
Project 9

The Itô formulae
This Project will derive the Itô formula only for semimartingales with

continuous sample paths. Those of you who want to understand the for-
mula for processes with jumps should consult Dellacherie and Meyer (1982,
§VIII.24–28) or Protter (1990, page 71).

9.1 Itô formulae

Let f be a continuous, real-valued function defined on some open subset G
of R2. Suppose f has two continuous partial derivatives fx and fxx with
respect to its first argument and a continuous partial derivative fy with
respect to its second argument. For a process {(Xt, Yt) : t ∈ R+} taking
values in G, define new processes by

Fx(ω, s) := fx
(
X(ω, s), Y (ω, s)

)
,

Fxx(ω, s) := fxx
(
X(ω, s), Y (ω, s)

)
<1>

Fy(ω, s) := fy
(
X(ω, s), Y (ω, s)

)
.

Each of them is adapted and has continuous paths; each process is pre-
dictable.

<2> Theorem. [Itô Formula] Suppose X and Y are semimartingales with
continuous sample paths, such that the two-dimensional random process
{(Xt, Yt) : t ∈ R+} takes values in an open subset G of R2. Suppose Y
has paths of bounded variation. For f as described above and processes Fx,
Fy, and Fxx as defined in <1>, the process f(Xs, Ys) is a semimartingale
with

f(Xt, Yt)− f(X0, Y0) = Fx •Xt + 1
2Fxx • [X,X]t + Fy • Yt

for each t in R+.

Remark. The Itô formula is often written in the suggestive form

df(Xt, Yt) = fx(Xt, Yt) dXt + 1
2fxx(Xt, Yt) d[X,X]t + fy(Xt, Yt) dYt,

which hints at its origins as a sum of small increments.
The process 1

2Fxx • [X,X]+Fy •Y is in FV. If X ∈ locM2(R+) then
Fx •X ∈ locM2

0(R+). The Itô formula then gives the semimartingale
decomposition for the process f(Xt, Yt).
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§9.1 2

Proof Let K be a compact subset of G. Define

σ := inf{t ∈ R+ : (Xt, Yt) /∈ K}.

Replace X and Y by the corresponding stopped processes X∧σ and Y∧σ.

Remark. For the steps that follow I haven’t been very careful about distin-
guishing between process W for which W0 ≡ 0 and those that might start
somewhere else. I don’t think it matters much, but you should be extra care-
ful in checking my assertions.

(i) Show that the formula is trivially true for the stopped processes if
(X0, Y0) /∈ K.

(ii) Suppose g is a continuous real function defined on G. For each ε > 0
show that there exists a δ > 0 for which:

|g(x+∆x, y+∆y)−g(x, y)| ≤ ε if (x, y) ∈ K and max(|∆x|, |∆y|) ≤ δ.

Remark. If (x+ ∆x, y+ ∆y) ∈ K, these properties are just a statement
of the uniform continuity for the restriction of g to K; if (x+∆x, y+∆y)
is allowed to poke outside K, the argument is only a tiny bit more subtle.
I believe the result as stated is needed if we consider Taylor expansion
along line segments between points in K if K is not convex.

(iii) For max(|∆x|, |∆y|) ≤ δ and (x, y) ∈ K, show that

f(x+∆x, y + ∆y)− f(x, y)

= (∆x)fx(x, y) + 1
2(∆x)2fxx(x, y) + (∆y)fy(x, y) + rem

where rem ≤ ε
(

1
2(∆x)2 + |∆y|

)
Hint: First consider the representation g(1) − g(0) =

∫ 1
0 g
′(s) ds for

the function g(s) := f(x+ ∆x, y + s∆y)− f(x+ ∆x, y)−∆yfy(x, y).
Then argue similarly for f(x+ s∆x, y).

(iv) Fix t. Consider a sequence εn ↓ 0. Let δn be a sequence for which (ii)
holds with g equal to any of fx, fxx, or fy. Define a grid Gn via
stopping times

τi+1 := inf{s ≥ τi : |(X,Y )s − (X,Y )τi | ≥ δn} ∧ t ∧ σ.

Show that there exist integers k(n) such that P{τk(n) = t ∧ σ} → 1 as
n→∞.
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K( X!,Y! )

( X0,Y0)

G

(v) Write ∆iX for Xτi+1 −Xτi , and similarly for Y . Show that the incre-
ment f(Xτk(n)

, Yτk(n)
)− f(X0, Y0) differs from∑k(n)−1

i=0
(∆iX)Fx(τi) + 1

2(∆iX)2Fxx(τi) + (∆iY )Fy(τi)<3>

by a quantity that tends in probability to zero.

(vi) Show that the contribution from the first summand in <3> equals
H(n) •Xt∧τk(n)

, where

H(n)(ω, s) :=
∑k(n)−1

i=0
Fx(τi, ω)((τi, τi+1]].

Show that H(n) − Fx((0, τk(n)]] is uniformly bounded and converges
pointwise to Fx.

(vii) Deduce that
∑k(n)−1

i=0 (∆iX)Fx(τi)
P−→ Fx •Xt∧σ.

(viii) Argue similarly for the contribution from the third summand in <3>.

(ix) The argument (Protter 1990, page 69) for the second summand in <3>
is a little more complicated. Define Zt := Xt − X0 and write ∆iZ
for Zτi+1 − Zτi .

(a) Show that∑k(n)−1

i=0
(∆iX)2Fxx(τi) =

∑k(n)−1

i=0
Fxx(τi)(Z2

τi+1
− Z2

τi)

− 2
∑k(n)−1

i=0

(
Fxx(τi)Zτi

)
(∆iZ).
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(b) Show that the right-hand side converges in probability to

Fxx • Z2
t∧σ − 2(FxxZ) • Zt∧σ

= Fxx • (Z2 − 2Z • Z)t∧σ
= Fxx • [Z,Z]t∧σ = Fxx • [X,X]t∧σ.

(x) Deduce that

f(Xt∧σ, Yt∧σ)− f(X0, Y0)
= Fx •X∧σt + 1

2Fxx • [X∧σ, X∧σ]t + Fy • Y∧σt
= Fx •Xt∧σ + 1

2Fxx • [X,X]t∧σ + Fy • Yt∧σ.

(xi) Complete the proof by letting K expand up to G, so that σ ↑ ∞.

�

<4> Example. Let {Xt : t ∈ R+} be a locally square integrable martingale
with continuous sample paths. Its quadratic variation process Y := [X,X]
is continuous and of bounded variation. To be on the safe side, let me also
assume that X0 ≡ 0, even though it is not necessary.

The semimartingale Zt := exp(Xt− 1
2Yt) is a candidate for an application

of the Itô formula, with f(x, y) = exp(x− 1
2y). We have Fx = Fxx = −2Fy =

Z, and
Zt − Z0 = Z •X + 1

2Z • [X,X]t − 1
2Z • Yt = Z •Xt.

The Z process is also a locally square integrable martingale with continuous
paths.

�

<5> Example. Let X be a locally square integrable martingale with continuous
sample paths, X0 ≡ 0, and for which [X,X]t = t. For a fixed real θ, define
Zt := exp(iθXt+ 1

2θ
2t). Apply the Itô formula (to real and imaginary parts)

to show that Zt = 1 + iθZ • Xt. The Z process is also a locally square
integrable martingale with continuous paths. For some localizing sequence
of stopping times {τk},

PZt∧τk = 1 + iθPZ •Xt∧τk = 1

A dominated convergence argument then shows that P exp(iθXt) = exp(−1
2θ

2t)
for every real θ. Thus Xt ∼ N(0, t).

With a little more work you should be able to extend the preceding
argument to establish Lévy’s characterization of Brownian Motion, in a
slightly more general form than the one discussed in Project 5.

�
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There would be nothing to gain in Theorem 2 by requiring existence
of second-order partial derivatives fxy and fyy: the corresponding bracket
process [X,Y ] and [Y, Y ] are both zero, because the process Y has continuous
paths of finite variation. The story would change if Y did not have paths of
bounded variation. In that case, the error term εn

∑
i |∆iY | would no longer

disappear in the limit. We would instead need continuous second order
partial derivatives fxy and fyy to handle the contributions from the ∆iY
increments to the Taylor expansion (to quadratic terms) in both variables.
Error terms like

εn
∑

i
(∆iY )2 + (∆iX)(∆iY )

would again converge in probability to zero. The cross-product term∑
i
Fxy(τi)(∆iX)(∆iY )

=
∑

i
Fxy(τi)(Xτi+1Yτi+1 −XτiYτi)

−
∑

i
Fxy(τi) (Xτi(∆iY ) + Yτi(∆iX))

would converge in probability to

Fxy • (XY −X0Y0 −X • Y − Y •X)t = Fxy • [X,Y ]t.

A similar argument works for functions of more than two semimartin-
gales.

<6> Theorem. [Multiprocess Itô Formula] Suppose X = (X(1), . . . X(d))
and Y = (Y (1), . . . Y (d′)) are semimartingales with continuous paths, such
that the d + d′-dimensional random process (X,Y) takes values in an open
subset G of Rd+d′

. Suppose each Y (γ) has paths of finite variation.
If f is a continuous, real-valued function on G with continuous partial

derivatives fx(α), fx(α),x(β), fy(γ) for α, β = 1, . . . , d and γ = 1, . . . , d′, then
f(X,Y) is a semimartingale with

f(Xt,Yt)− f(X0,Y0)

=
∑

α
Fx(α) •X

(α)
t +

∑
γ
Fy(γ) • Y

(γ)
t

+ 1
2

∑
α,β

Fx(α),x(β) • [X(α), X(β)]t

for each t in R+.
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