=

(
logK − x+ 1

2γ
2
)
/γ.

For γ > 0 we then get

G(x, γ) =
∫ ∞
−∞

g(x+ γz − 1
2γ

2)φ(z) dz

=
∫ ∞
r

exp
(
x+ γz − 1

2γ
2
)
φ(z) dz −K

∫ ∞
r

φ(z) dz

= ex
∫ ∞
r

φ(z − γ) dz −K
∫ ∞
r

φ(z) dz

= exΦ(r − γ)−KΦ(r)

where Φ(t) := P{Z ≥ t} for Z ∼ N(0, 1). In particular,

C0 = G(0, σ) = Φ

(
logK − 1

2σ
2

σ

)
−KΦ

(
logK + 1

2σ
2

σ

)
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This result will look more like the traditional Black-Scholes formula dis-
played by Steele (2001, Section 10.3) if you put his initial share price S equal
to 1, take his interest rate r equal to zero, and use the fact that Φ(y)−Φ(−y).

�

11.7 Problems

[1] Let ψ be a map from (Ω,F) to C[0,∞).
(i) Show that ψ is F\C-measurable if and only if πt ◦ ψ is F\B(R)-measurable

for each t ∈ R+.
(ii) Deduce that a stochastic process {Xt : t ∈ R+} with continuous sample

paths defines an F\C-measurable map from Ω into C[0,∞).

[2] Suppose X is a stochastic process with sample paths in C[0,∞). For each
fixed t, define F◦t := σ{Xs : 0 ≤ s ≤ t}.

(i) Show that F◦t is the smallest sigma-field for which the map ω 7→ KtX(ω, ·)
is F◦t \C-measurable.

(ii) Deduce (cf. Pollard 2001, Problem 2.3) that each F◦t -measurable random
variable can be factorized as h(KtX(ω, ·)) for some C-measurable func-
tional h : C[0,∞)→ R.

[3] Suppose Z ∈ FV0 ∩ locM2
0(R+) and Z has continuous sample paths. Show

that Zt = 0 almost surely, for each t. Hint: Use the fact that [Z,Z] = 0
to deduce that Z2 = 2Z • Z ∈ locM2

0(R+). Find a sequence of stopping
times τk ↑ ∞ for which PZ2

t∧τk = 0 for each t.

[4] Suppose M ∈ locM2
0(R+) has continuous sample paths. Suppose A ∈ FV0

also has continuous paths and M2 − A ∈ locM2
0(R+). Deduce that A =

[M,M ]. Hint: Apply Problem [3] to [M,M ]−A.

[5] Suppose W ∈ locHBdd is such that Mt := W • Ut is a local martingale.
Use the fact that M2 − [M,M ] is a local martingale to deduce that M is
indistinguishable from the zero process. Hint: [M,M ] = W 2 • [U,U] = 0.

[6] Let X be an integrable random variable on (Ω,F,P) and Y = (Y1, . . . , Yk)
be a vector of random variables such that PX exp (iθ′Y ) = 0 for all θ =
(θ1, . . . , θk) in Rk. Show that P(Xg(Y )) = 0 for all bounded, measurable g
by these steps.
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(i) Let φσ denote the N(0, σ2Ik) density. Show (cf. Pollard 2001, Section 8.2)
that

φσ(t) = (2π)−kmθ exp
(
−iθ′t− 1

2σ
2|θ|2

)
where m denotes k-dimensional Lebesgue measure.

(ii) Suppose Z ∼ N(0, σ2Ik) independently of (X,Y ). For each continuous,
real-valued h with compact support on Rk, justify all the implicit appeals
to Fubini to show that

PXh(Y + Z) = PωX(ω)mzh (Y (ω) + z)φσ (z)
= PωX(ω)muh(u)φσ (u− Y (ω))

= mumθh(u)(2π)−kPX exp
(
−iθ′(u− Y )− 1

2σ
2|θ|2

)
= 0

(iii) Let σ tend to zero to deduce that PXh(Y ) = 0.
(iv) Use a lambda-space argument to extend to all bounded, measurable g.

[7] Let X and Y be independent Brownian Motions.
(i) Show that both (X + Y )/

√
2 and (X − Y )/

√
2 are also Brownian Motions.

(ii) Deduce that [X,Y ] = 0.

The next problem presents the standard example of a uniformly integrable
local martingale that is not of class [D].

[8] Let B = (1+X,Y, Z) be a three-dimensional Brownian Motion started from Better to start at
origin, and work
with distance
to u?

u = (1, 0, 0). (The three processes X, Y , and Z are independent Brownian
Motions started from zero.) Write x for (x, y, z). Define f(x) = 1/ ‖x‖ on
R3\{0}. Define a process M(t) = 1/ ‖B(t)‖.

(i) Use the Multiprocess Itô Formula to show that M ∈ locM2(R+). Hint:
Show that on the open region R3\{0} the function f is harmonic:

∂2f

∂2x
+
∂2f

∂2y
+
∂2f

∂2z
= 0.

(ii) Deduce that M is a positive supermartingale.
(iii) Let τk = inf{t : ‖B(t)‖ ≤ 1/k}. Show that M∧τk ∈M2(R+).
(iv) Show that C0 :=

∫
{‖x‖ ≤ 1

2} ‖x‖
−2 dx <∞.

(v) Show that PM(t)2 ≤ C0 exp(−(8t)−1)t−3/2 + P
(

8 ∧ ‖B(t)‖−2
)

.

(vi) Show that ‖B(t)‖2 P−→∞ as t→∞.
(vii) Deduce that supt PM(t)2 <∞ and PM(t)→ 0 as t→∞.

(viii) Deduce that M is not a martingale, and hence M is not in class [D].
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11.8 Notes

See Steele (2001, Chapter 10) and Chung and Williams (1990, Section 10.5)
for slightly different ways to derive option prices by arbitrage arguments.
I learned about the significance of semimartingales for option pricing from
Harrison and Pliska (1981).
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