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Project 6

The isometric stochastic integral

From my Mac’s dictionary:

lesOemeteric |iso'metrik]|

adjective

1 of or having equal dimensions.

2 Physiology of, relating to, or denoting muscular action in which tension is developed
without contraction of the muscle.

3 (in technical or architectural drawing) incorporating a method of showing projection
or perspective in which the three principal dimensions are represented by three axes
120° apart.

4 Mathematics (of a transformation) without change of shape or size.

DERIVATIVES
issoemet.ri.cal.ly |-ik(9)lé| |'arsou'metrok(e)li| |'arzo'metrok(9)li| adverb

issomee.try |T'sdmitré| |ar'samatri| |Ar'spmitri| noun (in sense 4).

ORIGIN mid 19th cent.: from Greek isometria ‘equality of measure’ (from isos
‘equal’ + -metria ‘measuring’) + -1c .
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Notation and facts

All the processes to be considered in this project will live on a fixed complete
probability space (2, F,P), which is equipped with a standard filtration
{F+:0<t<1}. As usual, abbreviate P(--- | Fs5) to Ps(...).

e Define & := Q x (0,1] and & := Q x [0,1]. In the definition of the

stochastic integral [ H dM, the predictable process H will be defined
on G and the martingale M will be defined on &.

Write M2, or M?[0, 1] if there is any ambiguity about the index set, for
the vector space of all square integrable, cadlag martingales, that is, all
martingales {(M;,Fy) : 0 < ¢ < 1} with cadlag sample paths for which
PM? < co. By Doob’s inequality (cf. Pollard 2001, Problem 6.9)

2\1/2
<1> M|y = [Ma]ly = 5 (Psupo<i<q M)
for each M in M2. Control of a martingale at time ¢ = 1 gives control
over the whole index set [0, 1]. Define M2 = {M € M?[0,1] : My = 0}.
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e Two processes {X (w,?):0<t <1} and {Y(w,t) : 0 <t <1} are said
to be P-indistinguishable if there exists a single P-negligible set N
such that X (w,t) =Y (w,t) for all (w,t) € (Q\N) x [0, 1].

o Write Hgimple for the set of all simple processes of the form

N
<2> H(t,w) =) Jhi@){ti <t <t} for0<t<1
1=

for some finite grid 0 =tg < t; < --- < ty+1 = 1 and bounded, F(t;)-
measurable random variables h;. As defined, H(w,0) = 0. Indeed, if I
am interpreting Dellacherie and Meyer (1978, IV.61(b)) correctly, it is
better to think of such an H as being defined on the set & := Q2 x (0, 1].

Remark. Some authors call members of Hgimpie elementary
processes; others reserve that name for the situation where
the t; are replaced by stopping times. Dellacherie and Meyer
(1982, §8.1) adopted the opposite convention.

e Write P for the predictable sigma-field on & generated by Hgimple- A
process is said to be predictable if it is P-measurable. As you will see
in Section 4, P has a few other useful generating classes, such as the
collection of all subsets of & of the form F' x (a,b] for 0 <a <b <1
and F € F,.

The main task in this project is to prove the existence of the isometric
stochastic integral with respect to a martingale in M?. The isometry involves
the Doléans measure associated with the submartingale M?2.

Lemma. (ezistence of the Doléans measure) For each M in M2[0, 1] there
exists a unique finite measure = ppr on P for which

pF x (a,b) = PF(M, — M,)*
for each 0 <a <b<1 and each F € F,.

e The martingale M enters the definition of uys only through its incre-
ments. We lose no generality in considering only M in Mg.

o Write 32(uns), or just H2, for the set of all predictable processes H
on & for which uH? < oo.

Appendix C proves existence of the Doléans measure for a large class of
submartingales (which includes M? for each M in M?).
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<4>

<5>

<6>
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Stochastic integral for simple processes

If H € Hgimple, as in <2>, and M € M?, define
N
| M= 3T i) (M) - M, 1).
(0,1] =

Here I follow Rogers and Williams (1987, page 2) in excluding the lower
endpoint from the range of integration. Dellacherie and Meyer (1982, §8.1)
added an extra contribution from a possible jump in M at 0. With the (0, 1]
interpretation, the definition depends only on the increments of M; with no
loss of generality, we may therefore assume My = 0.

A similar awkwardness arises in defining fg HdM if M has a jump
at t. The notation does not distinguish between the integral over (0,¢) and
the integral over (0,¢]. I will use instead the Strasbourg notation H e M;
for f(071} H dM, with H multiplied by an explicit indicator function to mod-

ify the range of integration. For example, fot H dM is obtained from <4>
by substituting H(s,w){0 < s <t} for H. Thus

He M, :=(Hw,s){0<s<t})e M
= ZZO hl(w) (M(wvt A tiJrl) - M(w,t A tz)) .

e You should check that P, H e M, = H e M, almost surely, so that H e M
is a martingale (with cadlag paths).

The next theorem states the basic facts about the isometric stochastic
integral. It will be proved in the remaining sections of this project.

Theorem. For each M in M2[0,1] there exists a linear map H — H o M
from H?(uar) onto a closed (for ||-||5) subspace of ME for which

(i) if H="Nhi(w){t: <t <tip1} € Hamplo then

N
HelM; = Z'—o hi(w) (M (w, tiy1 At) — M(w, t; A L)) for0<t<1

(i) P(H o M1)? = uprH? for each H € 3% ().

That is, H — H e M is an isometry from H?(un) onto a closed subspace
of L2(Q,F1,P).
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Increasing processes as mneasures

I will start the extension of H e M to more general H processes by assuming
slightly more than the existence of the Doléans measure. Instead I assume
the existence of a cadlag, adapted process A with increasing sample paths
for which N; := M2 — A; is a martingale. For example, for Brownian motion,
A(w) = t. As you will see in Section 6, we don’t actually need the process A
for the construction of the stochastic integral if we restrict ourselves to
predictable integrands.

Remark. If A is a predictable process, the representation M? = N + A
is called the Doob-Meyer decomposition. The proof of existence
of such an A for each M in M3[0,1] involves a lot of work. The
construction of pup; on P is the much easier first step. There is a
procedure (the dual predictable projection) for extending pas to a
“predictable measure” on B(0,1] ® F;. A disintegration of this new
measure then defines the process A.

Without loss of generality, Ag = 0. Identify A(-,w) with the measure p,,
on B(0,1] for which

e (0,t] = A(t, w) for 0 <t <1

See Pollard (2001, Section 2.9) for details of how to build p, as an image
measure (the quantile transformation). Construct a measure p on B(0,1]®@F
by

pg(t,w) = Pugg(w,t)
at least for nonnegative, B(0, 1]® F-measurable functions g. (In the notation
of Pollard 2001, Section 4.3, the measure p equals P® {1, : w € Q}.) Notice
that 1(0,1] x 2 =PA; < co.

(i) For Brownian motion, show that g = P ® m with m = Lebesgue mea-
sure on B(0, 1].

(ii) For fixed 0 < a < b < 1, define AN = N, — N,, AM = M, — M,,
and AA = A, — A,. Show that

0=P,AN =P, ((AM)2 — AA) almost surely.

(iii) At least for each bounded, F,-measurable random variable h, deduce
that

Ph(w)(AM)? = Ph(w)AA = P¥ (h(w)pl{a <t < b})

<7> = ph(w){a <t < b}.
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Lemma. P (H ° M1)2 = puH? for each H € Hsimples

Proor Expand the left-hand side of the asserted inequality as

> PhI(AM)*+2 Z( Phih;AMA;M  where A;M := M (t;1—M(t;).
7 1<

Use the fact that P(A;M | F(tj—1)) = 0 to kill all the cross-product terms.
Use equality <7> to simplify the other contributions to

Ms’w ZZ hi(w)2{ti <s< ti+1} = /J,Hz.

The predictable sigma-field

I defined P to be o(Hsimple), the smallest sigma-field on & for which each
member of Hgmple is P\B(R)-measurable. You should check that P is also
generated by the following collections of sets or processes.

(a) the collection € of all subsets of & of the form F'x (a,b] for0 <a <b<1
and F € F,

(b) the set Hjeg of all adapted process L on & with sample paths that are
left-continuous at each point of (0, 1].

(c) the set C of restrictions to & of adapted processes on © x [0, 1] with
continuous sample paths

(d) the set of all stochastic intervals
(0, 7] i={(w,t) e &:0<t < T(w)}
where 7 ranges over the set T of all stopping times for the filtration.

Remark. Note that ((0, 7] is unchanged if we replace T by 7 A 1;
the point (w,o00) never belongs to the stochastic interval, even
if 7(w) = 4+00. D&M write ]|0, 7]] for ((0, 7]].

(e) the set of all processes of the form
(o, 7h(w) = h(w){(w,t) € G :0o(w) <t < 7(w)}

where ¢ and 7 are stopping times, with ¢ < 7, and h is F,-measurable
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(f) the vector space Hpqqrip of restrictions to & of adapted processes H
on [0,1] x © for which there exists a finite constant Cy such that
|H(w,t)] < Cqg and |H(w,s) — H(w,t)| < Cglt — s| for all s, ¢, and w.

Remark. In Appendix C, the Doléans measure will be defined as a linear
functional on Hpgdrip-

Proor

(i) For (a): Note that each E-set is in Hgimple- For h(w){a < t < b} with
h bounded and F,-measurable, approximate h by simple functions.

(ii) For (b): All Hgimple processes belong to Hierr. Express an H in Hieg,
as a pointwise limit of Hgmple processes,

2m .
Hn(w,t) = ZiZQ H(w,tnﬂ;l){tn’ifl <t< tn,i} where tn,z’ = Z/Qn

(iii) For (d): Without loss of generality suppose 7 is a stopping time taking
values in [0,1]. Let 7, be the stopping time obtained by rounding 7
up to the next integer multiple of 27", that is, 7, (w) := 27" [2"7(w)].
Show that

(Ol =3 Aty <1< Hr(@) > i} € Hampe

and that Nyen ((0,7,]] = ((0,7]]. Also, if F' x (a,b] € &, show that
ow):=a{w € F} +{w € F°} and 7(w) := b{w € F} + {w € F} are
stopping times for which F' X (a,b] = ((o, 7]

(iv) For (e): Approximate o and 7 as for (d).
(v) For (f): If F x (a,b] € & define
Hy(w,t) :={w e F} (1 —n(t—a-— rfl)Jr)+ € HpadLip-
Then H, — F X (a,1] pointwise as n — oo. Argue similarly for
F x (b,1].
6.5 Extension by isometry

Think of Hgimple as a subspace of L2(u) := L2(&,B(0,1] ® F1,u). Then
Lemma <8> shows that H — H e M; is an isometry from a subspace of
L2(pu) to L2(P) = L2(Q,F1,P). It extends to an isometry from Hgimple,
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the £2(u) closure of Hample in L2(1), into L2(Q, F1,P). To avoid confusion
between norms, write |[H |2, or [|H[|, for the L2(p1) norm and 1 X1 c2(my

or || X||p for the £L2(P) norm of a random variable X.

(1)

(i)

(iii)
(iv)

(viii)

For each G € Hgimple there exists a sequence {Hy,} in Hgimple for which
|G — Hpl|z2(,) — 0. Show that {H,} is a Cauchy sequence in L2(1).

Deduce, via Lemma 8, that {H,, e M7} is a Cauchy sequence in L?(P),
which therefore converges to some Z in L2?(P).

If {K,} is another sequence in Hgmple for which |G — KnHLQ(M) — 0,
show that ||Hy, My — K, @ M| 2(p) — 0. Deduce that K, e M; also
converges to Z in £2(IP) norm.

Define (up to an almost sure equivalence) G o M; = Z.

For each t in [0, 1], argue similarly that G e M; could be defined as an
L2(P) limit of H,, e M;.

Show that P,(G e M;) = G; almost surely. Choose a cadlag version of
the martingale {(G @ M;,F;) : 0 <t < 1}. Show that G — G e M is

linear (up to some sort of almost sure equivalence).

Show that [|G e M|y = |G ® M cap) = 1G]l g2, -

Suppose {G;} is a sequence in Hgimple With |G; ¢ M — Wiz — 0
for some W € L2(P). Show that ||G; — Gllgz() — 0 for some G €
Hgimple and W = G e M7 almost surely.

Deduce that {G M : G € Hample} is a |||/ closed subspace of M3.

[Strictly speaking, we should work with equivalence classes of indistin-
guishable processes.]

Show that the H e M described in Theorem 6 is unique up to indis-
tinguishability.
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Lect 12, Wednesday 17 Feb‘

<9> Example. Suppose ¢ and 7 are stopping time taking values in [0, 1], with
o < 7. Suppose h is a bounded, F,-measurable random variable. Define
oy to be the stopping time obtained by rounding ¢ up to the next integer
multiple of 27" and define 7,, similarly.

e Show that ph(w) (0, 7]l — (0, 7)) )> = 0.
e Deduce that (h(w)((o,7]]) @ My = h(w) (Minr — M (o At)).

6.6 Predictable integrands
How large is ﬁsimple?

(i) Invoke a A-space argument to show that ﬁsimple contains all bounded,
P-measurable processes.

(ii) In general, if G € Hgmple then |G — Hyll g2,y — 0 for some se-
quence {H,} in Hgmple- There exists a subsequence along which
H, — G ae. [p]. As each H, is P-measurable, there must exists
some P-measurable G* with G* = G a.e. [u].

(iii) For Brownian motion, that Hgmple contains all the F3®B(0, 1]-measurable,
adapted processes that are square integrable for P x m . (See Chung
and Williams 1990, Theorem 3.7 or Problem [2] below.) We don’t lose
much by restricting ourselves to P-measurable integrands.

6.7 Problems

1] Suppose M € M?[0, 1] has continuous sample paths.
(i) For each H in Hgmple, show that H e M has continuous sample paths.

(ii) Suppose {H, : n € N} C Hgmple and pu|H, — H|?> < 27", Use Doob’s
maximal inequality to show that

ZnPSUPO§t§1 |Hy, @ My — H o My| < o0

(iii) Deduce that there is a version of H e M with continuous sample paths.
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2] Suppose ¢t = m @ P, defined on B(0,1] ® F. Let {X; : 0 < ¢t < 1} be
progressively measurable.
(i) Suppose X is bounded, that is, sup; , | X (¢, w)| < co. Define

t

H,(t,w) := n/ X(s,w)ds

t—n—1

(How should you understand the definition when ¢t < n=1?) Show that H,
is predictable and fol |H,(t,w) — X (t,w)|? dt — 0 for each w.

(ii) Deduce that u|H, — X|*> — 0.

(iii) Deduce that X € ﬁsimple if uX? < oo.
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