
Project 2

Convergence in distribution

2.1 Sample paths

A stochastic process {Xt : t ∈ T} defined on
(
Ω,F,P) defines an F\FT -

measurable random element of RT if FT is the cylinder sigma-field on RT ,
the smallest sigma-field for which each coordinate projection πt is FT \B(R)-
measurable. Why?

If each each sample path X(·, ω) is bounded then X is also a random
element of `∞(T ), the set of all bounded real functions on T , also equipped
with its cylinder sigma-field. Also equip `∞(T ) with its uniform metric,

d(x, y) = supt∈T |x(t)− y(t)|

and the corresponding Borel sigma-field B. Continuity of each πt implies
that FT ⊆ B. Why? The process X need not be F\B-measurable.

Suppose T is equipped with a metric ρ. Write C(T ) for the set of all psseudometric
enough

ρ-uniformly continuous members of `∞(T ). If T is separable then the Borel
sigma-field B is equal to the cylinder sigma-field, because the supremum in
the definition of d can be taken over a countable, dense subset of T . The
space C(T ) is a closed subset of `∞(T ). Why?

When T = [0, 1] the space D(T ) is defined as the set of all cadlag real-
valued functions on T . That is, x ∈ D(T ) if it is continuous from the right
at each t in [0, 1) and the limit from the left exists (and is finite) at each t
in (0, 1]. The Borel sigma-field on D[0, 1] is strictly larger than the cylinder
sigma-field, as the next example shows.

Remark. I am in the bad habit of writing FT for the cylinder sigma-
field on RT and on `∞(T ) and on C(T ) and on D(T ) for T = [0, 1].
Also I have been writing B for the Borel sigma-field, generated by the
open subsets for the d metric, on `∞(T ) and C(T ) and D[0, 1]. Would
it be better to invent different symbols for these quantities?

<1> Example. (Compare with Billingsley 1968, page 152.) Expand the follow-
ing argument.

Suppose ξ is defined on (Ω,F,P) has a Uniform[0, 1] distribution. The
process X(t, ω) = {ξ(ω) ≤ t} for 0 ≤ t ≤ 1 has sample paths in D[0, 1] and
is measurable with respect to the cylinder sigma-field. It cannot be Borel
measurable.
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To see why, define elements xθ(t) = {θ ≤ t} of D[0, 1]. Note that
X(·, ω) = xξ(ω). For each A ⊆ [0, 1] define

Ã = {y ∈ D[0, 1] : infθ∈A d(y, xθ) < 1/3}.

Each Ã is an open subset of D[0, 1]. Also X(·, ω) ∈ Ã if and only if ξ(ω) ∈ A.
If ξ were F\B-measurable then

ν(A) := P{ω ∈ Ω : ξ(ω) ∈ Ã}

would define a probability measure that extends Lebesgue measure to all
subsets of [0, 1], which is not possible if we accept the Axiom of Choice.

�

Exercise Suppose ξ1, . . . , ξn are independent Uniform[0, 1] distributed ran-
dom variables. The empirical distribution function is defined as

Un(t, ω) = n−1
∑

i≤n
{ξi(ω) ≤ t} for 0 ≤ t ≤ 1.

Show that Un is cylinder measurable but not Borel measurable, as a map
from Ω into D[0, 1]. (I’d be happy with just the case n = 2.) It might help to
think of the ξi’s as coordinate maps on [0, 1]n equipped with n-dimensional
Lebesgue measure.

�

The failure of Borel measurability for the empirical distribution function
was one motivation for the creation of different metrics (Skorohod 1956) for
D[0, 1]. The Borel sigma-field for the best known of the Skorohod metrics
coincides with the cylinder sigma-field. For more general empirical processes
indexed by sets of functions there was no obvious way to generalize the
Skorohod approach. Instead Hoffmann-Jørgensen (1984) developed a theory
based on outer expectations, which handled the measurability problem in a
most elegant way. Subsequent work by Dudley (1985) established the H-J
approach as the new standard.

2.2 Convergence in distribution

Let (X, d) be a metric space equipped with its Borel sigma-field B(X). Sup-
pose P∞, P1, P2, . . . are probability measures on B(X) and X∞, X1, X2, . . .
are B(X)-measurable random elements of X, all defined on the same

(
Ω,F,P).
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In the classical theory of weak convergence/convergence in distribution (Pol-
lard 2001, Section 7.1), if Xn has distribution Pn and X∞ has distribu-
tion P∞ then each of the following assertions means the same thing:

Xn  X∞ Xn  P∞ Pn  P∞ Pn  X∞

namely,

Pnf = Pf(Xn)→ P∞f = Pf(X∞) for all f in BL(X).

Here BL(X) is the set of all bounded, Lipschitz, real functions on X. That
is, BL(X) consists of all real-valued functions f on X for which both

‖f‖∞ := sup{|f(x)| : x ∈ X}
‖f‖Lip := inf{C : |f(x)− f(y)| ≤ Cd(x, y) for all x, y in X}.

Equivalently, ‖f‖BL := max
(
‖f‖∞ , ‖f‖Lip

)
is finite.

If we wish to allow the possibility that the Xn’s, for 1 ≤ n < ∞, might
not be B(X)-measurable then we cannot think of Xn as having a distribution
in the sense that the image of P underXn is a probability measure on B(X).
(Does it then make sense to talk of convergence in distribution?) Instead,
work with inner and outer expectations.

<3> Definition. For a bounded real-valued random variable Z on Ω define

P∗Z = inf{PU : Z ≤ U and U is measurable }

and
P∗Z = sup{PL : Z ≥ L and L is measurable }.

Notice that P∗(−Z) = −P∗Z, so we don’t really need to work with lower
expectations, although it is helpful to note that P∗Z ≥ P∗Z with equality if
and only if Z is measurable with respect to the P-completion of F.

<4> Definition. For (possibly nonmeasurable) maps Xn : Ω → X and a proba-
bility measure P on B(X) define Xn  P to mean P∗f(Xn)→ Pf for each
f in BL(X). If X∞ is a B(X) measurable random element of X with distri-
bution P , define Xn  X∞ to mean the same as Xn  P . Equivalently,
P∗f(Xn)→ Pf(X∞) for each f in BL(X).
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You should convince yourself that P∗ could be replaced by P∗ without
changing the meaning of Xn  P . Indeed you should show that the defini-
tion is equivalent to

lim supn→∞ P∗f(Xn) ≤ Pf for each f in BL(X)<5>

and to

lim infn→∞ P∗f(Xn) ≥ Pf for each f in BL(X).<6>

In fact, we could even replace BL(X) by the set of all upper semicontinuous
functions that are bounded from above in <5> and by the set of all lower
semicontinuous functions that are bounded from below in <6>. These facts
are sometimes collected together as part of the so-called Portmanteau
Theorem (van der Vaart and Wellner 1996, Section 1.3).

The H-J theory parallels the classical theory exposited by Billingsley
(1968). For our purposes it will be enough to understand the following
slight generalization of the method explained by Pollard (1984, page 92).

<7> Lemma. Let {Xn : n ∈ N} be a sequence of maps from Ω into X and let
P be a probability measure defined on B(X). Suppose {εk : k ∈ N} and
{δk : k ∈ N} are both sequences of positive numbers that converge to zero
as k →∞. For each k suppose there exist maps Xn,k : Ω→ X and probability
measures Pk on B(X) for which

(i) Xn,k  Pk as n→∞, for each fixed k

(ii) Pk  P as k →∞

(iii) lim supn→∞ P∗{d(Xn, Xn,k) > δk} < εk for each fixed k

Then Xn  P .

Proof In class I gave a proof by first principles, without using facts about
outer expectations. (I sneaked the “without loss of generality f ≥ 0” past
you.) This time I present a more concise proof. You should justify all the
implicit appeals to facts about outer expectations in what follows.

Write An,k for {d(Xn, Xn,k) > δk}. Consider an f in BL(X) with
‖f‖BL = C. Without loss of generality, f ≥ 0. Use the ‖·‖∞ bound
for ω ∈ An,k and the ‖·‖Lip bound for ω ∈ Acn,k to get

f(Xn) ≤ f(Xn,k) + Cδk + CAn,k.
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(Where did I use the assumption f ≥ 0?) Take outer expectations then let
n tend to infinity to deduce

lim supn→∞P∗f(Xn)
≤ lim supn→∞ P∗f(Xn,k) + Cδk + C lim supn→∞ P∗An,k
≤ Pkf + Cδk + Cεk

The upper bound tends to Pf as k tends to infinity.
�

2.3 Partial-sum processes

Let ξ1, ξ2, . . . be iid random variables, defined on a probability space (Ω,F,P),
with Pξi = 0 and Pξ2i = 1. Define Sn :=

∑
i≤n ξi and

Xn(t, ω) = n−1/2Sbntc for 0 ≤ t ≤ 1.

Consider Xn as a map into X = D[0, 1] equipped with its uniform metric.
Let B denote a Brownian motion with continuous sample paths.

For each finite J ⊆ [0, 1] with 0, 1 ∈ J write πJ for the map that projects
D[0, 1] into RJ and let AJ denote the map from RJ into D[0, 1] defined by

AJ(z) := z(tk+1){t = 1}+
∑k

i=0
z(ti){ti ≤ t < ti+1} for 0 ≤ t ≤ 1

if z ∈ RJ and J = {t0, . . . , tk+1} with 0 = t0 < · · · < tk+1 = 1.

Define LJ = AJ ◦ πJ , a map from D[0, 1] into D[0, 1].

(i) For each fixed J show that πJ and AJ and LJ are continuous functions,
for each fixed J .

(ii) Suppose J = {t0, . . . , tk+1} with 0 = t0 < · · · < tk+1 = 1. Define
Ij := [tj , tj+1]. Show that

d(x, LJx) ≤ ∆J(x) := maxkj=0 supt∈Ij |x(t)− x(tj)|

(iii) Explain why Xn is actually B(X)-measurable. Hint: Consider ψ(Xn)
for a continuous ψ : X→ R.

(iv) Show that supt |var(Xn(t)− t| ≤ n−1.

(v) Invoke a multivariate central limit theorem to show that πJXn  πJB
for each finite J ⊆ [0, 1].
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(vi) For each k in N define J(k) := {j/k : j = 0, 1, . . . , k}. Define Xn,k =
LJ(k)(Xn) and Bk = LJ(k)B.

(vii) Show that Bk  B as k →∞.

(viii) Show that Xn,k  Bk as n→∞, for each fixed k.

(ix) For each δ > 0 show that there exists a k = kδ for which, when n ≥ k,

P{d(Xn, Xn,k) > δ}
≤ P{∆J(k)(Xn) > δ}

≤
∑k

j=0
2P{|Xn(tj+1)−Xn(tj)| > δ/2} where tj = j/k

→
∑k

j=0
2P{|B(tj+1)−B(tj)| > δ/2} as n→∞

≤ 2k exp(−kδ2/8).

For the second inequality you might find Pollard (2001, Inequality 6.38)
useful.

(x) Figure out choices for δk and εk so that Lemma 7 leads you to the
conclusion: Xn  B.

Exercise Show that maxj≤n |Sj |/
√
n converges in distribution to sup0≤t≤1 |Bt|.

�
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