
Project 5

Lévy’s martingale characterization
of Brownian Motion

Lect 10, Wednesday 10 Feb

I believe the following theorem explains why Brownian motion plays such
a central role in stochastic calculus. I will say more about this belief when
we come to diffusions.

<1> Theorem. (Lévy 1948, pages 77-78 of second edition)
Suppose {(Mt,Ft) : 0 ≤ t ≤ 1} is a martingale with continuous sample paths
and M0 = 0. Suppose also that M2

t − t is a martingale. Then M is a
Brownian motion.

5.1 Proof of Lévy’s theorem

We need to show that the finite-dimensional distributions of M agree with
those for a Brownian motion. The main ideas are contained in the proof
that M1 ∼ N(0, 1).

You will be needing some bounds on remainder terms in series expan-
sions.

<2> Lemma. For each real x define

R1(x) := ex(1− x)− 1 and R2(x) := eix − 1− (ix)− 1
2(ix)2.

Then there exists a finite constant C such that |R1(x)| ≤ Cx2e|x| and
|R2(x) ≤ C|x|3 for all x.

Remark. I believe C = 1/2 would suffice for R1 and C = 1/3 would
suffice for R2.

How to show M1 ∼ N(0, 1).

(i) Cut each sample path of M into small increments.

Take τn,0 = 0 and

τn,j+1 = 1 ∧
(
n−1 + τn,j

)
∧ inf{t ≥ τn,j : |M(t)−M(τn,j)| ≥ n−1}

For j = 1, 2, . . . define random variables ξn,j := M(τn,j) −M(τn,j−1)
and δn,j := τn,j − τn,j−1 and vn,j := P(ξ2n,j | F(τn,j)).
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(ii) Why is each τn,j a stopping time? See Problem [1] if you really want
to understand some of the details.

(iii) Show that maxj |ξn,j | ≤ n−1 and maxj δn,j ≤ n−1.

(iv) Show that there exist an increasing sequence of integers {k(n)} such
that P{τn,k(n) 6= 1} → 0 as n→∞. Hint: Use the uniform continuity
of the sample path M(·, ω) to show that τn,k(ω) = 1 for some finite
k = k(ω).

The notation is getting too cluttered. To simplify, omit most
of the subscript n’s and other messy symbols when carrying
out calculations for a fixed n. For example, write Mj for
M(τn,j), and Fj for F(τn,j), and Pj for P(· · · | F(τn,j)).

(v) For fixed n, use the Stopping Time Lemma (for continuous time) to
show that Pj−1ξj = 0 almost surely.

(vi) For fixed n, show that

Pj−1

(
(Mj−1 + ξj)2 − τj

)
= M2

j−1 − τj−1.

Deduce that vj = Pj−1δj .

(vii) Show that

P
∣∣∣∣∑j≤k(n)

(δj − vj)
∣∣∣∣2 =

∑
j≤k(n)

P(δj − vj)2 ≤
∑

j≤k(n)
Pδ2j ≤ n−1.

Deduce that
∑

j≤k(n) vj → 1 in probability as n→∞.

(viii) Define σn := max{j :
∑

`≤j v` ≤ 2}. Show that σn is a stopping time
for the {F(τn,j) : j = 0, 1, . . . } filtration.

Remark. Here you will need to use these facts: the partial
sums of the v`’s form an increasing sequence; and v` is F`−1-
measurable. In a terminolgy that will soon mean more to you,
the partial sums form a predictable sequence.

I adapted the rest of the argument from Pollard (1984, Sec-
tion VIII.1). See the Notes at the end of Chapter VIII of
that book and Pollard (2001, Notes to Chapter 9) for more
about the origins of the method.
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(ix) Define ηj := ηn,j := ξn,j{σn ≥ j} and wj := wn,j := vn,j{σn ≥ j}.
Show that Pj−1ηj = 0 and Pj−1η

2
j = wj and

2 ≥
∑

j≤k(n)
wj → 1 in probability.

(x) Explain why it is enough to prove that
∑

j≤k(n) ηj  N(0, 1).

(xi) For a fixed real θ and a fixed n, define Wk :=
∑

j≤k wj and

λk := exp
(
iθ
∑

j≤k
ηj + 1

2θ
2Wk

)
with λ0 ≡ 1. Show that

Pk−1λk = λk−1 exp(1
2θ

2wk)
(
1− 1

2θ
2wk +R2(θηk)

)
(xii) Deduce that

|Pλk − Pλk−1| ≤ CθP
(
|ηk|3 + w2

k

)
≤ Cθ

(
n−1 + n−2

)
Pwk,

for some constant Cθ that depends on θ.

(xiii) Deduce that Pλk(n) = 1 + o(1).

(xiv) Show that

|Pλk(n)−P exp
(
iθ
∑

j≤k
ηj + 1

2θ
2
)
| ≤ P| exp

(
1
2θ

2Wk(n)

)
−exp

(
1
2θ

2
)
|,

which tends to 0 as n→∞.

(xv) Complete the argument that M1 ∼ N(0, 1).

See Pollard (2001, Section 9.6) for a slightly different implementation of
the same idea for proving M1 ∼ N(0, 1).

Higher order fidis (for enthusiasts).

To complete the proof that M is a Brownian motion, you would need check
the other fidis. For example, if 0 < s < 1 you would need to show Ms

and M1 −Ms are independent with N(0, s) and N(0, 1 − s) distributions.
Equivalently, you could show that

P exp (iαMs + iβ(M1 −Ms)) = exp
(
−1

2α
2s− 1

2β
2(1− s)

)
for all α, β ∈ R.

• Adapt the argument from (i) to (xv) to prove the last displayed equal-
ity. Define γn := max{j : Wj ≤ s}. Try working with a sum of
increments αηj{j ≤ γn}+ βηj{γn < j}.

• Extend the argument to joint distributions of more than two incre-
ments of M .
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5.2 Problems

[1] Suppose {Xt : t ∈ R+} is a progressively measurable process for some
standard filtration {Ft : t ∈ R+} on a probability space (Ω,F,P). Suppose
σ is a stopping time for the filtration. Define

τ(ω) = inf{t ≥ σ(ω) : |Xt(ω)−Xσ(ω)| ∈ B}

for some B ∈ B(R). Interpret the definition to mean that τ(ω) = +∞ when
σ(ω) = +∞. Show that τ is a stopping time by the following steps.

(i) Define
[[σ,∞[[ := {(t, ω) ∈ R+ × Ω : σ(ω) ≤ t <∞}.

Show that this ({0, 1}-valued) process is adapted and has cadlag sample
paths.

(ii) Show that the process Y (t, ω) := X(t∧σ(ω), ω) is progressively measurable.
(iii) Show that the set

At := {(s, ω) : X(s, ω)− Y (s, ω) ∈ B, 0 ≤ s < t} ∩ [[σ,∞[[

belongs to B(R+)⊗ Ft.
(iv) Show that {ω : τ(ω) < t} equals the projection of At onto Ω. See Section 5

of Project 4 for the necessary measure theory.
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