
Project 7

Localization of the stochastic integral
In this project you will learn how to extend H •M to a larger class of

processes indexed by R+, by working with stopped processes. Most processes
will be defined on a fixed (complete) probability space (Ω,F,P) equipped
with a standard filtration {Ft : t ∈ R+}.

Lect 13, Monday 22 February

7.1 Notation and definitions

My intention is to establish a correspondence between processes indexed
by [0,∞] and processes indexed by [0, 1], so that the theory of the isomet-
ric stochastic integral extends without much effort to a set of martingales
indexed by R+.

<1> Definition. Write M2(R+) for the set of all square-integrable martin-
gales indexed by R+, that is, the cadlag martingales {Mt : t ∈ R+} for
which supt PM2

t <∞. Define M2
0(R+) = {M ∈M2

0(R+) : M0 ≡ 0}.

However, I am not completely confident that I have discovered all the
subtleties involved in behavior of processes near 0 and ∞. To keep my
options open I will try to distinguish carefully between four possible sets on
which processes might be defined: needed?

S◦∞ := Ω× (0,∞) = {(ω, t) : ω ∈ Ω, 0 < t <∞}
Ω× R+ = {(ω, t) : ω ∈ Ω, 0 ≤ t <∞}

S∞ := Ω× (0,∞] = {(ω, t) : ω ∈ Ω, 0 < t ≤ ∞}

S∞ := Ω× R+ = {(ω, t) : ω ∈ Ω, 0 ≤ t ≤ ∞}

As before, define F∞ := σ
(
∪t∈R+ Ft

)
, although I wonder whether F∞−

might be a better notation.

<2> Definition. Write T for the set of all stopping times, with values in [0,∞],
for the filtration.

(i) If X is a process on Ω×R+ and τ ∈ T, define the stopped process X∧τ
(nonstandard notation) by

X∧τ (t, ω) := X(τ(ω) ∧ t, ω) for t ∈ R+.
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(ii) Call a process X on S∞ and L-process if it is adapted and all its
sample paths are left-continuous at each t in (0,∞] with finite right
limits at each t in [0,∞).

Remark. Rogers and Williams (1987, page 1) defined an L-process in-
dexed by (0,∞) to have paths that are “left-continuous with limits from
the right”, which I interpret to mean that no special behavior is assumed
near 0 or ∞. I suspect that my requirement of left-continuity at ∞ is
not essential, although it does ensure that X(·,∞) is F∞-measurable.
Existence of a finite right limit at 0 ensures that my L-processes are
locally bounded. See Section 5.

(iii) The predictable sigma-field P∞ on S∞ is defined as the sigma-field
generated by all L-processes on S∞.

(iv) For each pair of stopping times σ ≤ τ taking values in [0,∞] define
the stochastic interval ((σ, τ ]] := {(ω, t) ∈ Ω× R+ : σ(ω) < t ≤ τ(ω)}.

Remark. Notice that the definition excludes (ω,∞) from the
stochastic interval even when τ(ω) =∞. In particular, for σ ≡ 0
and τ ≡ ∞ we get ((0,∞]] = Ω×R+. Don’t be misled by the “∞]]”
into assuming that Ω × {∞} is included. The convention that
∞ is excluded makes possible some neat arguments, even though
it spoils the analogy with stochastic subintervals of (0, 1] × Ω.
Although sorely tempted to buck tradition, I decided to stick with
established usage for fear of unwanted exceptions to established
theorems.

After writing all these definitions I feel like a lawyer who is worried about
the interpretation of every single comma in a legal document. Please don’t
sue me if my latest attempt at precision still doesn’t work.

7.2 Stopped processes indexed by [0, 1]

Suppose M ∈ M2
0[0, 1] and H ∈ H2(µM2), where µM2 is the Doléans mea-

sure on the predictable sigma-field on S1 := Ω × (0, 1] defined by the sub-
martingale M2

t . Let τ be a [0, 1]-valued stopping time. Let X denote the
martingale H •M .

(i) Define N = M∧τ . Use Doob’s inequality to show that N ∈M2
0[0, 1].

(ii) Suppose H ∈ Hsimple. Show that, with probability one,

Xt∧τ =
(
H((0, τ ]] •M

)
t

= H •Nt for 0 ≤ t ≤ 1.
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You can use Example 9 from Project 6 to handle H((0, τ ]].

(iii) Extend the previous part to general H in H2(µM ), by considering
sequences {Hn} in Hsimple for which µM |Hn −H|2 → 0.

(iv) Show that the Doléans measure µX for X has density H2 with respect
to µM . Remember that µX is uniquely determined by µX((0, τ ]] =
PX2

τ∧1, as τ run over all stopping times.

(v) Suppose K ∈ H2(µX). Show that KH ∈ H2(µM ) and K • (H •M) =
(HK) •M . Hint: Use a λ-space argument, starting from stochastic
intervals {((0, τ ]], to establish both assertions for bounded K’s. Then
approximate by Kn ∈ Hsimple with 2|K| ≥ |Kn −K| → 0 pointwise.

7.3 Square-integrable martingales:
indexed by R+ or [0,∞]?

Suppose M ∈M2(R+). Notice that M∞ is not yet defined.

(i) For each i ∈ N define ξi := Mi −Mi−1 and vi := Pξ2i . Also define
Vi := v1 + · · ·+ vi and V∞ := supi∈N Vi, which is finite.

(ii) For each n,m ∈ N define ∆n,m := sup{|Ms −Mt| : n ≤ s, t ≤ m} and
∆n,∞ := supm∈N ∆n,m. Use Doob’s inequality to show that

P∆2
n,∞ ≤ 16(V∞ − Vn).

(iii) Deduce that ∆n,∞ ↓ ∆∞ = 0 almost surely.

(iv) Show that there exists an M∞ ∈ L2(Ω,F∞,P) such that Mt → M∞
almost surely and P|Mt −M∞|2 → 0 as t→∞.

(v) Show that Mt = P(M∞ | Ft) almost surely.

(vi) Conclude that {(Mt,Ft) : 0 ≤ t ≤ ∞} is a cadlag martingale with
sup0≤t≤∞ PM2

t = PM2
∞ <∞ with sample paths that are left continu-

ous at ∞.

The one-to-one map s = ψ(t) := t/(1 + t) with ψ(∞) = 1 lets us identify
processes indexed by [0,∞] with processes indexed by [0, 1]. The filtration
{Ft : 0 ≤ t ≤ ∞} is carried into a filtration {Gs : 0 ≤ s ≤ 1} with Gψ(t) := Ft.
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The correspondence Nψ(t) = Mt identifies a martingale M in M2(R+) with
a martingale {Ns : 0 ≤ s ≤ 1} in M2[0, 1].

Most of the theory for the isometric stochastic integrals with respect
to M2

0[0, 1] processes carries over to analogous theory for M2(R+), with a
few subtle differences. For M2(R+) we have left continuity of sample paths
at ∞, by construction of M∞; for M2[0, 1] we did not require left continuity
at 1. Also we did not require that F1 = σ

(
∪t<1 Ft

)
.

Remark. A better analogy might allow the sigma-field F∞ to be larger than
F∞− := σ

(
∪t∈R+ Ft

)
and might allow M to have a jump at ∞.

(i) The stochastic interval ((0, τ ]] on S∞ contains no points of Ω× {∞},
even if τ might take infinite values; the corresponding stochastic in-
terval ((0, ψ(τ)]] is allowed to contains points in Ω× {1}.

(ii) Luckily, the Doléans measure µN2 , which is defined on the predictable
sigma-field of S := Ω× (0, 1], puts zero mass on Ω× {1} because

µN2((0, ψ(n)]] = PN2
ψ(n)

= PM2
n

→ PM2
∞ as n→∞

= PN2
1

= µN2((0, 1]].

Thus the map (ω, s) 7→ (ω, ψ−1(s)) from S onto S∞ carries µN2 onto
a measure µM2 that concentrates on the set Ω × (0,∞), and we still
have

PN2
ψ(τ) = µN2((0, ψ(τ)]] = µM2((0, τ ]] = PM2

τ

for every stopping time τ .

Lect 14, Wednesday 24 February

7.4 Locally square-integrable martingales

<3> Definition. A process {Mt : t ∈ R+} is said to be a locally square-
integrable martingale if there exists a sequence of stopping times {τk} with
τk(ω) ↑ ∞ for each ω and M∧τk ∈ M2

0(R+) for each k. Write locM2
0(R+)

for the set of all such processes. The stopping times are called a localizing
sequence for M .
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Remark. My definition of a locally square-integrable martingale agrees
with that of Dellacherie and Meyer (1982, page 228), but differs slightly
from that of Métivier (1982, page 148), who does not require M0 ≡ 0.

Notice that if {τk} is a localizing sequence for M then so is {k∧τk}.
Just to be on the safe side, I will always assume each τk is a bounded
stopping time.

The Doléans measure for an M in locM2
0(R+).

Let {τk : k ∈ N} be a localizing sequence for M . Let µk be the Doléans
measure for M∧τk , so that µk((0, τ ]] = PM2

τ∧τk for each stopping time τ .

(i) Show that µk((0,∞]] = PM2
τk

= µk((0, τk]]. Deduce that µk puts zero
mass on ((τk,∞]].

(ii) For each stopping time τ , show that

µk+1((0, τ ∧ τk]] = PM2
τ∧τk = µk((0, τ ]].

Deduce that µk equals the restriction of µk+1 to ((0, τk]].

(iii) Show that there exists a sigma-finite measure µ on P∞ whose restric-
tion to ((0, τk]] equals µk, for each k.

(iv) For each (bounded?) stopping time σ for which M∧σ ∈M2
0(R+) show

that µ((0, σ]] = PM2
σ . Conclude that µ does not depend on the choice

of localizing sequence for M .

7.5 Locally bounded predictable processes

Write HBdd for the set of all P∞-measurable processes H on S∞ that are
bounded in absolute value by some finite constant (depending on H).

<4> Definition. Define locHBdd to be the set of all predictable processes H for
which there exists a localizing sequence of stopping times {τk : k ∈ N} for
which H∧τk ∈ HBdd for each k.

Say that a sequence {H(i) : i ∈ N} of locHBdd processes is locally
uniformly bounded if there exists a single localizing sequence of stop-
ping times {τk : k ∈ N} and a sequence of finite constants {Ck} such that
|H(i)(ω, t ∧ τk(ω))| ≤ Ck for all i and all (ω, t) ∈ S∞.

(i) Show that every L-process X belongs to locHBdd. Hint: Consider
τk(ω) := inf{t ∈ R+ : |Xt(ω)| ≥ k}.
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(ii) (Much harder) Is the previous assertion still true if we replace L-
processes by P-measurable processes? What if we also require each
sample path to be cadlag?

Remark. A complete resolution of this question requires some
facts about predictable stopping times and predictable cross-
sections. Compare with Métivier (1982, Section 6) or Dellacherie
and Meyer (1982, VII.32).

Lect 15, Monday 1 March

7.6 Localization of the isometric stochastic integral

The new stochastic integral will be defined indirectly by a sequence of isome-
tries. The continuity properties of H•M will be expressed not via L2 bounds
but by means of the concept of uniform convergence in probability on
compact intervals.

<5> Definition. For a sequence of processes {Zn}, write Zn
ucpc−→ Z to mean

that
sup0≤s≤t |Zn(ω, s)− Z(ω, s)| → 0 in probability,

for each t in R+.

<6> Theorem. Suppose M ∈ locM2
0(R+). There exists a linear map H 7→ H•M

from locHBdd into locM2
0(R+) with the following properties.

(a) ((0, τ ]] •Mt = Mt∧τ for all τ ∈ T.

(b) (H •M)t∧τ =
(
H((0, τ ]]

)
•Mt =

(
H •M∧τ

)
t
, for all H ∈ locHBdd and

all τ ∈ T.

(c) If M has continuous sample paths then so does H •M .

(d) Suppose {H(n) : n ∈ N} ⊆ locHBdd is locally uniformly bounded and

H(n)(t, ω)→ 0 for each (t, ω). Then H(n) •M ucpc−→ 0.

Proof (Sketch) Suppose M has localizing sequence {τk : k ∈ N} and
H ∈ locHBdd has localizing sequence {σk : k ∈ N}.

(i) Why is there no loss of generality in assuming that σk = τk for every k?

(ii) Write M (k) for M∧τk . Define X(k) =
(
H((0, τk]]

)
•M (k).
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(iii) Show that X(k)(t, ω) = X(k)(t∧τk(ω), ω) for all t ∈ R+. That is, show
that the sample paths are constant for t ≥ τk(ω). Do we need some
sort of almost sure qualification here?

(iv) Show that, on a set of ω with probability one,

X(k+1)(t ∧ τk(ω), ω) = X(k)(t ∧ τk(ω), ω) for all t ∈ R+.

(v) Show that there is a cadlag adapted process X for which, on a set of ω
with probability one,

X(t ∧ τk(ω), ω) = X(k)(t ∧ τk(ω), ω) for all t ∈ R+, all k.

(vi) Show that X ∈ locM2
0(R+), with localizing sequence {τk : k ∈ N}.

(vii) Define H •M := X.

(viii) In order to establish linearity of H 7→ H • M , you need to show
that the definition does not depend on the particular choice of the
localizing sequence. (If we can use a single localizing sequence for
two different H processes then linearity for the approximating X(k)

processes will transfer to the X process.)

(ix) For assertion (d), we may also assume that {τk} localizesM to M2
0(R+).

Write µk for the Doléans measure of the submartingale (M (k))2. Then,
for each fixed k, we have

P sups≤t
(
H(n) •M

)2

s∧τk

= P sups≤t
(
H(n)((0, τk]] •M (k)

s

)2
by construction

≤ 4P
(
H(n)((0, τk]] •M

(k)
t

)2
by Doob’s inequality

= 4µk
(

(H(n))2((0, τk ∧ t]]
)

→ 0 as n→∞, by Dominated Convergenece.

When τk > t, which happens with probability tending to one, the
processes H(n) • Ms∧τk and H(n) • Ms coincide for all s ≤ t. The
uniform convergence in probability follows.

�
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7.7 Characterization of the stochastic integral

I haven’t checked carefully whether the following result is still true after all
the notational changes I have been making.

<7> Theorem. Suppose M ∈ locM2
0(R+) and I : locHBdd →M2

0(R+) is a linear
map (in the sense of indistinguishability of processes) for which

(i) I ( ((0, τ ]] )t = Mτ∧t almost surely, for each t ∈ R+ and τ ∈ T.

(ii) For each locally uniformly bounded sequence {H(n) : n ∈ N} in locHBdd

that converges to zero pointwise, I(H(n))t → 0 in probability for each t.

Then I(H)t = H •Mt almost surely for each t ∈ R+ and each H ∈ locHBdd.

Remark. The assertion of the Theorem can also be written: there
exists a set Ω0 with Ωc

0 ∈ N such that

ψ(H)(t, ω) = H •M(t, ω) for every t if ω ∈ Ω0

Cadlag sample paths allow us to deduce equality of whole paths
(indistinguishability) from equality at a countable dense set of times.

Proof Use a λ-space argument to prove that I(H)t = H •Mt almost surely,
for each H in HBdd.

For an H in locHBdd with localizing sequence {τk}, show that the se-
quence of processes H(k) := H((τk,∞]] is locally uniformly bounded and it
converges pointwise to zero. Deduce that

I(H)t −H((0, τk]] •Mt∧τk = I(H(k))t → 0 in probability.

Then show that

H((0, τk]] •Mt∧τk → H •Mt in probability, as k →∞.

<8> Example. Show that K • (H •M) = (KH) •M for all K,H ∈ locHBdd, by
the following argument.

(i) Define X = H •M and define I by I(H) := (KH) •M .

(ii) Show that, with probability one,

I ( ((0, τ ]] )t = (H •M)t∧τ = Xt∧τ = H((0, τ ]] •Xt

(iii) Use Theorem 7.
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