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Project 7
Localization of the stochastic integral

In this project you will learn how to extend H e M to a larger class of
processes indexed by RT, by working with stopped processes. Most processes
will be defined on a fixed (complete) probability space (2, F,P) equipped
with a standard filtration {F; : t € R*}.

’Lect 13, Monday 22 February

Notation and definitions

My intention is to establish a correspondence between processes indexed
by [0, 00] and processes indexed by [0, 1], so that the theory of the isomet-
ric stochastic integral extends without much effort to a set of martingales
indexed by R*.

Definition. Write M2(R™) for the set of all square-integrable martin-
gales indexed by RY, that is, the cadlag martingales {M; : t € R} for
which sup, PM? < oo. Define M3(R') = {M € MZ(R™") : My = 0}.

However, I am not completely confident that I have discovered all the
subtleties involved in behavior of processes near 0 and oco. To keep my
options open I will try to distinguish carefully between four possible sets on
which processes might be defined:

G = O2x(0,00) ={(w,t) :weQ,0<t <00}
OxRT ={(w,t):weN,0<t< o0}

Goo = 2% (0,00 ={(w,t) :weQ,0<t <00}

G = OxR ={(w,t):weQ 0<t< oo}

As before, define F, ;=0 ( Uter+ 3'}), although I wonder whether Fq_
might be a better notation.

Definition. Write T for the set of all stopping times, with values in [0, 00|,
for the filtration.

(i) If X is a process on QxRY and 7 € T, define the stopped process X,
(nonstandard notation) by

Xnr(t,w) = X(7(w) A t,w) fort e RT.
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(i) Call a process X on S and L-process if it is adapted and all its
sample paths are left-continuous at each t in (0, 00| with finite right
limits at each t in [0,00).

Remark. Rogers and Williams (1987, page 1) defined an L-process in-
dexed by (0,00) to have paths that are “left-continuous with limits from
the right”, which I interpret to mean that no special behavior is assumed
near 0 or co. I suspect that my requirement of left-continuity at oo is
not essential, although it does ensure that X (-,00) is Foo-measurable.
Existence of a finite right limit at 0 ensures that my L-processes are
locally bounded. See Section 5.

(iii) The predictable sigma-field Py on S is defined as the sigma-field
generated by all IL-processes on G .

(iv) For each pair of stopping times o < 7 taking values in [0,00] define
the stochastic interval (o, 7]] == {(w,t) € A x RT : o(w) <t < 7(w)}.

Remark. Notice that the definition excludes (w,00) from the
stochastic interval even when T(w) = oo. In particular, for c =0
and 7 = oo we get ((0,00]] = QXRT. Don’t be misled by the “col]”
into assuming that Q x {oo} is included. The convention that
oo 1s excluded makes possible some neat arguments, even though
it spoils the analogy with stochastic subintervals of (0,1] x Q.
Although sorely tempted to buck tradition, I decided to stick with
established usage for fear of unwanted exceptions to established
theorems.

After writing all these definitions I feel like a lawyer who is worried about
the interpretation of every single comma in a legal document. Please don’t
sue me if my latest attempt at precision still doesn’t work.

Stopped processes indexed by [0, 1]

Suppose M € M2[0,1] and H € H%(uups2), where jupp2 is the Doléans mea-
sure on the predictable sigma-field on &1 := Q x (0, 1] defined by the sub-
martingale M2. Let 7 be a [0, 1]-valued stopping time. Let X denote the
martingale H e M.

(i) Define N = M,,. Use Doob’s inequality to show that N € MZ[0, 1].
(ii) Suppose H € Hgimple- Show that, with probability one,
Xt/\T:(H((O,T]]oM)t:HoNt for 0 <t <1
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(iii)

(iv)

(v)

You can use Example 9 from Project 6 to handle H((0, 7]].

Extend the previous part to genmeral H in H?(uys), by considering
sequences {H,} in Hgimple for which pp|H, — H|? — 0.

Show that the Doléans measure puy for X has density H? with respect
to upr. Remember that px is uniquely determined by px ((0,7]] =
IP’XTQM, as 7 run over all stopping times.

Suppose K € H?(jux). Show that KH € H%(uups) and K o (H e M) =
(HK) e M. Hint: Use a A\-space argument, starting from stochastic
intervals {((0,7]], to establish both assertions for bounded K’s. Then
approximate by K € Hgmple with 2|K| > |K,, — K| — 0 pointwise.

7.3 Square-integrable martingales:
indexed by R* or [0, 00]?

Suppose M € M?(R™). Notice that M, is not yet defined.

For each i € N define & := M; — M;_, and v; := ]P’f?. Also define
Vii=wv1+ - +v; and Vo 1= sup;cy Vi, which is finite.

For each n,m € N define A, ;,, := sup{|Ms — M| : n < s,t < m} and
Ap oo = sUp,,eny An,m- Use Doob’s inequality to show that

PA? o <16(Voo — Vi).

Deduce that A, o | Ax = 0 almost surely.

Show that there exists an My, € L2(, F oo, P) such that M; — My,
almost surely and P|M; — M |? — 0 as t — oo.

Show that M; = P(My | F) almost surely.

Conclude that {(M;,F;) : 0 < t < oo} is a cadlag martingale with
SUPp<t<oo PM? = PM2 < oo with sample paths that are left continu-
ous at oo.

The one-to-one map s = 9(t) :=t/(1+t) with ¢(c0) = 1 lets us identify
processes indexed by [0, co] with processes indexed by [0, 1]. The filtration
{F1: 0 <t < oo} is carried into a filtration {Gs : 0 < s < 1} with Gy = F;.
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The correspondence Ny ;) = M; identifies a martingale M in M2(RY) with
a martingale {N; : 0 < s < 1} in M?[0, 1].

Most of the theory for the isometric stochastic integrals with respect
to M3[0, 1] processes carries over to analogous theory for M?(R™), with a
few subtle differences. For M?(R*) we have left continuity of sample paths
at 0o, by construction of My; for M?[0, 1] we did not require left continuity
at 1. Also we did not require that F; = o ( Ut<1 fﬂ).

Remark. A better analogy might allow the sigma-field F, to be larger than
Fouo =0 ( User+ 3’}) and might allow M to have a jump at oco.

(i) The stochastic interval ((0,7]] on G4 contains no points of Q2 x {oo},
even if 7 might take infinite values; the corresponding stochastic in-
terval ((0,%(7)]] is allowed to contains points in € x {1}.

(ii) Luckily, the Doléans measure p 2, which is defined on the predictable
sigma-field of & := Q x (0, 1], puts zero mass on 2 x {1} because

pn2((0,9(n)]] = PNZ
= PM?
— ]P’Mgo as n — o0
= PN?
= pn2((0,1]).
Thus the map (w, s) — (w,1y"1(s)) from & onto S, carries 2 onto

a measure (iy,2 that concentrates on the set © x (0,00), and we still
have

PNi(T) = K2 ((07 1/1(7')]] = M2 ((07 TH = PM?

for every stopping time 7.

’Lect 14, Wednesday 24 February

Locally square-integrable martingales

Definition. A process {M; : t € R} is said to be a locally square-
integrable martingale if there exists a sequence of stopping times {1y} with
Te(w) T 0o for each w and My, € ME(RY) for each k. Write locM3(RT)
for the set of all such processes. The stopping times are called a localizing
sequence for M.
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Remark. My definition of a locally square-integrable martingale agrees
with that of Dellacherie and Meyer (1982, page 228), but differs slightly
from that of Métivier (1982, page 148), who does not require My = 0.

Notice that if {74} is a localizing sequence for M then so is {kA7y}.
Just to be on the safe side, I will always assume each 74 is a bounded
stopping time.

The Doléans measure for an M in locM3(R™).

Let {7 : k € N} be a localizing sequence for M. Let pj be the Doléans
measure for Ma,, , so that u((0,7]] = PM2,, for each stopping time 7.

TNATE

(i) Show that 1 ((0,00]] = PM2 = 14((0,7%]]. Deduce that , puts zero
mass on ((7g, 0o]].

(ii) For each stopping time 7, show that

w1 (0,7 ATi]] = PMZ, = (0, 7]
Deduce that py equals the restriction of g1 to ((0, 7x]].

(iii) Show that there exists a sigma-finite measure p on Po, whose restric-
tion to ((0, 7%]] equals py, for each k.

(iv) For each (bounded?) stopping time o for which M,, € M3(R") show
that u((0,0]] = PM2. Conclude that u does not depend on the choice
of localizing sequence for M.

Locally bounded predictable processes

Write Hpqgq for the set of all P.,-measurable processes H on G, that are
bounded in absolute value by some finite constant (depending on H).

Definition. Define locHpqq to be the set of all predictable processes H for
which there exists a localizing sequence of stopping times {1 : k € N} for
which Hpr, € Hpaa for each k.

Say that a sequence {H® : i € N} of locHpgq processes is locally
uniformly bounded if there exists a single localizing sequence of stop-
ping times {1 : k € N} and a sequence of finite constants {Cy} such that
|H® (w,t A p(w))| < C for all i and all (w,t) € G

(i) Show that every L-process X belongs to locHpgqq. Hint: Consider
7k(w) := inf{t € RT : | X} (w)| > k}.
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(ii) (Much harder) Is the previous assertion still true if we replace L-
processes by P-measurable processes? What if we also require each
sample path to be cadlag?

Remark. A complete resolution of this question requires some
facts about predictable stopping times and predictable cross-
sections. Compare with Métivier (1982, Section 6) or Dellacherie
and Meyer (1982, VII1.32).

’Lect 15, Monday 1 March‘

Localization of the isometric stochastic integral

The new stochastic integral will be defined indirectly by a sequence of isome-
tries. The continuity properties of H e M will be expressed not via £2 bounds
but by means of the concept of uniform convergence in probability on
compact intervals.

. , ucepe
Definition. For a sequence of processes {Z,}, write Z, — Z to mean
that

SUPo<s<t | Zn(w,s) — Z(w,s)] — 0 in probability,

for each t in RT.

Theorem. Suppose M € 1003\/[%(]1%*). There exists a linear map H — HeM
from locHpaq into locMZ(RY) with the following properties.

(a) ((0,7]] @ My = Myp, for all T € T.

(b) (H ® M)in, = (H((0,7]]) @ My = (H ® Mp;),, for all H € locHpaa and
all T € 7.

(¢) If M has continuous sample paths then so does H o M.

(d) Suppose {H™ : n € N} C locHpqq is locally uniformly bounded and
H(n)(t,W) — 0 for each (t,w). Then H®) o pp P,

PROOF (SKETCH) Suppose M has localizing sequence {7, : k& € N} and
H € locHpgq has localizing sequence {0}, : k € N}.

(i) Why is there no loss of generality in assuming that o, = 73, for every k?

(ii) Write M®) for My, . Define X*) = (H((0,74])) o M®).
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(iii) Show that X*)(t,w) = X*)(t A7p,(w),w) for all t € RT. That is, show
that the sample paths are constant for ¢ > 7;(w). Do we need some
sort of almost sure qualification here?

(iv) Show that, on a set of w with probability one,

XED(EA (W), w) = XB(E AT (w),w)  forall t € RY.

(v) Show that there is a cadlag adapted process X for which, on a set of w
with probability one,

X(t A (W), w) = X® (A (W), w) for all t € RT, all k.

(vi) Show that X € locM3(RT), with localizing sequence {7y : k € N}.
(vii) Define H @ M := X.

(viii) In order to establish linearity of H +— H e M, you need to show
that the definition does not depend on the particular choice of the
localizing sequence. (If we can use a single localizing sequence for
two different H processes then linearity for the approximating X *)
processes will transfer to the X process.)

(ix) For assertion (d), we may also assume that {73} localizes M to M3(R™).
Write 1, for the Doléans measure of the submartingale (M (*))2. Then,

for each fixed k, we have
2
Psup,<, (H(”) . M)

SATE

2
= Psup,<, (H(") ((0,7%]] ® M£k)> by construction
2
< 4P (H (0, 72]] » t(k) ) by Doob’s inequality

= 4y ((HY(0, 7 A 1])

— 0 as n — 00, by Dominated Convergenece.

When 7, > ¢, which happens with probability tending to one, the
processes H (n) o Msp7, and H (n) o M, coincide for all s < t. The
uniform convergence in probability follows.
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Characterization of the stochastic integral

I haven’t checked carefully whether the following result is still true after all
the notational changes I have been making.

Theorem. Suppose M € locMZ(R') andJ : locHpgq — ME(RT) is a linear
map (in the sense of indistinguishability of processes) for which

(i) 3(((0,7]]); = Mrat almost surely, for eacht € RT and € 7.

(ii) For each locally uniformly bounded sequence {H™ : n € N} inlocHpqq
that converges to zero pointwise, J(H(”))t — 0 in probability for each t.

Then J(H); = H o My almost surely for each t € RY and each H € locHpqq.

Remark. The assertion of the Theorem can also be written: there
exists a set {Jp with Qf € N such that

Y(H)(t,w)=H e M(t,w) for every ¢ if w € Qg

Cadlag sample paths allow us to deduce equality of whole paths
(indistinguishability) from equality at a countable dense set of times.

PROOF Use a A-space argument to prove that J(H ), = H e M; almost surely,
for each H in Hpqq.

For an H in locHpgq with localizing sequence {74}, show that the se-
quence of processes H*) := H((ry, 00]] is locally uniformly bounded and it
converges pointwise to zero. Deduce that

J(H )y — H((0, 7] ® Mypg, = I(H®), — 0 in probability.
Then show that
H((0, 7)) ® Mypr, — H o M, in probability, as k — oc.

Example. Show that K e (H eM) = (KH)eM for all K, H € locHpqq, by
the following argument.

(i) Define X = H e M and define J by J(H) := (KH) e M.
(ii) Show that, with probability one,

J ( ((07 TH )t = (H b M)t/\r = Xinr = H((O7 7'” o X,

(iii) Use Theorem 7.
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