Project 7 Localization of the stochastic integral

In this project you will learn how to extend $H \bullet M$ to a larger class of processes indexed by \mathbb{R}^+ , by working with stopped processes. Most processes will be defined on a fixed (complete) probability space $(\Omega, \mathcal{F}, \mathbb{P})$ equipped with a standard filtration $\{\mathcal{F}_t : t \in \mathbb{R}^+\}$.

Lect 13, Monday 22 February

7.1 Notation and definitions

My intention is to establish a correspondence between processes indexed by $[0, \infty]$ and processes indexed by [0, 1], so that the theory of the isometric stochastic integral extends without much effort to a set of martingales indexed by \mathbb{R}^+ .

<1> **Definition.** Write $\mathcal{M}^2(\mathbb{R}^+)$ for the set of all square-integrable martingales indexed by \mathbb{R}^+ , that is, the cadlag martingales $\{M_t : t \in \mathbb{R}^+\}$ for which $\sup_t \mathbb{P}M_t^2 < \infty$. Define $\mathcal{M}_0^2(\mathbb{R}^+) = \{M \in \mathcal{M}_0^2(\mathbb{R}^+) : M_0 \equiv 0\}.$

However, I am not completely confident that I have discovered all the subtleties involved in behavior of processes near 0 and ∞ . To keep my options open I will try to distinguish carefully between four possible sets on which processes might be defined:

needed?

$$\mathfrak{S}_{\infty}^{\circ} := \Omega \times (0,\infty) = \{(\omega,t) : \omega \in \Omega, \ 0 < t < \infty\}$$
$$\Omega \times \mathbb{R}^{+} = \{(\omega,t) : \omega \in \Omega, \ 0 \le t < \infty\}$$
$$\mathfrak{S}_{\infty} := \Omega \times (0,\infty] = \{(\omega,t) : \omega \in \Omega, \ 0 < t \le \infty\}$$
$$\overline{\mathfrak{S}}_{\infty} := \Omega \times \overline{\mathbb{R}}^{+} = \{(\omega,t) : \omega \in \Omega, \ 0 \le t \le \infty\}$$

As before, define $\mathcal{F}_{\infty} := \sigma \left(\cup_{t \in \mathbb{R}^+} \mathcal{F}_t \right)$, although I wonder whether $\mathcal{F}_{\infty-}$ might be a better notation.

<2> **Definition.** Write T for the set of all stopping times, with values in $[0, \infty]$, for the filtration.

(i) If X is a process on $\Omega \times \mathbb{R}^+$ and $\tau \in \mathfrak{T}$, define the **stopped process** $X_{\wedge \tau}$ (nonstandard notation) by

$$X_{\wedge \tau}(t,\omega) := X(\tau(\omega) \wedge t, \omega) \qquad for \ t \in \mathbb{R}^+.$$

(ii) Call a process X on \mathfrak{S}_{∞} and \mathbb{L} -process if it is adapted and all its sample paths are left-continuous at each t in $(0,\infty]$ with finite right

limits at each t in $[0,\infty)$.

- **Remark.** Rogers and Williams (1987, page 1) defined an L-process indexed by $(0, \infty)$ to have paths that are "left-continuous with limits from the right", which I interpret to mean that no special behavior is assumed near 0 or ∞ . I suspect that my requirement of left-continuity at ∞ is not essential, although it does ensure that $X(\cdot, \infty)$ is \mathcal{F}_{∞} -measurable. Existence of a finite right limit at 0 ensures that my L-processes are locally bounded. See Section 5.
- (iii) The predictable sigma-field \mathcal{P}_{∞} on \mathfrak{S}_{∞} is defined as the sigma-field generated by all \mathbb{L} -processes on \mathfrak{S}_{∞} .
- (iv) For each pair of stopping times $\sigma \leq \tau$ taking values in $[0, \infty]$ define the stochastic interval $((\sigma, \tau)] := \{(\omega, t) \in \Omega \times \mathbb{R}^+ : \sigma(\omega) < t \leq \tau(\omega)\}.$

Remark. Notice that the definition excludes (ω, ∞) from the stochastic interval even when $\tau(\omega) = \infty$. In particular, for $\sigma \equiv 0$ and $\tau \equiv \infty$ we get $((0, \infty)] = \Omega \times \mathbb{R}^+$. Don't be misled by the " ∞]]" into assuming that $\Omega \times \{\infty\}$ is included. The convention that ∞ is excluded makes possible some neat arguments, even though it spoils the analogy with stochastic subintervals of $(0, 1] \times \Omega$. Although sorely tempted to buck tradition, I decided to stick with established usage for fear of unwanted exceptions to established theorems.

After writing all these definitions I feel like a lawyer who is worried about the interpretation of every single comma in a legal document. Please don't sue me if my latest attempt at precision still doesn't work.

7.2 Stopped processes indexed by [0,1]

Suppose $M \in \mathcal{M}_0^2[0, 1]$ and $H \in \mathcal{H}^2(\mu_{M^2})$, where μ_{M^2} is the Doléans measure on the predictable sigma-field on $\mathfrak{S}_1 := \Omega \times (0, 1]$ defined by the submartingale M_t^2 . Let τ be a [0, 1]-valued stopping time. Let X denote the martingale $H \bullet M$.

- (i) Define $N = M_{\wedge \tau}$. Use Doob's inequality to show that $N \in \mathcal{M}_0^2[0,1]$.
- (ii) Suppose $H \in \mathcal{H}_{simple}$. Show that, with probability one,

$$X_{t\wedge\tau} = \left(H((0,\tau)] \bullet M\right)_t = H \bullet N_t \quad \text{for } 0 \le t \le 1.$$

You can use Example 9 from Project 6 to handle $H((0, \tau)]$.

- (iii) Extend the previous part to general H in $\mathcal{H}^2(\mu_M)$, by considering sequences $\{H_n\}$ in \mathcal{H}_{simple} for which $\mu_M |H_n H|^2 \to 0$.
- (iv) Show that the Doléans measure μ_X for X has density H^2 with respect to μ_M . Remember that μ_X is uniquely determined by $\mu_X((0,\tau)] = \mathbb{P}X^2_{\tau \wedge 1}$, as τ run over all stopping times.
- (v) Suppose $K \in \mathcal{H}^2(\mu_X)$. Show that $KH \in \mathcal{H}^2(\mu_M)$ and $K \bullet (H \bullet M) = (HK) \bullet M$. Hint: Use a λ -space argument, starting from stochastic intervals $\{((0, \tau)], \text{ to establish both assertions for bounded } K$'s. Then approximate by $K_n \in \mathcal{H}_{\text{simple}}$ with $2|K| \geq |K_n K| \to 0$ pointwise.

7.3 Square-integrable martingales: indexed by \mathbb{R}^+ or $[0, \infty]$?

Suppose $M \in \mathcal{M}^2(\mathbb{R}^+)$. Notice that M_∞ is not yet defined.

- (i) For each $i \in \mathbb{N}$ define $\xi_i := M_i M_{i-1}$ and $v_i := \mathbb{P}\xi_i^2$. Also define $V_i := v_1 + \cdots + v_i$ and $V_{\infty} := \sup_{i \in \mathbb{N}} V_i$, which is finite.
- (ii) For each $n, m \in \mathbb{N}$ define $\Delta_{n,m} := \sup\{|M_s M_t| : n \leq s, t \leq m\}$ and $\Delta_{n,\infty} := \sup_{m \in \mathbb{N}} \Delta_{n,m}$. Use Doob's inequality to show that

$$\mathbb{P}\Delta_{n,\infty}^2 \le 16(V_\infty - V_n).$$

- (iii) Deduce that $\Delta_{n,\infty} \downarrow \Delta_{\infty} = 0$ almost surely.
- (iv) Show that there exists an $M_{\infty} \in \mathcal{L}^{2}(\Omega, \mathcal{F}_{\infty}, \mathbb{P})$ such that $M_{t} \to M_{\infty}$ almost surely and $\mathbb{P}|M_{t} M_{\infty}|^{2} \to 0$ as $t \to \infty$.
- (v) Show that $M_t = \mathbb{P}(M_\infty \mid \mathcal{F}_t)$ almost surely.
- (vi) Conclude that $\{(M_t, \mathcal{F}_t) : 0 \leq t \leq \infty\}$ is a cadlag martingale with $\sup_{0 \leq t \leq \infty} \mathbb{P}M_t^2 = \mathbb{P}M_\infty^2 < \infty$ with sample paths that are left continuous at ∞ .

The one-to-one map $s = \psi(t) := t/(1+t)$ with $\psi(\infty) = 1$ lets us identify processes indexed by $[0, \infty]$ with processes indexed by [0, 1]. The filtration $\{\mathcal{F}_t : 0 \le t \le \infty\}$ is carried into a filtration $\{\mathcal{G}_s : 0 \le s \le 1\}$ with $\mathcal{G}_{\psi(t)} := \mathcal{F}_t$. The correspondence $N_{\psi(t)} = M_t$ identifies a martingale M in $\mathcal{M}^2(\mathbb{R}^+)$ with a martingale $\{N_s : 0 \le s \le 1\}$ in $\mathcal{M}^2[0, 1]$.

Most of the theory for the isometric stochastic integrals with respect to $\mathcal{M}_0^2[0,1]$ processes carries over to analogous theory for $\mathcal{M}^2(\mathbb{R}^+)$, with a few subtle differences. For $\mathcal{M}^2(\mathbb{R}^+)$ we have left continuity of sample paths at ∞ , by construction of M_∞ ; for $\mathcal{M}^2[0,1]$ we did not require left continuity at 1. Also we did not require that $\mathcal{F}_1 = \sigma (\cup_{t<1} \mathcal{F}_t)$.

Remark. A better analogy might allow the sigma-field \mathcal{F}_{∞} to be larger than $\mathcal{F}_{\infty-} := \sigma \left(\bigcup_{t \in \mathbb{R}^+} \mathcal{F}_t \right)$ and might allow M to have a jump at ∞ .

- (i) The stochastic interval $((0, \tau]]$ on \mathfrak{S}_{∞} contains no points of $\Omega \times \{\infty\}$, even if τ might take infinite values; the corresponding stochastic interval $((0, \psi(\tau))]$ is allowed to contains points in $\Omega \times \{1\}$.
- (ii) Luckily, the Doléans measure μ_{N^2} , which is defined on the predictable sigma-field of $\mathfrak{S} := \Omega \times (0, 1]$, puts zero mass on $\Omega \times \{1\}$ because

$$\begin{split} \mu_{N^2}((0,\psi(n))] &= \mathbb{P}N_{\psi(n)}^2 \\ &= \mathbb{P}M_n^2 \\ &\to \mathbb{P}M_\infty^2 \quad \text{ as } n \to \infty \\ &= \mathbb{P}N_1^2 \\ &= \mu_{N^2}((0,1)]. \end{split}$$

Thus the map $(\omega, s) \mapsto (\omega, \psi^{-1}(s))$ from \mathfrak{S} onto \mathfrak{S}_{∞} carries μ_{N^2} onto a measure μ_{M^2} that concentrates on the set $\Omega \times (0, \infty)$, and we still have

$$\mathbb{P}N^2_{\psi(\tau)} = \mu_{N^2}((0,\psi(\tau))] = \mu_{M^2}((0,\tau)] = \mathbb{P}M^2_{\tau}$$

for every stopping time τ .

Lect 14, Wednesday 24 February

7.4 Locally square-integrable martingales

<3> Definition. A process $\{M_t : t \in \mathbb{R}^+\}$ is said to be a locally squareintegrable martingale if there exists a sequence of stopping times $\{\tau_k\}$ with $\tau_k(\omega) \uparrow \infty$ for each ω and $M_{\wedge \tau_k} \in \mathcal{M}^2_0(\mathbb{R}^+)$ for each k. Write $\mathrm{loc}\mathcal{M}^2_0(\mathbb{R}^+)$ for the set of all such processes. The stopping times are called a localizing sequence for M. **Remark.** My definition of a locally square-integrable martingale agrees with that of Dellacherie and Meyer (1982, page 228), but differs slightly from that of Métivier (1982, page 148), who does not require $M_0 \equiv 0$.

Notice that if $\{\tau_k\}$ is a localizing sequence for M then so is $\{k \wedge \tau_k\}$. Just to be on the safe side, I will always assume each τ_k is a bounded stopping time.

The Doléans measure for an M in $loc \mathcal{M}_0^2(\mathbb{R}^+)$.

Let $\{\tau_k : k \in \mathbb{N}\}$ be a localizing sequence for M. Let μ_k be the Doléans measure for $M_{\wedge \tau_k}$, so that $\mu_k((0, \tau)] = \mathbb{P}M^2_{\tau \wedge \tau_k}$ for each stopping time τ .

- (i) Show that $\mu_k((0,\infty)] = \mathbb{P}M_{\tau_k}^2 = \mu_k((0,\tau_k)]$. Deduce that μ_k puts zero mass on $((\tau_k,\infty)]$.
- (ii) For each stopping time τ , show that

$$\mu_{k+1}((0,\tau\wedge\tau_k]] = \mathbb{P}M^2_{\tau\wedge\tau_k} = \mu_k((0,\tau]].$$

Deduce that μ_k equals the restriction of μ_{k+1} to $((0, \tau_k]]$.

- (iii) Show that there exists a sigma-finite measure μ on \mathcal{P}_{∞} whose restriction to $((0, \tau_k)]$ equals μ_k , for each k.
- (iv) For each (bounded?) stopping time σ for which $M_{\wedge\sigma} \in \mathcal{M}_0^2(\mathbb{R}^+)$ show that $\mu((0,\sigma)] = \mathbb{P}M_{\sigma}^2$. Conclude that μ does not depend on the choice of localizing sequence for M.

7.5 Locally bounded predictable processes

Write \mathcal{H}_{Bdd} for the set of all \mathcal{P}_{∞} -measurable processes H on \mathfrak{S}_{∞} that are bounded in absolute value by some finite constant (depending on H).

<4> **Definition.** Define loc \mathcal{H}_{Bdd} to be the set of all predictable processes H for which there exists a localizing sequence of stopping times $\{\tau_k : k \in \mathbb{N}\}$ for which $H_{\wedge \tau_k} \in \mathcal{H}_{Bdd}$ for each k.

Say that a sequence $\{H^{(i)} : i \in \mathbb{N}\}$ of loc \mathcal{H}_{Bdd} processes is **locally** uniformly bounded if there exists a single localizing sequence of stopping times $\{\tau_k : k \in \mathbb{N}\}$ and a sequence of finite constants $\{C_k\}$ such that $|H^{(i)}(\omega, t \wedge \tau_k(\omega))| \leq C_k$ for all i and all $(\omega, t) \in \mathfrak{S}_{\infty}$.

(i) Show that every \mathbb{L} -process X belongs to loc \mathcal{H}_{Bdd} . Hint: Consider $\tau_k(\omega) := \inf\{t \in \mathbb{R}^+ : |X_t(\omega)| \ge k\}.$

(ii) (Much harder) Is the previous assertion still true if we replace L-processes by \mathcal{P} -measurable processes? What if we also require each sample path to be cadlag?

Remark. A complete resolution of this question requires some facts about predictable stopping times and predictable cross-sections. Compare with Métivier (1982, Section 6) or Dellacherie and Meyer (1982, VII.32).

Lect 15, Monday 1 March

7.6 Localization of the isometric stochastic integral

The new stochastic integral will be defined indirectly by a sequence of isometries. The continuity properties of $H \bullet M$ will be expressed not via \mathcal{L}^2 bounds but by means of the concept of *uniform convergence in probability on compact intervals*.

<5> Definition. For a sequence of processes $\{Z_n\}$, write $Z_n \xrightarrow{ucpc} Z$ to mean that

$$\sup_{0 \le s \le t} |Z_n(\omega, s) - Z(\omega, s)| \to 0 \quad in \ probability,$$

for each t in \mathbb{R}^+ .

- <6> **Theorem.** Suppose $M \in \text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$. There exists a linear map $H \mapsto H \bullet M$ from $\text{loc}\mathcal{H}_{\text{Bdd}}$ into $\text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$ with the following properties.
 - (a) $((0,\tau)] \bullet M_t = M_{t \wedge \tau}$ for all $\tau \in \mathfrak{T}$.
 - (b) $(H \bullet M)_{t \wedge \tau} = (H((0, \tau)]) \bullet M_t = (H \bullet M_{\wedge \tau})_t$, for all $H \in \text{loc}\mathcal{H}_{\text{Bdd}}$ and all $\tau \in \mathfrak{T}$.
 - (c) If M has continuous sample paths then so does $H \bullet M$.
 - (d) Suppose $\{H^{(n)} : n \in \mathbb{N}\} \subseteq \operatorname{loc}\mathcal{H}_{\operatorname{Bdd}}$ is locally uniformly bounded and $H^{(n)}(t,\omega) \to 0$ for each (t,ω) . Then $H^{(n)} \bullet M \xrightarrow{\operatorname{ucpc}} 0$.

PROOF (SKETCH) Suppose M has localizing sequence $\{\tau_k : k \in \mathbb{N}\}$ and $H \in \operatorname{loc}\mathcal{H}_{\operatorname{Bdd}}$ has localizing sequence $\{\sigma_k : k \in \mathbb{N}\}.$

- (i) Why is there no loss of generality in assuming that $\sigma_k = \tau_k$ for every k?
- (ii) Write $M^{(k)}$ for $M_{\wedge \tau_k}$. Define $X^{(k)} = (H((0, \tau_k]) \bullet M^{(k)})$.

- (iii) Show that $X^{(k)}(t,\omega) = X^{(k)}(t \wedge \tau_k(\omega),\omega)$ for all $t \in \mathbb{R}^+$. That is, show that the sample paths are constant for $t \geq \tau_k(\omega)$. Do we need some sort of almost sure qualification here?
- (iv) Show that, on a set of ω with probability one,

$$X^{(k+1)}(t \wedge \tau_k(\omega), \omega) = X^{(k)}(t \wedge \tau_k(\omega), \omega) \quad \text{for all } t \in \mathbb{R}^+.$$

(v) Show that there is a cadlag adapted process X for which, on a set of ω with probability one,

$$X(t \wedge \tau_k(\omega), \omega) = X^{(k)}(t \wedge \tau_k(\omega), \omega)$$
 for all $t \in \mathbb{R}^+$, all k.

- (vi) Show that $X \in \text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$, with localizing sequence $\{\tau_k : k \in \mathbb{N}\}$.
- (vii) Define $H \bullet M := X$.
- (viii) In order to establish linearity of $H \mapsto H \bullet M$, you need to show that the definition does not depend on the particular choice of the localizing sequence. (If we can use a single localizing sequence for two different H processes then linearity for the approximating $X^{(k)}$ processes will transfer to the X process.)
- (ix) For assertion (d), we may also assume that $\{\tau_k\}$ localizes M to $\mathcal{M}_0^2(\mathbb{R}^+)$. Write μ_k for the Doléans measure of the submartingale $(M^{(k)})^2$. Then, for each fixed k, we have

$$\mathbb{P}\sup_{s\leq t} \left(H^{(n)} \bullet M\right)_{s\wedge\tau_k}^2$$

$$= \mathbb{P}\sup_{s\leq t} \left(H^{(n)}((0,\tau_k]] \bullet M_s^{(k)}\right)^2 \quad \text{by construction}$$

$$\leq 4\mathbb{P} \left(H^{(n)}((0,\tau_k]] \bullet M_t^{(k)}\right)^2 \quad \text{by Doob's inequality}$$

$$= 4\mu_k \left((H^{(n)})^2((0,\tau_k \wedge t]]\right)$$

$$\to 0 \quad \text{as } n \to \infty, \text{ by Dominated Convergence.}$$

When $\tau_k > t$, which happens with probability tending to one, the processes $H^{(n)} \bullet M_{s \wedge \tau_k}$ and $H^{(n)} \bullet M_s$ coincide for all $s \leq t$. The uniform convergence in probability follows.

7.7 Characterization of the stochastic integral

I haven't checked carefully whether the following result is still true after all the notational changes I have been making.

- <7> **Theorem.** Suppose $M \in \text{loc}\mathcal{M}_0^2(\mathbb{R}^+)$ and $\mathfrak{I}: \text{loc}\mathcal{H}_{\text{Bdd}} \to \mathcal{M}_0^2(\mathbb{R}^+)$ is a linear map (in the sense of indistinguishability of processes) for which
 - (i) $\mathfrak{I}((0,\tau))_t = M_{\tau \wedge t}$ almost surely, for each $t \in \mathbb{R}^+$ and $\tau \in \mathfrak{T}$.
 - (ii) For each locally uniformly bounded sequence $\{H^{(n)} : n \in \mathbb{N}\}$ in loc \mathcal{H}_{Bdd} that converges to zero pointwise, $\mathfrak{I}(H^{(n)})_t \to 0$ in probability for each t.

Then $\mathfrak{I}(H)_t = H \bullet M_t$ almost surely for each $t \in \mathbb{R}^+$ and each $H \in \mathrm{loc}\mathcal{H}_{\mathrm{Bdd}}$.

Remark. The assertion of the Theorem can also be written: there exists a set Ω_0 with $\Omega_0^c \in \mathbb{N}$ such that

$$\psi(H)(t,\omega) = H \bullet M(t,\omega)$$
 for every t if $\omega \in \Omega_0$

Cadlag sample paths allow us to deduce equality of whole paths (indistinguishability) from equality at a countable dense set of times.

PROOF Use a λ -space argument to prove that $\mathfrak{I}(H)_t = H \bullet M_t$ almost surely, for each H in \mathcal{H}_{Bdd} .

For an H in loc \mathcal{H}_{Bdd} with localizing sequence $\{\tau_k\}$, show that the sequence of processes $H^{(k)} := H((\tau_k, \infty)]$ is locally uniformly bounded and it converges pointwise to zero. Deduce that

$$\mathfrak{I}(H)_t - H((0,\tau_k]] \bullet M_{t \wedge \tau_k} = \mathfrak{I}(H^{(k)})_t \to 0 \quad \text{in probability.}$$

Then show that

 $H((0, \tau_k)] \bullet M_{t \wedge \tau_k} \to H \bullet M_t$ in probability, as $k \to \infty$.

- <8> **Example.** Show that $K \bullet (H \bullet M) = (KH) \bullet M$ for all $K, H \in \text{loc}\mathcal{H}_{\text{Bdd}}$, by the following argument.
 - (i) Define $X = H \bullet M$ and define \mathfrak{I} by $\mathfrak{I}(H) := (KH) \bullet M$.
 - (ii) Show that, with probability one,

$$\mathfrak{I}\left(\left((0,\tau)\right]\right)_{t} = (H \bullet M)_{t \wedge \tau} = X_{t \wedge \tau} = H((0,\tau) \bullet X_{t})$$

(iii) Use Theorem 7.

References

- Dellacherie, C. and P. A. Meyer (1982). *Probabilities and Potential B: Theory of Martingales.* Amsterdam: North-Holland.
- Métivier, M. (1982). Semimartingales: A Course on Stochastic Processes. Berlin: De Gruyter.
- Rogers, L. C. G. and D. Williams (1987). *Diffusions, Markov Processes,* and Martingales: Itô Calculus, Volume 2. Wiley.