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The isometric stochastic integral
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Lect 11, Monday 15 Feb

6.1 Notation and facts

All the processes to be considered in this project will live on a fixed complete
probability space (Ω,F,P), which is equipped with a standard filtration
{Ft : 0 ≤ t ≤ 1}. As usual, abbreviate P(· · · | Fs) to Ps(. . . ).

• Define S := Ω × (0, 1] and S := Ω × [0, 1]. In the definition of the
stochastic integral

∫
H dM , the predictable process H will be defined

on S and the martingale M will be defined on S.

• Write M2, or M2[0, 1] if there is any ambiguity about the index set, for
the vector space of all square integrable, cadlag martingales, that is, all
martingales {(Mt,Ft) : 0 ≤ t ≤ 1} with cadlag sample paths for which
PM2

1 <∞. By Doob’s inequality (cf. Pollard 2001, Problem 6.9)

‖M‖M := ‖M1‖2 ≥
1
2

(
P sup0≤t≤1M

2
t

)1/2
<1>

for each M in M2. Control of a martingale at time t = 1 gives control
over the whole index set [0, 1]. Define M2

0 = {M ∈M2[0, 1] : M0 ≡ 0}.
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§6.2 2

• Two processes {X(ω, t) : 0 ≤ t ≤ 1} and {Y (ω, t) : 0 ≤ t ≤ 1} are said
to be P-indistinguishable if there exists a single P-negligible set N

such that X(ω, t) = Y (ω, t) for all (ω, t) ∈ (Ω\N)× [0, 1].

• Write Hsimple for the set of all simple processes of the form

H(t, ω) =
∑N

i=0
hi(ω){ti < t ≤ ti+1} for 0 ≤ t ≤ 1<2>

for some finite grid 0 = t0 < t1 < · · · < tN+1 = 1 and bounded, F(ti)-
measurable random variables hi. As defined, H(ω, 0) ≡ 0. Indeed, if I
am interpreting Dellacherie and Meyer (1978, IV.61(b)) correctly, it is
better to think of such an H as being defined on the set S := Ω×(0, 1].

Remark. Some authors call members of Hsimple elementary
processes; others reserve that name for the situation where
the ti are replaced by stopping times. Dellacherie and Meyer
(1982, §8.1) adopted the opposite convention.

• Write P for the predictable sigma-field on S generated by Hsimple. A
process is said to be predictable if it is P-measurable. As you will see
in Section 4, P has a few other useful generating classes, such as the
collection of all subsets of S of the form F × (a, b] for 0 ≤ a < b ≤ 1
and F ∈ Fa.

The main task in this project is to prove the existence of the isometric
stochastic integral with respect to a martingale in M2. The isometry involves
the Doléans measure associated with the submartingale M2.

<3> Lemma. (existence of the Doléans measure) For each M in M2[0, 1] there
exists a unique finite measure µ = µM on P for which

µF × (a, b] = PF (Mb −Ma)2

for each 0 ≤ a < b ≤ 1 and each F ∈ Fa.

• The martingale M enters the definition of µM only through its incre-
ments. We lose no generality in considering only M in M2

0.

• Write H2(µM ), or just H2, for the set of all predictable processes H
on S for which µH2 <∞.

Appendix C proves existence of the Doléans measure for a large class of
submartingales (which includes M2 for each M in M2).
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6.2 Stochastic integral for simple processes

If H ∈ Hsimple, as in <2>, and M ∈M2, define∫
(0,1]

H dM :=
∑N

i=0
hi(ω)

(
M(ω, ti+1)−M(ω, ti)

)
.<4>

Here I follow Rogers and Williams (1987, page 2) in excluding the lower
endpoint from the range of integration. Dellacherie and Meyer (1982, §8.1)
added an extra contribution from a possible jump in M at 0. With the (0, 1]
interpretation, the definition depends only on the increments of M ; with no
loss of generality, we may therefore assume M0 ≡ 0.

A similar awkwardness arises in defining
∫ t
0 H dM if M has a jump

at t. The notation does not distinguish between the integral over (0, t) and
the integral over (0, t]. I will use instead the Strasbourg notation H •M1

for
∫
(0,1]H dM , with H multiplied by an explicit indicator function to mod-

ify the range of integration. For example,
∫ t
0 H dM is obtained from <4>

by substituting H(s, ω){0 < s ≤ t} for H. Thus

H •Mt := (H(ω, s){0 < s ≤ t}) •M1

=
∑N

i=0
hi(ω)

(
M(ω, t ∧ ti+1)−M(ω, t ∧ ti)

)
.<5>

• You should check that PtH •M1 = H •Mt almost surely, so that H •M
is a martingale (with cadlag paths).

The next theorem states the basic facts about the isometric stochastic
integral. It will be proved in the remaining sections of this project.

<6> Theorem. For each M in M2
0[0, 1] there exists a linear map H 7→ H •M

from H2(µM ) onto a closed (for ‖·‖M) subspace of M2
0 for which

(i) if H =
∑N

i=0 hi(ω){ti < t ≤ ti+1} ∈ Hsimple then

H•Mt =
∑N

i=0
hi(ω)

(
M(ω, ti+1 ∧ t)−M(ω, ti ∧ t)

)
for 0 ≤ t ≤ 1

(ii) P(H •M1)2 = µMH
2 for each H ∈ H2(µM ).

That is, H 7→ H •M1 is an isometry from H2(µM ) onto a closed subspace
of L2(Ω,F1,P).
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6.3 Increasing processes as measures

I will start the extension of H •M to more general H processes by assuming
slightly more than the existence of the Doléans measure. Instead I assume
the existence of a cadlag, adapted process A with increasing sample paths
for which Nt := M2

t −At is a martingale. For example, for Brownian motion,
At(ω) ≡ t. As you will see in Section 6, we don’t actually need the process A
for the construction of the stochastic integral if we restrict ourselves to
predictable integrands.

Remark. If A is a predictable process, the representation M2 = N +A
is called the Doob-Meyer decomposition. The proof of existence
of such an A for each M in M2

0[0, 1] involves a lot of work. The
construction of µM on P is the much easier first step. There is a
procedure (the dual predictable projection) for extending µM to a
“predictable measure” on B(0, 1] ⊗ F1. A disintegration of this new
measure then defines the process A.

Without loss of generality, A0 = 0. Identify A(·, ω) with the measure µω
on B(0, 1] for which

µω(0, t] = A(t, ω) for 0 < t ≤ 1.

See Pollard (2001, Section 2.9) for details of how to build µω as an image
measure (the quantile transformation). Construct a measure µ on B(0, 1]⊗F

by
µg(t, ω) = Pωµtωg(ω, t)

at least for nonnegative, B(0, 1]⊗F-measurable functions g. (In the notation
of Pollard 2001, Section 4.3, the measure µ equals P⊗{µω : ω ∈ Ω}.) Notice
that µ(0, 1]× Ω = PA1 <∞.

(i) For Brownian motion, show that µ = P⊗m with m = Lebesgue mea-
sure on B(0, 1].

(ii) For fixed 0 ≤ a < b ≤ 1, define ∆N = Nb − Na, ∆M = Mb −Ma,
and ∆A = Ab −Aa. Show that

0 = Pa∆N = Pa
(
(∆M)2 −∆A

)
almost surely.

(iii) At least for each bounded, Fa-measurable random variable h, deduce
that

Ph(ω)(∆M)2 = Ph(ω)∆A = Pω
(
h(ω)µtω{a < t ≤ b}

)
= µh(ω){a < t ≤ b}.<7>
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<8> Lemma. P
(
H •M1

)2 = µH2 for each H ∈ Hsimple,

Proof Expand the left-hand side of the asserted inequality as∑
i
Ph2

i (∆iM)2+2
∑

i<j
Phihj∆iM∆jM where ∆iM := M(ti+1−M(ti).

Use the fact that P(∆jM | F(tj−1)) = 0 to kill all the cross-product terms.
Use equality <7> to simplify the other contributions to

µs,ω
∑

i
hi(ω)2{ti < s ≤ ti+1} = µH2.

�

6.4 The predictable sigma-field

I defined P to be σ(Hsimple), the smallest sigma-field on S for which each
member of Hsimple is P\B(R)-measurable. You should check that P is also
generated by the following collections of sets or processes.

(a) the collection E of all subsets of S of the form F×(a, b] for 0 ≤ a < b ≤ 1
and F ∈ Fa

(b) the set Hleft of all adapted process L on S with sample paths that are
left-continuous at each point of (0, 1].

(c) the set C of restrictions to S of adapted processes on Ω × [0, 1] with
continuous sample paths

(d) the set of all stochastic intervals

((0, τ ]] := {(ω, t) ∈ S : 0 < t ≤ τ(ω)}

where τ ranges over the set T of all stopping times for the filtration.

Remark. Note that ((0, τ ]] is unchanged if we replace τ by τ ∧ 1;
the point (ω,∞) never belongs to the stochastic interval, even
if τ(ω) = +∞. D&M write ]]0, τ ]] for ((0, τ ]].

(e) the set of all processes of the form

((σ, τ ]]h(ω) = h(ω){(ω, t) ∈ S : σ(ω) < t ≤ τ(ω)}

where σ and τ are stopping times, with σ ≤ τ , and h is Fσ-measurable
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(f) the vector space HBddLip of restrictions to S of adapted processes H
on [0, 1] × Ω for which there exists a finite constant CH such that
|H(ω, t)| ≤ CH and |H(ω, s)−H(ω, t)| ≤ CH |t− s| for all s, t, and ω.

Remark. In Appendix C, the Doléans measure will be defined as a linear
functional on HBddLip.

Proof

(i) For (a): Note that each E-set is in Hsimple. For h(ω){a < t ≤ b} with
h bounded and Fa-measurable, approximate h by simple functions.

(ii) For (b): All Hsimple processes belong to Hleft. Express an H in Hleft

as a pointwise limit of Hsimple processes,

Hn(ω, t) :=
∑2n

i=2
H(ω, tn,i−1){tn,i−1 < t ≤ tn,i} where tn,i := i/2n

(iii) For (d): Without loss of generality suppose τ is a stopping time taking
values in [0, 1]. Let τn be the stopping time obtained by rounding τ
up to the next integer multiple of 2−n, that is, τn(ω) := 2−nd2nτ(ω)e.
Show that

((0, τn]] =
∑2n

i=1
{ti−1 < t ≤ ti}{τ(ω) > ti−1} ∈ Hsimple

and that ∩n∈N ((0, τn]] = ((0, τ ]]. Also, if F × (a, b] ∈ E, show that
σ(ω) := a{ω ∈ F}+ {ω ∈ F c} and τ(ω) := b{ω ∈ F}+ {ω ∈ F c} are
stopping times for which F × (a, b] = ((σ, τ ]].

(iv) For (e): Approximate σ and τ as for (d).

(v) For (f): If F × (a, b] ∈ E define

Hn(ω, t) := {ω ∈ F}
(
1− n(t− a− n−1)+

)+ ∈ HBddLip.

Then Hn → F × (a, 1] pointwise as n → ∞. Argue similarly for
F × (b, 1].

6.5 Extension by isometry

Think of Hsimple as a subspace of L2(µ) := L2(S,B(0, 1] ⊗ F1, µ). Then
Lemma <8> shows that H 7→ H •M1 is an isometry from a subspace of
L2(µ) to L2(P) := L2(Ω,F1,P). It extends to an isometry from Hsimple,
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the L2(µ) closure of Hsimple in L2(µ), into L2(Ω,F1,P). To avoid confusion
between norms, write ‖H‖L2(µ) or ‖H‖µ for the L2(µ) norm and ‖X‖L2(P)

or ‖X‖P for the L2(P) norm of a random variable X.

(i) For each G ∈ Hsimple there exists a sequence {Hn} in Hsimple for which
‖G−Hn‖L2(µ) → 0. Show that {Hn} is a Cauchy sequence in L2(µ).
Deduce, via Lemma 8, that {Hn •M1} is a Cauchy sequence in L2(P),
which therefore converges to some Z in L2(P).

(ii) If {Kn} is another sequence in Hsimple for which ‖G−Kn‖L2(µ) → 0,
show that ‖Hn •M1 −Kn •M1‖L2(P) → 0. Deduce that Kn •M1 also
converges to Z in L2(P) norm.

(iii) Define (up to an almost sure equivalence) G •M1 = Z.

(iv) For each t in [0, 1], argue similarly that G •Mt could be defined as an
L2(P) limit of Hn •Mt.

(v) Show that Pt(G •M1) = Gt almost surely. Choose a cadlag version of
the martingale {(G •Mt,Ft) : 0 ≤ t ≤ 1}. Show that G 7→ G •M is
linear (up to some sort of almost sure equivalence).

(vi) Show that ‖G •M‖M := ‖G •M1‖L2(P) = ‖G‖L2(µ) .

(vii) Suppose {Gi} is a sequence in Hsimple with ‖Gi •M1 −W‖L2(P) → 0
for some W ∈ L2(P). Show that ‖Gi −G‖L2(µ) → 0 for some G ∈
Hsimple and W = G •M1 almost surely.

Deduce that {G •M : G ∈ Hsimple} is a ‖·‖M closed subspace of M2
0.

[Strictly speaking, we should work with equivalence classes of indistin-
guishable processes.]

(viii) Show that the H •M described in Theorem 6 is unique up to indis-
tinguishability.
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Lect 12, Wednesday 17 Feb

<9> Example. Suppose σ and τ are stopping time taking values in [0, 1], with
σ ≤ τ . Suppose h is a bounded, Fσ-measurable random variable. Define
σn to be the stopping time obtained by rounding σ up to the next integer
multiple of 2−n and define τn similarly.

• Show that µh(ω)
(
((σn, τn]]− ((σ, τ ]]

)2 → 0.

• Deduce that
(
h(ω)((σ, τ ]]

)
•Mt = h(ω) (Mt∧τ −M(σ ∧ t)).

�

6.6 Predictable integrands

How large is Hsimple?

(i) Invoke a λ-space argument to show that Hsimple contains all bounded,
P-measurable processes.

(ii) In general, if G ∈ Hsimple then ‖G−Hn‖L2(µ) → 0 for some se-
quence {Hn} in Hsimple. There exists a subsequence along which
Hn → G a.e. [µ]. As each Hn is P-measurable, there must exists
some P-measurable G∗ with G∗ = G a.e. [µ].

(iii) For Brownian motion, that Hsimple contains all the F1⊗B(0, 1]-measurable,
adapted processes that are square integrable for P × m . (See Chung
and Williams 1990, Theorem 3.7 or Problem [2] below.) We don’t lose
much by restricting ourselves to P-measurable integrands.

6.7 Problems

[1] Suppose M ∈M2[0, 1] has continuous sample paths.
(i) For each H in Hsimple, show that H •M has continuous sample paths.

(ii) Suppose {Hn : n ∈ N} ⊆ Hsimple and µ|Hn − H|2 < 2−n. Use Doob’s
maximal inequality to show that∑

n
P sup0≤t≤1 |Hn •Mt −H •Mt| <∞

(iii) Deduce that there is a version of H •M with continuous sample paths.
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[2] Suppose µ = m ⊗ P, defined on B(0, 1] ⊗ F. Let {Xt : 0 ≤ t ≤ 1} be
progressively measurable.

(i) Suppose X is bounded, that is, supt,ω |X(t, ω)| <∞. Define

Hn(t, ω) := n

∫ t

t−n−1

X(s, ω) ds

(How should you understand the definition when t < n−1?) Show that Hn

is predictable and
∫ 1
0 |Hn(t, ω)−X(t, ω)|2 dt→ 0 for each ω.

(ii) Deduce that µ|Hn −X|2 → 0.
(iii) Deduce that X ∈ Hsimple if µX2 <∞.
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