Project 6 The isometric stochastic integral

From my Mac's dictionary:

i•so•met•ric |,īsə'metrik|

adjective

1 of or having equal dimensions.

- **2** Physiology of, relating to, or denoting muscular action in which tension is developed without contraction of the muscle.
- ${\bf 3}$ (in technical or architectural drawing) incorporating a method of showing projection or perspective in which the three principal dimensions are represented by three axes 120° apart.
- ${f 4}$ Mathematics (of a transformation) without change of shape or size.

DERIVATIVES

i-so-met-ri-cal-ly $|-ik(\partial)l\bar{e}|$ $|'aISOU'metr\partial k(\partial)li|$ $|'aIZ\partial'metr\partial k(\partial)li|$ adverb **i**-som-e-try $|\bar{I}'s\ddot{a}mitr\bar{e}|$ $|aI'som\partial tri|$ $|\Delta I'somItri|$ noun (in sense 4).

ORIGIN mid 19th cent.: from Greek *isometria 'equality of measure'* (from *isos 'equal'* + -*metria 'measuring'*) + -IC .

Lect 11, Monday 15 Feb

6.1 Notation and facts

All the processes to be considered in this project will live on a fixed complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$, which is equipped with a standard filtration $\{\mathcal{F}_t : 0 \leq t \leq 1\}$. As usual, abbreviate $\mathbb{P}(\cdots | \mathcal{F}_s)$ to $\mathbb{P}_s(\ldots)$.

- Define $\mathfrak{S} := \Omega \times (0, 1]$ and $\overline{\mathfrak{S}} := \Omega \times [0, 1]$. In the definition of the stochastic integral $\int H \, dM$, the *predictable* process H will be defined on \mathfrak{S} and the martingale M will be defined on $\overline{\mathfrak{S}}$.
- Write M², or M²[0, 1] if there is any ambiguity about the index set, for the vector space of all square integrable, cadlag martingales, that is, all martingales {(M_t, F_t) : 0 ≤ t ≤ 1} with cadlag sample paths for which PM₁² < ∞. By Doob's inequality (cf. Pollard 2001, Problem 6.9)

> $||M||_{\mathfrak{M}} := ||M_1||_2 \ge \frac{1}{2} \left(\mathbb{P} \sup_{0 \le t \le 1} M_t^2 \right)^{1/2}$

for each M in \mathcal{M}^2 . Control of a martingale at time t = 1 gives control over the whole index set [0, 1]. Define $\mathcal{M}_0^2 = \{M \in \mathcal{M}^2[0, 1] : M_0 \equiv 0\}$.

< 1 >

- Two processes $\{X(\omega, t) : 0 \le t \le 1\}$ and $\{Y(\omega, t) : 0 \le t \le 1\}$ are said to be \mathbb{P} -indistinguishable if there exists a single \mathbb{P} -negligible set \mathcal{N} such that $X(\omega, t) = Y(\omega, t)$ for all $(\omega, t) \in (\Omega \setminus \mathcal{N}) \times [0, 1]$.
- Write \mathcal{H}_{simple} for the set of all *simple processes* of the form

$$H(t,\omega) = \sum_{i=0}^{N} h_i(\omega) \{ t_i < t \le t_{i+1} \} \quad \text{for } 0 \le t \le 1$$

for some finite grid $0 = t_0 < t_1 < \cdots < t_{N+1} = 1$ and bounded, $\mathcal{F}(t_i)$ measurable random variables h_i . As defined, $H(\omega, 0) \equiv 0$. Indeed, if I am interpreting Dellacherie and Meyer (1978, IV.61(b)) correctly, it is better to think of such an H as being defined on the set $\mathfrak{S} := \Omega \times (0, 1]$.

Remark. Some authors call members of $\mathcal{H}_{\text{simple}}$ elementary processes; others reserve that name for the situation where the t_i are replaced by stopping times. Dellacherie and Meyer (1982, §8.1) adopted the opposite convention.

• Write \mathcal{P} for the *predictable* sigma-field on \mathfrak{S} generated by $\mathcal{H}_{\text{simple}}$. A process is said to be predictable if it is \mathcal{P} -measurable. As you will see in Section 4, \mathcal{P} has a few other useful generating classes, such as the collection of all subsets of \mathfrak{S} of the form $F \times (a, b]$ for $0 \leq a < b \leq 1$ and $F \in \mathcal{F}_a$.

The main task in this project is to prove the existence of the isometric stochastic integral with respect to a martingale in \mathcal{M}^2 . The isometry involves the **Doléans measure** associated with the submartingale M^2 .

<3> Lemma. (existence of the Doléans measure) For each M in $\mathcal{M}^2[0,1]$ there exists a unique finite measure $\mu = \mu_M$ on \mathcal{P} for which

$$\mu F \times (a, b] = \mathbb{P}F(M_b - M_a)^2$$

for each $0 \leq a < b \leq 1$ and each $F \in \mathfrak{F}_a$.

- The martingale M enters the definition of μ_M only through its increments. We lose no generality in considering only M in \mathcal{M}_0^2 .
- Write H²(μ_M), or just H², for the set of all predictable processes H on S for which μH² < ∞.

Appendix C proves existence of the Doléans measure for a large class of submartingales (which includes M^2 for each M in \mathcal{M}^2).

 $<\!\!2\!\!>$

If $H \in \mathcal{H}_{\text{simple}}$, as in <2>, and $M \in \mathcal{M}^2$, define

<4>
$$\int_{(0,1]} H \, dM := \sum_{i=0}^{N} h_i(\omega) \left(M(\omega, t_{i+1}) - M(\omega, t_i) \right).$$

Here I follow Rogers and Williams (1987, page 2) in excluding the lower endpoint from the range of integration. Dellacherie and Meyer (1982, §8.1) added an extra contribution from a possible jump in M at 0. With the (0, 1] interpretation, the definition depends only on the increments of M; with no loss of generality, we may therefore assume $M_0 \equiv 0$.

A similar awkwardness arises in defining $\int_0^t H \, dM$ if M has a jump at t. The notation does not distinguish between the integral over (0, t) and the integral over (0, t]. I will use instead the Strasbourg notation $H \bullet M_1$ for $\int_{(0,1]} H \, dM$, with H multiplied by an explicit indicator function to modify the range of integration. For example, $\int_0^t H \, dM$ is obtained from $\langle 4 \rangle$ by substituting $H(s, \omega) \{ 0 < s \leq t \}$ for H. Thus

$$H \bullet M_t := (H(\omega, s)\{0 < s \le t\}) \bullet M_1$$
$$= \sum_{i=0}^N h_i(\omega) \left(M(\omega, t \land t_{i+1}) - M(\omega, t \land t_i) \right).$$

• You should check that $\mathbb{P}_t H \bullet M_1 = H \bullet M_t$ almost surely, so that $H \bullet M$ is a martingale (with cadlag paths).

The next theorem states the basic facts about the isometric stochastic integral. It will be proved in the remaining sections of this project.

<6> **Theorem.** For each M in $\mathcal{M}_0^2[0,1]$ there exists a linear map $H \mapsto H \bullet M$ from $\mathcal{H}^2(\mu_M)$ onto a closed (for $\|\cdot\|_{\mathcal{M}}$) subspace of \mathcal{M}_0^2 for which

(i) if
$$H = \sum_{i=0}^{N} h_i(\omega) \{ t_i < t \le t_{i+1} \} \in \mathcal{H}_{simple}$$
 then
 $H \bullet M_t = \sum_{i=0}^{N} h_i(\omega) \left(M(\omega, t_{i+1} \land t) - M(\omega, t_i \land t) \right) \quad \text{for } 0 \le t \le 1$

(ii)
$$\mathbb{P}(H \bullet M_1)^2 = \mu_M H^2$$
 for each $H \in \mathfrak{H}^2(\mu_M)$.

That is, $H \mapsto H \bullet M_1$ is an isometry from $\mathcal{H}^2(\mu_M)$ onto a closed subspace of $\mathcal{L}^2(\Omega, \mathcal{F}_1, \mathbb{P})$.

 $<\!\!5\!\!>$

I will start the extension of $H \bullet M$ to more general H processes by assuming slightly more than the existence of the Doléans measure. Instead I assume the existence of a cadlag, adapted process A with increasing sample paths for which $N_t := M_t^2 - A_t$ is a martingale. For example, for Brownian motion, $A_t(\omega) \equiv t$. As you will see in Section 6, we don't actually need the process Afor the construction of the stochastic integral if we restrict ourselves to predictable integrands.

Remark. If A is a predictable process, the representation $M^2 = N + A$ is called the **Doob-Meyer** decomposition. The proof of existence of such an A for each M in $\mathcal{M}_0^2[0,1]$ involves a lot of work. The construction of μ_M on \mathcal{P} is the much easier first step. There is a procedure (the dual predictable projection) for extending μ_M to a "predictable measure" on $\mathcal{B}(0,1] \otimes \mathcal{F}_1$. A disintegration of this new measure then defines the process A.

Without loss of generality, $A_0 = 0$. Identify $A(\cdot, \omega)$ with the measure μ_{ω} on $\mathcal{B}(0, 1]$ for which

$$\mu_{\omega}(0, t] = A(t, \omega) \quad \text{for } 0 < t \le 1.$$

See Pollard (2001, Section 2.9) for details of how to build μ_{ω} as an image measure (the quantile transformation). Construct a measure μ on $\mathcal{B}(0, 1] \otimes \mathcal{F}$ by

$$\mu g(t,\omega) = \mathbb{P}^{\omega} \mu_{\omega}^{t} g(\omega,t)$$

at least for nonnegative, $\mathcal{B}(0,1] \otimes \mathcal{F}$ -measurable functions g. (In the notation of Pollard 2001, Section 4.3, the measure μ equals $\mathbb{P} \otimes \{\mu_{\omega} : \omega \in \Omega\}$.) Notice that $\mu(0,1] \times \Omega = \mathbb{P}A_1 < \infty$.

- (i) For Brownian motion, show that $\mu = \mathbb{P} \otimes \mathfrak{m}$ with $\mathfrak{m} =$ Lebesgue measure on $\mathcal{B}(0, 1]$.
- (ii) For fixed $0 \le a < b \le 1$, define $\Delta N = N_b N_a$, $\Delta M = M_b M_a$, and $\Delta A = A_b - A_a$. Show that

$$0 = \mathbb{P}_a \Delta N = \mathbb{P}_a \left((\Delta M)^2 - \Delta A \right) \qquad \text{almost surely.}$$

(iii) At least for each bounded, \mathcal{F}_a -measurable random variable h, deduce that

$$\mathbb{P}h(\omega)(\Delta M)^{2} = \mathbb{P}h(\omega)\Delta A = \mathbb{P}^{\omega} \left(h(\omega)\mu_{\omega}^{t} \{a < t \le b\}\right)$$

<7>
$$= \mu h(\omega) \{a < t \le b\}.$$

$$<\!\!8\!\!>$$
 Lemma. $\mathbb{P}(H \bullet M_1)^2 = \mu H^2$ for each $H \in \mathcal{H}_{\text{simple}}$,

PROOF Expand the left-hand side of the asserted inequality as

$$\sum_{i} \mathbb{P}h_{i}^{2}(\Delta_{i}M)^{2} + 2\sum_{i < j} \mathbb{P}h_{i}h_{j}\Delta_{i}M\Delta_{j}M \quad \text{where } \Delta_{i}M := M(t_{i+1} - M(t_{i}))$$

Use the fact that $\mathbb{P}(\Delta_j M \mid \mathcal{F}(t_{j-1})) = 0$ to kill all the cross-product terms. Use equality $\langle 7 \rangle$ to simplify the other contributions to

$$\mu^{s,\omega} \sum_{i} h_i(\omega)^2 \{ t_i < s \le t_{i+1} \} = \mu H^2.$$

6.4 The predictable sigma-field

I defined \mathcal{P} to be $\sigma(\mathcal{H}_{simple})$, the smallest sigma-field on \mathfrak{S} for which each member of \mathcal{H}_{simple} is $\mathcal{P} \setminus \mathcal{B}(\mathbb{R})$ -measurable. You should check that \mathcal{P} is also generated by the following collections of sets or processes.

- (a) the collection \mathcal{E} of all subsets of \mathfrak{S} of the form $F \times (a, b]$ for $0 \le a < b \le 1$ and $F \in \mathfrak{F}_a$
- (b) the set $\mathcal{H}_{\text{left}}$ of all adapted process L on \mathfrak{S} with sample paths that are left-continuous at each point of (0, 1].
- (c) the set \mathbb{C} of restrictions to \mathfrak{S} of adapted processes on $\Omega \times [0,1]$ with continuous sample paths
- (d) the set of all stochastic intervals

$$((0,\tau]] := \{(\omega,t) \in \mathfrak{S} : 0 < t \le \tau(\omega)\}$$

where τ ranges over the set T of all stopping times for the filtration.

Remark. Note that $((0, \tau)]$ is unchanged if we replace τ by $\tau \wedge 1$; the point (ω, ∞) never belongs to the stochastic interval, even if $\tau(\omega) = +\infty$. D&M write $[]0, \tau]]$ for $((0, \tau)]$.

(e) the set of all processes of the form

$$((\sigma,\tau]]h(\omega) = h(\omega)\{(\omega,t) \in \mathfrak{S} : \sigma(\omega) < t \le \tau(\omega)\}$$

where σ and τ are stopping times, with $\sigma \leq \tau$, and h is \mathcal{F}_{σ} -measurable

(f) the vector space $\mathcal{H}_{\text{BddLip}}$ of restrictions to \mathfrak{S} of adapted processes Hon $[0,1] \times \Omega$ for which there exists a finite constant C_H such that $|H(\omega,t)| \leq C_H$ and $|H(\omega,s) - H(\omega,t)| \leq C_H |t-s|$ for all s, t, and ω .

Proof

- (i) For (a): Note that each \mathcal{E} -set is in \mathcal{H}_{simple} . For $h(\omega)\{a < t \leq b\}$ with h bounded and \mathcal{F}_a -measurable, approximate h by simple functions.
- (ii) For (b): All \mathcal{H}_{simple} processes belong to \mathcal{H}_{left} . Express an H in \mathcal{H}_{left} as a pointwise limit of \mathcal{H}_{simple} processes,

$$H_n(\omega, t) := \sum_{i=2}^{2^n} H(\omega, t_{n,i-1}) \{ t_{n,i-1} < t \le t_{n,i} \} \quad \text{where } t_{n,i} := i/2^n$$

(iii) For (d): Without loss of generality suppose τ is a stopping time taking values in [0, 1]. Let τ_n be the stopping time obtained by rounding τ up to the next integer multiple of 2^{-n} , that is, $\tau_n(\omega) := 2^{-n} \lceil 2^n \tau(\omega) \rceil$. Show that

$$((0, \tau_n]] = \sum_{i=1}^{2^n} \{t_{i-1} < t \le t_i\} \{\tau(\omega) > t_{i-1}\} \in \mathcal{H}_{\text{simple}}$$

and that $\cap_{n \in \mathbb{N}} ((0, \tau_n]] = ((0, \tau]]$. Also, if $F \times (a, b] \in \mathcal{E}$, show that $\sigma(\omega) := a\{\omega \in F\} + \{\omega \in F^c\}$ and $\tau(\omega) := b\{\omega \in F\} + \{\omega \in F^c\}$ are stopping times for which $F \times (a, b] = ((\sigma, \tau)]$.

- (iv) For (e): Approximate σ and τ as for (d).
- (v) For (f): If $F \times (a, b] \in \mathcal{E}$ define

$$H_n(\omega, t) := \{\omega \in F\} \left(1 - n(t - a - n^{-1})^+ \right)^+ \in \mathcal{H}_{\text{BddLip}}.$$

Then $H_n \to F \times (a, 1]$ pointwise as $n \to \infty$. Argue similarly for $F \times (b, 1]$.

6.5 Extension by isometry

Think of $\mathcal{H}_{\text{simple}}$ as a subspace of $\mathcal{L}^2(\mu) := \mathcal{L}^2(\mathfrak{S}, \mathcal{B}(0, 1] \otimes \mathcal{F}_1, \mu)$. Then Lemma <8> shows that $H \mapsto H \bullet M_1$ is an isometry from a subspace of $\mathcal{L}^2(\mu)$ to $\mathcal{L}^2(\mathbb{P}) := \mathcal{L}^2(\Omega, \mathcal{F}_1, \mathbb{P})$. It extends to an isometry from $\overline{\mathcal{H}}_{\text{simple}}$,

Remark. In Appendix C, the Doléans measure will be defined as a linear functional on \mathcal{H}_{BddLip} .

the $\mathcal{L}^2(\mu)$ closure of $\mathcal{H}_{\text{simple}}$ in $\mathcal{L}^2(\mu)$, into $\mathcal{L}^2(\Omega, \mathcal{F}_1, \mathbb{P})$. To avoid confusion between norms, write $\|H\|_{\mathcal{L}^2(\mu)}$ or $\|H\|_{\mu}$ for the $\mathcal{L}^2(\mu)$ norm and $\|X\|_{\mathcal{L}^2(\mathbb{P})}$ or $\|X\|_{\mathbb{P}}$ for the $\mathcal{L}^2(\mathbb{P})$ norm of a random variable X.

- (i) For each $G \in \overline{\mathcal{H}}_{simple}$ there exists a sequence $\{H_n\}$ in \mathcal{H}_{simple} for which $\|G H_n\|_{\mathcal{L}^2(\mu)} \to 0$. Show that $\{H_n\}$ is a Cauchy sequence in $\mathcal{L}^2(\mu)$. Deduce, via Lemma 8, that $\{H_n \bullet M_1\}$ is a Cauchy sequence in $\mathcal{L}^2(\mathbb{P})$, which therefore converges to some Z in $\mathcal{L}^2(\mathbb{P})$.
- (ii) If $\{K_n\}$ is another sequence in \mathcal{H}_{simple} for which $||G K_n||_{\mathcal{L}^2(\mu)} \to 0$, show that $||H_n \bullet M_1 - K_n \bullet M_1||_{\mathcal{L}^2(\mathbb{P})} \to 0$. Deduce that $K_n \bullet M_1$ also converges to Z in $\mathcal{L}^2(\mathbb{P})$ norm.
- (iii) Define (up to an almost sure equivalence) $G \bullet M_1 = Z$.
- (iv) For each t in [0, 1], argue similarly that $G \bullet M_t$ could be defined as an $\mathcal{L}^2(\mathbb{P})$ limit of $H_n \bullet M_t$.
- (v) Show that $\mathbb{P}_t(G \bullet M_1) = G_t$ almost surely. Choose a cadlag version of the martingale $\{(G \bullet M_t, \mathcal{F}_t) : 0 \leq t \leq 1\}$. Show that $G \mapsto G \bullet M$ is linear (up to some sort of almost sure equivalence).
- (vi) Show that $||G \bullet M||_{\mathcal{M}} := ||G \bullet M_1||_{\mathcal{L}^2(\mathbb{P})} = ||G||_{\mathcal{L}^2(\mu)}$.
- (vii) Suppose $\{G_i\}$ is a sequence in $\overline{\mathcal{H}}_{simple}$ with $||G_i \bullet M_1 W||_{\mathcal{L}^2(\mathbb{P})} \to 0$ for some $W \in \mathcal{L}^2(\mathbb{P})$. Show that $||G_i - G||_{\mathcal{L}^2(\mu)} \to 0$ for some $G \in \overline{\mathcal{H}}_{simple}$ and $W = G \bullet M_1$ almost surely.

Deduce that $\{G \bullet M : G \in \overline{\mathcal{H}}_{simple}\}$ is a $\|\cdot\|_{\mathcal{M}}$ closed subspace of \mathcal{M}_0^2 . [Strictly speaking, we should work with equivalence classes of indistinguishable processes.]

(viii) Show that the $H \bullet M$ described in Theorem 6 is unique up to indistinguishability.

8

- <9> **Example.** Suppose σ and τ are stopping time taking values in [0, 1], with $\sigma \leq \tau$. Suppose h is a bounded, \mathcal{F}_{σ} -measurable random variable. Define σ_n to be the stopping time obtained by rounding σ up to the next integer multiple of 2^{-n} and define τ_n similarly.
 - Show that $\mu h(\omega) \left(\left(\left(\sigma_n, \tau_n \right] \right)^2 \to 0. \right)$
 - Deduce that $(h(\omega)((\sigma,\tau))) \bullet M_t = h(\omega) (M_{t\wedge\tau} M(\sigma\wedge t)).$

6.6 Predictable integrands

How large is $\overline{\mathcal{H}}_{\text{simple}}$?

- (i) Invoke a λ -space argument to show that $\overline{\mathcal{H}}_{simple}$ contains all bounded, \mathcal{P} -measurable processes.
- (ii) In general, if $G \in \overline{\mathcal{H}}_{simple}$ then $||G H_n||_{\mathcal{L}^2(\mu)} \to 0$ for some sequence $\{H_n\}$ in \mathcal{H}_{simple} . There exists a subsequence along which $H_n \to G$ a.e. $[\mu]$. As each H_n is \mathcal{P} -measurable, there must exists some \mathcal{P} -measurable G^* with $G^* = G$ a.e. $[\mu]$.
- (iii) For Brownian motion, that $\overline{\mathcal{H}}_{simple}$ contains all the $\mathcal{F}_1 \otimes \mathcal{B}(0, 1]$ -measurable, adapted processes that are square integrable for $\mathbb{P} \times \mathfrak{m}$. (See Chung and Williams 1990, Theorem 3.7 or Problem [2] below.) We don't lose much by restricting ourselves to \mathcal{P} -measurable integrands.

6.7 Problems

- [1] Suppose $M \in \mathcal{M}^2[0, 1]$ has continuous sample paths.
 - (i) For each H in \mathcal{H}_{simple} , show that $H \bullet M$ has continuous sample paths.
 - (ii) Suppose $\{H_n : n \in \mathbb{N}\} \subseteq \mathcal{H}_{simple}$ and $\mu |H_n H|^2 < 2^{-n}$. Use Doob's maximal inequality to show that

$$\sum_{n} \mathbb{P} \sup_{0 \le t \le 1} |H_n \bullet M_t - H \bullet M_t| < \infty$$

(iii) Deduce that there is a version of $H \bullet M$ with continuous sample paths.

- [2] Suppose $\mu = \mathfrak{m} \otimes \mathbb{P}$, defined on $\mathcal{B}(0,1] \otimes \mathcal{F}$. Let $\{X_t : 0 \leq t \leq 1\}$ be progressively measurable.
 - (i) Suppose X is bounded, that is, $\sup_{t,\omega} |X(t,\omega)| < \infty$. Define

$$H_n(t,\omega):=n\int_{t-n^{-1}}^t X(s,\omega)\,ds$$

(How should you understand the definition when $t < n^{-1}$?) Show that H_n is predictable and $\int_0^1 |H_n(t,\omega) - X(t,\omega)|^2 dt \to 0$ for each ω .

- (ii) Deduce that $\mu |H_n X|^2 \to 0$.
- (iii) Deduce that $X \in \overline{\mathcal{H}}_{\text{simple}}$ if $\mu X^2 < \infty$.

References

- Chung, K. L. and R. J. Williams (1990). Introduction to Stochastic Integration. Boston: Birkhäuser.
- Dellacherie, C. and P. A. Meyer (1978). *Probabilities and Potential*. Amsterdam: North-Holland. (First of three volumes).
- Dellacherie, C. and P. A. Meyer (1982). *Probabilities and Potential B: Theory of Martingales.* Amsterdam: North-Holland.
- Métivier, M. (1982). Semimartingales: A Course on Stochastic Processes. Berlin: De Gruyter.
- Pollard, D. (2001). A User's Guide to Measure Theoretic Probability. Cambridge University Press.
- Rogers, L. C. G. and D. Williams (1987). *Diffusions, Markov Processes,* and Martingales: Itô Calculus, Volume 2. Wiley.