
Project 8

Semimartingales
For this project I found Protter (1990, Chapter II) very useful.
Once again, all random variables will be defined on a fixed (complete)

probability space (Ω,F,P) equipped with a standard filtration {Ft : t ∈ R+}.
After much experimentation in Project 7, I have decided all the fussing
about +∞ is too much of a distraction. For this project, an R-process will
be an adapted process with cadlag sample paths, defined on

S = Ω× R+ := {(ω, t) : ω ∈ Ω, 0 ≤ t <∞}.

The predictable sigma-field P and predictable processes will be defined on
S◦ := Ω× (0,∞). An L-process will be an adapted process, defined on S◦,
for which each sample path is left-continuous at each point of (0,∞). Here
is the (slightly) revised form of the definitions from Project 7.

<1> Definition.

(i) Write T for the set of all stopping times with values in [0,∞]

(ii) Write M2(R+) for the set of all square-integrable martingales in-
dexed by R+, that is, the cadlag martingales {Mt : t ∈ R+} for which
supt PM2

t <∞. Define M2
0(R+) = {M ∈M2

0(R+) : M0 ≡ 0}.

(iii) A localizing sequence is a set of stopping times {τk : k ∈ N} for
which τk(ω)→∞ as k →∞.

(iv) Write locM2
0(R+) for the set of all locally square-integrable mar-

tingales: R-processes M with M0 ≡ 0 and M∧τk ∈M2
0(R+) for each k,

for some localizing sequence {τk}.

(v) Write HBdd for the set of all predictable processes H on S◦ that are
bounded in absolute value by some finite constant (depending on H).

(vi) Define locHBdd to be the set of all predictable processes H for which
there exists a localizing sequence of stopping times {τk : k ∈ N} for
which H((0, τk]] ∈ HBdd for each k. That is, for each k there exists
a finite constant Ck such that |H(ω, t){0 < t ≤ τk(ω)}| ≤ Ck for
all (ω, t) in S◦.
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(vii) Say that a sequence {H(i) : i ∈ N} of locHBdd processes is locally uni-
formly bounded if there exists a single localizing sequence of stopping
times {τk : k ∈ N} and a sequence of finite constants {Ck} such that
|H(i)(ω, t)((0, τk]]| ≤ Ck for all i and all (ω, t) ∈ S◦.

Lect 16, Wednesday 3 March

8.1 Processes of finite variation as random (signed) mea-
sures

A real-valued function f : R+ → R is said to be of finite variation on R+ if
for each t in R+ there exists a finite constant Ct such that∑N

i=1
|f(ti)− f(ti−1)| ≤ Ct

for all finite partitions 0 = t0 < t1 < · · · < tN = t of [0, t]. As shown in
Appendix D, a function f is of finite variation if and only if it can written as
a difference of two nondecreasing functions, f(t) = g1(t)− g2(t). Moreover,
if f is cadlag, then both gi can be chosen as cadlag functions. In that case,
each gi can also be thought of as a “distribution function” of a sigma-finite
measure Γi on B(R+):

Γi(0, t] = gi(t)− gi(0) for each t ∈ R+.

We could think of gi(0) as the mass placed by Γi at 0. If we assume f(0) =
g1(0) = g2(0) then

f(t) = Γ1[0, t]− Γ2[0, t] for each t ∈ R+.

The difference Γ1 − Γ2 is a countably additive signed measure.

<2> Definition. Write FV0 = FV0(R+) for the set of all R-processes A on S

for which A(ω, 0) ≡ 0 and for which each sample path A(ω, ·) is of finite
variation on R+. Equivalently, FV0 consists of all processes expressible as a
difference A = L1−L2 of two R-processes for which L1(ω, 0) = L2(ω, 0) ≡ 0
and for which each Li(ω, ·) is an increasingfunction on R+.

The stochastic integral with respect to A will be defined as a difference
of stochastic integrals with respect to L1 and L2. Questions of uniqueness—
lack of dependence on the choice of the two increasing processes—will be
subsumed in the the uniqueness assertion for semimartingales.
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The case where {Lt : t ∈ R+} is an R-process with nondecreasing sample
paths and L0 ≡ 0 will bring out the main ideas. I will leave to you the task
of extending the results to a difference of two such processes. Each sample
path of L defines a sigma-finite measure λω on B(R+),

λω[0, t] = L(ω, t) for t ∈ R+.

Notice that λω{0} = L(ω, 0) = 0 The family Λ = {λω : ω ∈ Ω} may be
thought of as a random measure, that is, a map from Ω into the space of
(sigma-finite) measures on B(R+).

Define the stochastic integral of a process H on S with respect to L
pathwise,

H • Lt := λsω
(
{0 < s ≤ t}H(ω, s)

)
.

This integral is well defined at least if H(ω, ·) is measurable and bounded
on each interval [0, t].

Remark. Should I be more careful about where H is defined? Does my pre-
caution of making λω{0} = 0 take care of any ambiguities if H is only defined
on S◦?

In particular, H •L is well defined if H ∈ locHBdd. In fact H •L ∈ FV0.
Indeed, for some localizing sequence {τk} there are finite constants Ck for
which |H(ω, s){0 < s ≤ τk(ω)}| ≤ Ck for all (ω, s) in S◦. For each fixed ω,
the function s 7→ H(ω, s) is measurable (by Fubini, because predictable
implies progressively measurable) and is, therefore, integrable with respect
to λω on each bounded interval. By Dominated Convergence, the sample
paths are cadlag. Also H • Lt = H+ • Lt − H− • Lt, a difference of two
nondecreasing R-processes.

You should now be able to prove the following result by using standard
facts about measures.

<3> Theorem. Suppose A ∈ FV0. There is a map H 7→ H • A from locHBdd

to FV0 that is linear (in the almost sure sense?) for which:

(i) ((0, τ ]] •At = At∧τ for each τ ∈ T and t ∈ R+

(ii) (H •A)t∧τ = (H((0, τ ]]) •At = H • (A∧τ )t for each τ ∈ T and t ∈ R+

(iii) If {Hn : n ∈ N} ⊂ locHBdd is locally uniformly bounded and converges

pointwise (in ω and t) to H then H ∈ locHBdd and Hn •A
ucpc−→ H •A.

As you can see, there is really not much subtlety beyond the usual mea-
sure theory in the construction of stochastic integrals with respect to FV0-
processes.
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Remark. The integral H • Lt can be defined even for processes that
are not predictable or locally bounded. In fact, as there are no
martingales involved in the construction, predictability is irrelevant.
However, functions in locHBdd will have stochastic integrals defined
for both FV0-processes and locM2

0(R+)-processes.

8.2 Stochastic integrals with respect to semimartingales

By combining the results from the previous Section with results from Project 7,
we arrive at a most satisfactory definition of the stochastic integral for a very
broad class of processes.

<4> Definition. An R-process X is called a semimartingale, for a given stan-
dard filtration {Ft : t ∈ R+}, if it can be decomposed as Xt = X0 +Mt +At
with M ∈ locM2

0(R+) and A ∈ FV0. Write SMG for the class of all semi-
martingales and SMG0 for those semimartinagles with X0 ≡ 0. SMG is nonstan-

dard notation

Notice that SMG0 is stable under stopping. Moreover, every local semi-
martingale is a semimartingale, a fact that is surprisingly difficult (Del-
lacherie and Meyer 1982, §VII.26) to establish directly.

The stochastic integral H • X is defined (up to indistinguishability) as
the sum of the stochastic integrals with respect to the components M and A.
The value X0 plays no role in this definition, so we may as well assume X ∈
SMG0. The resulting integral inherits the properties shared by integrals
with respect to FV0 and integrals with respect to locM2

0(R+).

Remark. The stochastic integral will only be defined up to indistinguishability.
Remember that two processes Y and Z are said to be indistinguishable if
there exists a single P-negligible set N such that Y (ω, t) = Z(ω, t) for all (ω, t)
in N c × R+. I will also said that Y and Z are equal almost pathwise.

<5> Theorem. For each X in SMG0, there is a linear (modulo indistinguisha-
bility) map H 7→ H •X from locHBdd into SMG0 such that:

(i) ((0, τ ]] •Xt = Xt∧τ for each τ ∈ T and t ∈ R+.

(ii) H •Xt∧τ = (H((0, τ ]]) •Xt = H • (X∧τ )t for each τ ∈ T and t ∈ R+.

(iii) If {H(n) : n ∈ N} ⊆ locHBdd is locally uniformly bounded and con-

verges pointwise to H, then H ∈ locHBdd and H(n) •X ucpc−→ H •X.

Conversely, let I be another linear map from locHBdd into the set of R-
processes having at least the weaker properties:
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(iv) I( ((0, τ ]] )t = Xt∧τ almost surely, for each τ ∈ T and t ∈ R+.

(v) If {H(n) : n ∈ N} ⊆ locHBdd is locally uniformly bounded and con-
verges pointwise to 0 then I(H(n))t → 0 in probability, for each fixed t.

Then I(H)t = H •Xt almost surely for every t.

Remarks. The converse shows, in particular, that the stochastic
integral H •X does not depend on the choice of the processes M and A
in the semimartingale decomposition of X.

Proof (Outline for the converse) Define

H := {H ∈ HBdd : I(H)t = H •Xt almost surely, for each t ∈ R+}

(a) Show that ((0, τ ]] ∈ H, for each τ ∈ T.

(b) Show that H is a λ-space. Hint: If H(n) ∈ H and H(n) ↑ H, with H
bounded, apply (iii) and (v) to {H−H(n)}, which is uniformly bounded.

(c) Deduce that H equals HBdd.

(d) Extend the conclusion to locHBdd. Hint: IfH ∈ locHBdd, with |H((0, τk]]| ≤
Ck, show that the processes H(n) := H((0, τn]] are locally uniformly
bounded and converge pointwise to H.

�

I have found the properties of the stochastic integral asserted by the
Theorem to be adequate for many arguments. I consider it a mark of defeat
if I have to argue separately for the locM2

0(R+) and FV0 cases to establish
a general result about semimartingales.

Remark. If we know that the H in Theorem 5(iii) is predictable then it is
enough to have H(n)(ω, t) → H(ω, t) for all t and all ω ∈ N c, for a single
P-negligible set N . Indeed, if we define a stopping time τ(ω) = 0{ω ∈ N} +
∞{ω ∈ N c} then

H(n)((0, τ ]]→ H((0, τ ]] pointwise

and
(
H(n)((0, τ ]]

)
• Xt = {ω ∈ N c}H(n) • Xt, that is,

(
H(n)((0, τ ]]

)
• X and

H(n)•X are indistinguishable. Similarly (H((0, τ ]])•X and H •X are indistin-
guishable. The uccp assertion of the Theorem implies the apparently stronger
assertion.



§8.3 6

Sometimes it is helpful to weaken the assumption of pointwise convergence
even further. I believe I can show the following:
if X ∈ SMG0 and if {H(n) : n ∈ N} ⊆ locHBdd and H(n) ucpc−→ H ∈ locHBdd

then H(n) •X ucpc−→ H •X. If I manage to fill in all the gaps in my proof I’ll
give it to you as an extra problem.

<6> Example. Suppose σ and τ are stopping times and X ∈ SMG. With Y
an Fσ-measurable random variable, define H = Y (ω)((σ, τ ]]. Show that
H •Xt = Y (ω) (Xt∧τ −Xt∧σ) by the following steps.

(i) Start with the case where Y = F ∈ Fσ. Define new stopping times σ′ =
σF +∞F c and τ ′ := τF +∞F c. Show that

(F ((σ, τ ]]) •Xt = Xt∧τ ′ −Xt∧σ′ = F (Xt∧τ −Xt∧σ) .

(ii) Extend the equality to all bounded, Fσ-measurable Y by a generating
class argument.

(iii) For an unbounded Y , define stopping times

τk = σ{|Y | > k}+∞{|Y | ≤ k}.

Show that ((0, τk]] = ((0, σ]]{|Y | > k} + {|Y | ≤ k}. Deduce that
the sequence H(n) := H((0, τn]] is locally uniformly bounded and it
converges pointwise to H.

(iv) Complete the argument.

The class of semimartingales is quite large. It is stable under sums (not
surprising) and products (very surprising—see the next Section) and under
exotic things like change of measure (to be discussed in a later Project).
Even more surprisingly, semimartingales are the natural class of integrators
for stochastic integrals; they are the unexpected final product of a long se-
quence of ad hoc improvements. You might consult Dellacherie (1980) or
Protter (1990, pages 44; 87–88; 114), who expounded the whole theory by
starting from plausible linearity and continuity assumptions then working
towards the conclusion that only semimartingales can have the desired prop-
erties. See also the review by Protter (1986) of three books on stochastic
integration.
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8.3 Quadratic variation

In the proof of Lévy’s martingale characterization of Brownian Motion, you
saw how a sum of squares of increments of Brownian motion, taken over
a partition via stopping times of an interval [0, t], converges in probability
to t. In fact, if one allows random limits, the behaviour is a general property
of semimartingales. The limit is called the quadratic variation process
of the semimartingale.

It is easiest to establish existence of the quadratic variation by means of
an indirect stochastic integral argument. Suppose X is an R-processes with
X0 ≡ 0. For each t ∈ (0,∞) define the left-limit process X�

t := X(t−, ω) := Awkward and
nonstandard
notation, X�,

but I want X−

for the negative
part of X.

lims↑↑tX(s, ω). Problem [2] shows that X� ∈ locHBdd.

<7> Definition. The quadratic variation process of an X in SMG0 is defined as
[X,X]t := X2

t −2X�•Xt for t ∈ R+. For general Z ∈ SMG, define [Z,Z] :=
[X,X] where Xt := Zt − Z0.

Remark. Some authors write [X] instead of [X,X].

The logic behind the name quadratic variation and one of the main
reasons for why it is a useful process both appear in the next Theorem.
The first assertion of the Theorem could even be used to define quadratic
variation, but then we would have to work harder to prove existence of the
limit (as for the quadratic variation of Brownian motion).

<8> Definition. A random grid G is defined by a finite sequence of finite
stopping times 0 ≤ τ0 ≤ τ1 ≤ · · · ≤ τk. The mesh of the grid is defined as
mesh(G) := maxi |τi+1− τi|; the max of the grid is defined as max(G) := τk.

To avoid double subscripting, let me write
∑

G to mean a sum taken
over the stopping times that make up a grid G.

<9> Theorem. Suppose X ∈ SMG0 and {Gn} is a sequence of random grids
with mesh(Gn) a.s.−→ 0 and max(Gn) a.s.−→∞. Then:

(i)
∑

Gn

(
Xt∧τi+1 −Xt∧τi

)2 ucpc−→ [X,X]t.

(ii) The process [X,X] has increasing sample paths;

(iii) If τ is a stopping time then [X∧τ , X∧τ ] = [X,X]∧τ . Mention jumps as
well?

Proof
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(a) Consider first a fixed t and a fixed grid G: 0 = τ0 ≤ τ1 ≤ · · · ≤ τk.
Define a left-continuous process HG =

∑
GXτi((τi, τi+1]]. Use Example 6

to show that H ∈ locHBdd and HG •Xt =
∑

GXτi

(
Xt∧τi+1 −Xt∧τi

)
.

(b) Except on a negligible set of paths (which I will ignore for the rest
of the proof), show that H(n) := HGn converges pointwise to the left-
limit process X� as mesh(G) → 0 and max(G) → ∞. Show also that
{H(n)} is locally uniformly bounded. Hint: Consider stopping times
σk := inf{s : |Xs| ≥ k}.

(c) Abuse notation by writing ∆iX for Xt∧τi+1 −Xt∧τi . Show that∑
Gn

Xτi(∆iX) = H(n) •Xt
ucpc−→ X� •Xt

(d) Show that

2H(n) •Xt +
∑

Gn

(∆iX)2 = X2
t∧τk

ucpc−→ X2
t .

(e) Complete the proof of (i).

(f) Establish (ii) by taking the limit along a sequence of grids (deterministic
grids would suffice) for which both s and t are always grid points. Note:
The sums of squared increments that converge to [X,X]t will always
contain extra terms in addition to those for sums converging to [X,X]s.

(g) For assertion (iii), merely note that τ ∧ t is one of the points in the
interval [0, t] over which the convergence in probability is uniform. Thus∑

Gn

(
Xt∧τi+1∧τ −Xt∧τi∧τ

)2 P−→ [X,X]t∧τ .

Interpret the left-hand side as an approximating sum of squares for [X∧τ , X∧τ ]t.

�

Lect 17, Monday 22 March

<10> Corollary. The square of a semimartingale X is a semimartingale.
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Proof Let Zt := Xt−X0 = Mt+At, where M∧τk ∈M2
0(R+) for a localizing

sequence {τk} and A ∈ FV0. Rearrange the definition of the square bracket
process, Z2

t = 2Z� •Zt+[Z,Z]t, to express Z2
t as a sum of a semimartingale

and an increasing process. The process X2
t expands to X2

0 +Z2
t + 2X0Mt +

2X0At. The last term belongs to FV0. The third term is reduced to M2
0(R+)

by the stopping times τk ∧ σk, where σk := 0{|X0| > k}+∞{|X0| ≤ k}.
�

<11> Corollary. The product of two semimartingales is a semimartingale.

Proof Use the polarization identity, 4XY = (X +Y )2− (X −Y )2, and
the fact that sums of semimartingales are semimartingales, to reduce the
assertion to the previous Corollary.

�

<12> Example. The jump process ∆Y associated with an R-process Y is defined
by ∆0Y ≡ 0 and ∆tY = Yt− Y �

t for 0 < t <∞. For each X in SMG0 show
that ∆t[X,X] = (∆tX)2 (almost surely) by the following steps.

Remark. As a consequence, if a semimartingale X has continuous sample
paths then so does [X,X].

(i) If Yn
ucpc−→ Y , show that ∆Yn

ucpc−→ ∆Y .

(ii) For each stopping time τ , show that ∆t(X∧τ ) = {t ≤ τ}∆tX

(iii) For the H(n) used in the proof of Theorem 9, show that ∆tH
(n) •X =

(∆tX)H(n)
t . Deduce that ∆t(X� •X) = (∆tX)X�

t almost surely.

(iv) Show that ∆tX
2 = (∆tX)2 + 2(∆tX)X�

t .

(v) Complete the argument.

�

<13> Definition. For X,Y ∈ SMG0, the square bracket process [X,Y ] (also
known as the quadratic covariation of the process of X and Y ) is defined,
by polarization, as

4[X,Y ]t := [X + Y,X + Y ]t − [X − Y,X − Y ]t
= (Xt + Yt)2 − (Xt − Yt)2

− 2(X + Y )� • (X + Y )t + 2(X − Y )� • (X − Y )t
= 4XtYt − 4X� • Yt − 4Y � •Xt.
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Remark. Notice that [X,Y ] is equal to the quadratic variation process
[X,X] when X ≡ Y . Notice also that [X,Y ] ∈ FV0, being a difference
of two increasing processes started at 0.

The square bracket process inherits many properties from the quadratic
variation. For example, you might prove that a polarization argument de-
rives the following result from Theorem <9>.

<14> Theorem. Let X and Y be semimartingales, and {Gn} be a sequence of
random grids with mesh(Gn) a.s.−→ 0 and max(Gn) a.s.−→∞. Then∑

Gn

(
Xt∧τi+1 −Xt∧τi

) (
Yt∧τi+1 − Yt∧τi

) ucpc−→ [X,Y ]t,<15>

and [X∧τ , Y∧τ ] = [X∧τ , Y ] = [X,Y∧τ ] = [X,Y ]∧τ for each stopping time τ ,

8.4 Problems

[1] If H and K are in locHBdd, and X is a semimartingale, show that K •
(H • X) = (KH) • X for almost all paths. Hint: For fixed H, define
I(K) := (HK) •M . What do you get when K = ((0, τ ]]?

[2] For each R-process X indexed by R+, show that X� ∈ locHBdd by the
following steps.

(i) Suppose f is a cadlag function on R+. Show that sup0≤s≤t |f(s)| < ∞ for
each t. Hint: Cover [0, t] by finitely many intervals (ti − δi, ti + δi) within
which max (|f(s)− f(ti−)|, |f(s)− f(ti)|) < ε.

(ii) Show that sup0<s≤t |X�(ω, s)| <∞ for each (ω, t).
(iii) Show that τk(ω) := inf{s ∈ R+ : |X�(ω, s)| > k} is a localizing sequence

for X�.

[3] Suppose M ∈ locM2
0(R+).

(i) Show that the process Xt := M2
t − [M,M ]t belongs to locM2

0(R+).
(ii) Suppose M has continuous sample paths and [M,M ]t ≡ t. Show that M is

a standard Brownian motion.
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Appendix D

Functions of finite or bounded variation
Suppose f is a real function defined on R+. For each finite grid

G : a = t0 < t1 < · · · < tN = b

on [a, b] define the variation of f over the grid to be

Vf,G[a, b] :=
∑N

i=1
|f(ti)− f(ti−1)|

Say that f is of bounded variation on the interval [a, b] if

Vf [a, b] := supG Vf,G[a, b] is finite

where the supremum is taken over the set of all finite grids G on [a, b]. Say
that f is of finite variation if it is of bounded variation on each bounded
interal [0, b].

The key fact is: a function f : R+ → R is of finite variation if and only
if it can be written as a difference of two nondecreasing functions. You can
establish this fact, and corresponding analogs for random processes, by the
following steps.

(i) Suppose f = f1 − f2, where f1 and f2 are increasing functions on R+.
Show that

Vf [0, b] ≤ Vf1 [0, b] + Vf2 [0, b] = f1(b)− f1(0) + f2(b)− f2(0).

Deduce that f is of finite variation.

(ii) Suppose f is a function on R+ with finite variation. Show that the
functions t 7→ Vf [0, t] and t 7→ Vf [0, t] − f(t) are both nondecreasing
and

f(t) = Vf [0, t]−
(
Vf [0, t]− f(t)

)
,

a difference of two nondecreasing functions. In what follows, drop the
subscript f on the variation functions.

(a) Suppose G is a grid on [a, b] and that s is point of (a, b) that is
not already a grid point. Show that V (G, [a, b]) is increased if we
add s as a new grid point.
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(b) Show that V [0, a] + V [a, b] = V [0, b] for all a < b. Deduce that
t 7→ V [0, t] is an increasing function

(c) Suppose 0 < s < t. Show that

V [0, t]−f(t) = V [0, s]−f(s)+f(s)−f(t)+V [s, t] ≥ V [0, s]−f(s).

Hint: Consider a two-point grid on [s, t].

(iii) Now suppose f is not only of finite variation but is also right-continuous
at some a ∈ R+. For a fixed b > a and an ε > 0 choose a grid

G : a = t0 < t1 < · · · < tN = b

for which V (G, [a, b]) > V [a, b] − ε. With no loss of generality sup-
pose |f(t1)− f(a)| < ε. Show that

ε+ V [t1, b] ≥ V (G, [a, b]) > V [a, t1] + V [t1, b]− ε

Deduce that t 7→ V [0, t] is continuous from the right at a.

(iv) If f is right-continuous everywhere, show that each Vf [a, b] can be
determined by taking a supremum over equispaced grids on [a, b].

(v) If X is an R-processes with sample paths of finite variation, show that
it can be expressed as the difference of two R-processes with increasing
sample paths. [The issue is whether VX(·,ω)[0, t] is adapted.]


