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Project 5

Lévy’s martingale characterization
of Brownian Motion

’Lect 10, Wednesday 10 Feb

I believe the following theorem explains why Brownian motion plays such
a central role in stochastic calculus. I will say more about this belief when
we come to diffusions.

Theorem. (Lévy 1948, pages 77-78 of second edition)

Suppose {(My,Fy) : 0 <t < 1} is a martingale with continuous sample paths
and My = 0. Suppose also that M? — t is a martingale. Then M is a
Brownian motion.

Proof of Lévy’s theorem

We need to show that the finite-dimensional distributions of M agree with
those for a Brownian motion. The main ideas are contained in the proof
that M1 ~ N(O, 1)

You will be needing some bounds on remainder terms in series expan-
sions.

Lemma. For each real x define

Ri(z) :=e(1—2)—1 and Ry(z) := € — 1 — (ix) — %(zx)Q

Then there exists a finite constant C such that |Ri(z)] < Cx2el*l and
|Ro(z) < Cla|? for all x.

Remark. I believe C' = 1/2 would suffice for Ry and C' = 1/3 would
suffice for Rs.

How to show M; ~ N(0,1).
(i) Cut each sample path of M into small increments.
Take 7,0 = 0 and
Tnj+1 = 1A (n_l + TnJ‘) A\ inf{t > Tn,j |M(t) — M(Tn,j)’ > n_l}

For j = 1,2,... define random variables &, j := M (7, ;) — M (7n j—1)
and 0y, j 1= Tpj — Tn,j—1 and vy, j := P( 721,]‘ | F(1n5))-
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(i)

(iii)
(iv)

(vii)

(viii)

Why is each 7, ; a stopping time? See Problem [1] if you really want
to understand some of the details.

Show that max; |£, ;| < n~! and max; 0, j < n-1.

Show that there exist an increasing sequence of integers {k(n)} such
that P{7,, y(n) # 1} — 0 as n — oo. Hint: Use the uniform continuity
of the sample path M(-,w) to show that 7, ;(w) = 1 for some finite
k=k(w).

The notation is getting too cluttered. To simplify, omit most
of the subscript n’s and other messy symbols when carrying
out calculations for a fixed n. For example, write M; for
M (1), and F; for F(7,;), and P; for P(--- | F(7,5)).

For fixed n, use the Stopping Time Lemma (for continuous time) to
show that P;_1{; = 0 almost surely.

For fixed n, show that
Pjy (Mj_1+ &) —75) = M}, — 751
Deduce that v; = P;_16;.

Show that

2
i — U4 = a2 2 _1
P ‘Zjék(n)((sj vj) Zjék(n) P(; —vj)° < ngk(n) P(S] <n .

Deduce that ngk(n) v; — 1 in probability as n — oo.

Define 0y, := max{j : 3 ,.;v¢ < 2}. Show that o, is a stopping time
for the {F(r,;) : j =0,1,...} filtration.

Remark. Here you will need to use these facts: the partial
sums of the vp’s form an increasing sequence; and v, is Fy_1-
measurable. In a terminolgy that will soon mean more to you,
the partial sums form a predictable sequence.

I adapted the rest of the argument from Pollard (1984, Sec-
tion VIII.1). See the Notes at the end of Chapter VIII of
that book and Pollard (2001, Notes to Chapter 9) for more
about the origins of the method.
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(ix) Define n; := nn; = &ujion > j} and w; 1= wp; = vpj{ion > j}.
Show that P;_1n; = 0 and Pj_lnjz = wj and

> . . ity
2> ngk(n) wj — 1 in probability

(x) Explain why it is enough to prove that >,y n; ~ N(0,1).
(xi) For a fixed real 0 and a fixed n, define Wy, := 3, w; and

A 1= exp (iG ngk n; + %92Wk>
with Ag = 1. Show that
Pr_1 A = A1 exp(%ﬁzwk) (1 — %92wk + Rg(ﬁnk))
(xii) Deduce that
IPAx — PAp_1| < CoP (Imi]® + wg) < Cp (n™! +n72) Py,

for some constant Cy that depends on 6.
(xiii) Deduce that PAgg,) =1+ o(1).
(xiv) Show that

Py —Pexp (6" nj +36%) | < Plexp (36" Wiw) —exp (36°) |
which tends to 0 as n — oo.
(xv) Complete the argument that M; ~ N(0,1).

See Pollard (2001, Section 9.6) for a slightly different implementation of
the same idea for proving M; ~ N(0,1).

Higher order fidis (for enthusiasts).

To complete the proof that M is a Brownian motion, you would need check
the other fidis. For example, if 0 < s < 1 you would need to show M
and M; — M, are independent with N(0,s) and N (0,1 — s) distributions.
Equivalently, you could show that

Pexp (iaMs + iB(My — Ms)) = exp (—%oﬂs - %52(1 —s)) for all o, B € R.
e Adapt the argument from (i) to (xv) to prove the last displayed equal-
ity. Define 7, := max{j : W; < s}. Try working with a sum of
increments an;{j < vn} + Oni{m < j}

e Extend the argument to joint distributions of more than two incre-
ments of M.
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5.2 Problems

[1] Suppose {X; : t € R+} is a progressively measurable process for some
standard filtration {F; : t € RT} on a probability space (Q,F,P). Suppose
o is a stopping time for the filtration. Define

7(w) = inf{t > o(w) : [Xi(w) — Xp()| € B}

for some B € B(R). Interpret the definition to mean that 7(w) = +oo when
o(w) = +oo. Show that 7 is a stopping time by the following steps.

(i) Define
[o,00[[:= {(t,w) € RT x Q: o(w) <t < 00}
Show that this ({0, 1}-valued) process is adapted and has cadlag sample
paths.
(ii) Show that the process Y (t,w) := X (t Ao(w),w) is progressively measurable.
(iii) Show that the set

A =A{(s,w) : X(s,w) = Y(s,w) € B,0< s <t}NJo,o0]

belongs to B(RT) @ F;.

(iv) Show that {w : 7(w) < t} equals the projection of A; onto 2. See Section 5
of Project 4 for the necessary measure theory.

References

Lévy, P. (1948). Processus stochastiques et mouvement brownien. Paris:
Gauthier-Villars. Second edition, 1965.

Pollard, D. (1984). Convergence of Stochastic Processes. New York:
Springer.

Pollard, D. (2001). A User’s Guide to Measure Theoretic Probability.
Cambridge University Press.



