Project 3 Empirical processes

3.1 Progress so far

The main lemma from Project 2 can be restated in a slightly different form.

- <1> Lemma. Let $\{X_n : n \in \mathbb{N}\}$ be a sequence of maps from Ω into \mathfrak{X} and let X_{∞} be a $\mathfrak{B}(\mathfrak{X})$ -measurable random element of \mathfrak{X} . Suppose $\{\epsilon_k : k \in \mathbb{N}\}$ and $\{\delta_k : k \in \mathbb{N}\}$ are both sequences of positive numbers that converge to zero as $k \to \infty$. For each k suppose there exist maps $X_{n,k}$ and a $\mathfrak{B}(\mathfrak{X})$ -measurable $X_{\infty,k}$ for which
 - (i) $X_{\infty,k} \rightsquigarrow X_{\infty} \text{ as } k \to \infty$
 - (ii) $X_{n,k} \rightsquigarrow X_{\infty,k}$ as $n \to \infty$, for each fixed k
 - (*iii*) $\limsup_{n\to\infty} \mathbb{P}^*\{d(X_n, X_{n,k}) > \delta_k\} < \epsilon_k \text{ for each fixed } k$

Then $X_n \rightsquigarrow X_\infty$.

7

In applying this Lemma to establish convergence in distribution of the partial-sum process X_n to a Brownian motion X_{∞} we used $X_{n,k} = L_{J(k)}X_n$ and $X_{\infty,k} = L_{J(k)}X_{\infty}$, with $J(k) = \{j/k := 0, 1, ..., k\}$ and $L_{J(k)}$ a continuous map from D[0, 1] into D[0, 1] defined as follows.

• For each finite $J \subseteq [0, 1]$ we wrote π_J for the map that projects D[0, 1]into \mathbb{R}^J and we let A_J denote the map from \mathbb{R}^J into D[0, 1] defined by

$$A_J(z) := z(t_{k+1})\{t=1\} + \sum_{i=0}^k z(t_i)\{t_i \le t < t_{i+1}\} \quad \text{for } 0 \le t \le 1$$

if $z \in \mathbb{R}^J$ and $J = \{t_0, \dots, t_{k+1}\}$ with $0 = t_0 < \dots < t_{k+1} = 1$.

We defined $L_J = A_J \circ \pi_J$, a map from D[0, 1] into D[0, 1].

• For $J = \{t_0, \dots, t_{k+1}\}$ with $0 = t_0 < \dots < t_{k+1} = 1$ we defined $I_j := [t_j, t_{j+1}]$ then showed that

$$d(x, L_J x) \le \Delta_J(x) := \max_{j=0}^k \sup_{t \in I_j} |x(t) - x(t_j)|$$
 for each x in $D[0, 1]$.

The application of the Lemma then amounted to showing that

 $\mathbf{2}$

- (i) $\pi_J X_n \rightsquigarrow \pi_J X_\infty$ as $n \to \infty$, for each finite J
- (ii) $d(L_{J(k)}x, x) \to 0$ for each x in C[0, 1], a subset of D[0, 1] in which the sample paths of X_{∞} concentrate.
- (iii) For each $\delta > 0$ and $\epsilon > 0$ there exists a k for which

$$\limsup_{n \to \infty} \mathbb{P}^* \{ \Delta_{J(k)}(X_n) > \delta \} < \epsilon$$

In fact this argument works for more general sequences of processes with paths in D[0, 1]. Your first task: Turn the argument into a theorem that handles not only the partial sum process but also the empirical process described in Section 3.

3.2 A maximal inequality

You will find the following inequality useful in Section 3.

Suppose $\{Z_t : 0 \le t \le b\}$ is a stochastic process with sample paths in D[0, b]. Suppose also that Z is adapted to a filtration $\{\mathcal{F}_t : 0 \le t \le b\}$, that is, Z_t is \mathcal{F}_t -measurable for each t. Write $\mathbb{P}_t(\ldots)$ instead of $\mathbb{P}(\cdots | \mathcal{F}_t)$.

<2> **Lemma.** For each $\delta > 0$ suppose there exists a constant β (depending on δ) for which $\mathbb{P}_s\{|Z_b - Z_s| \leq \frac{1}{2}|Z_s|\} \geq 1/\beta$ almost surely on the set $\{|Z_s| > 2\delta\}$, for each s. Then

$$\mathbb{P}\{\sup_{0 \le t \le b} |Z_t| > 2\delta\} \le \mathbb{P}\{|Z_b| > \delta\}.$$

PROOF (OUTLINE) Reduce to the case of a maximum taken over a finite subset S consisting of points $0 = s_0 < s_1 < \cdots < s_k = b$. Define (a stopping time?) $\tau = \inf\{s \in S : |Z_s| > 2\delta\}$. Show that

 $\mathbb{P}\{|Z_b| > \delta\}\{\tau = s\} \ge \beta \mathbb{P}\{\tau = s\} \quad \text{for each } s \in S.$

Then sum over s in S.

3.3 Uniform empirical process

Let ξ_1, ξ_2, \ldots be independent Uniform[0, 1] distributed random variables. Define the *uniform empirical distribution function* to be

$$U_n(t,\omega) := n^{-1} \sum_{i \le n} \{\xi_i(\omega) \le t\} \quad \text{for } 0 \le t \le 1$$

 $\S{3.3}$

 $\S{3.3}$

and the uniform empirical process to be $\nu_n(t,\omega) := \sqrt{n} (U_n(t,\omega) - t)$ for $0 \le t \le 1$.

See Pollard (1984, Chapter V) for ideas on how to show that ν_n converges in distribution to a Brownian bridge. (Be careful: There are some subtle errors in that Chapter. Also, in 1984, I was using a slightly different definition of convergence in distribution. You need to understand ideas, not just copy out proofs.) A scanned copy of the book is available (for free) at http://www.stat.yale.edu/~pollard/Books/1984book/.

- (i) Note that $\nu_n(0) = \nu_n(1) = 0$ Check that $\mathbb{P}\nu_n(t) = 0$ for each t and $\operatorname{cov}(\nu_n(s), \nu_n(t)) = s \wedge t st$ for $s, t \in [0, 1]$.
- (ii) Define the **Brownian bridge** process to be the random element of C[0, 1] obtained by "tying down" a Brownian motion B with continuous sample paths,

 $G_t = B_t - tB_1 \qquad \text{for } 0 \le t \le 1.$

Note that $G_0 = G_1 = 0$. Show that $\mathbb{P}G_t = 0$ for each t and $\operatorname{cov}(G_s, G_t) = s \wedge t - st$.

- (iii) Invoke a multivariate CLT to show that $\pi_J \nu_n \rightsquigarrow \pi_J G$ as $n \to \infty$, for each finite subset J of [0, 1].
- (iv) Use Lemma 2 to show that: For each $\delta > 0$ and $\epsilon > 0$ there exists a k for which

 $\limsup_{n \to \infty} \mathbb{P}^* \{ \Delta_{J(k)}(\nu_n) > \delta \} < \epsilon.$

(v) Complete the proof that $\nu_n \rightsquigarrow G$.

EXERCISE Show that $\int_0^1 \nu_n(t)^2 dt \rightsquigarrow \int_0^1 G_t^2 dt$

References

Pollard, D. (1984). Convergence of Stochastic Processes. New York: Springer.