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Project 9

The It0 formulae

This Project will derive the It6 formula only for semimartingales with
continuous sample paths. Those of you who want to understand the for-
mula for processes with jumps should consult Dellacherie and Meyer (1982,
§VIII.24-28) or Protter (1990, page 71).

Ito formulae

Let f be a continuous, real-valued function defined on some open subset GG
of R2. Suppose f has two continuous partial derivatives f, and f,, with
respect to its first argument and a continuous partial derivative f, with
respect to its second argument. For a process {(X;,Y;) : t € RT} taking
values in GG, define new processes by

Fi(w,s) = fw(X(w,s),Y(w,s)),
Frz(w,s) = foz (X(w,s),Y(w,s))
Fy(w,s) = fy(X(w,s),Y(w,s)).

Each of them is adapted and has continuous paths; each process is pre-
dictable.

Theorem. [Ité Formula] Suppose X and Y are semimartingales with
continuous sample paths, such that the two-dimensional random process
{(Xy,Y;) : t € RY} takes values in an open subset G of R%. Suppose Y
has paths of bounded variation. For f as described above and processes F,.,
F,, and Fy, as defined in <1>, the process f(Xs,Ys) is a semimartingale
with

F(X4, i) = [(X0,Y0) = Fr @ Xy + 5 Fyp 0 [X, X]1 + Fy 0 Y,
for each t in RT.
Remark. The It6 formula is often written in the suggestive form
df (X0, Ye) = fo( X4, Ye) dXy + § fou(Xe, Ye) X, X]o + fy (X0, Y2) dYs,

which hints at its origins as a sum of small increments.

The process 1 F,, o[ X, X]+F, oY isin FV. If X € locM?(R*) then
F, e X € locM2(R*). The Ito formula then gives the semimartingale
decomposition for the process f(X¢,Y:).
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PrOOF Let K be a compact subset of G. Define
o:=inf{t e R" : (X, V;) ¢ K}.
Replace X and Y by the corresponding stopped processes X, and Y, .

Remark. For the steps that follow I haven’t been very careful about distin-
guishing between process W for which Wy = 0 and those that might start
somewhere else. I don’t think it matters much, but you should be extra care-
ful in checking my assertions.

(i) Show that the formula is trivially true for the stopped processes if
(X0, Y0) ¢ K.

(ii) Suppose g is a continuous real function defined on G. For each € > 0
show that there exists a § > 0 for which:

lg(x+Azx, y+Ay)—g(z,y)| < e if (z,y) € K and max(|Az|, |Ay|) < 4.

Remark. If (x4 Az,y+ Ay) € K, these properties are just a statement
of the uniform continuity for the restriction of g to K; if (z+ Az, y+Ay)
is allowed to poke outside K, the argument is only a tiny bit more subtle.
I believe the result as stated is needed if we consider Taylor expansion
along line segments between points in K if K is not convex.

(iii) For max(|Az|,|Ay|) <6 and (z,y) € K, show that

= (AZ) fo(@,y) + 2(A2)? fau(2,y) + (Ay) fy (2, y) + REM
where REM < €(1(Az)? + |Ay|)

Hint: First consider the representation g(1) — ¢(0) = fol g'(s)ds for
the function g(s) := f(x + Az,y + sAy) — f(x + Az, y) — Ay fy(z,y).
Then argue similarly for f(x + sAx,y).

(iv) Fix t. Consider a sequence €, | 0. Let d,, be a sequence for which (ii)
holds with g equal to any of fz, fz., or f,. Define a grid G, via
stopping times

Tit1 :=1nf{s > 7 : (X, Y)s = (X, Y),| >} At Ao

Show that there exist integers k(n) such that P{7,,) =t Ao} — 1 as
n — oo.
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(v) Write A; X for X, ,, — X,,, and similarly for Y. Show that the incre-
ment f(XTk(n),YTk<n)) — f(Xo,Yp) differs from

k(n)—1
<3> Ziio) (A X)Fy(mi) + %(AiX)QFM(Ti) + (AY)Fy(mi)
by a quantity that tends in probability to zero.

(vi) Show that the contribution from the first summand in <3> equals
H™ o Xt/\m(nw where

n k(n)—1
H(w,8):=% " Falri,0) (73, i)

Show that H™ — F((0, Tg(ny]] is uniformly bounded and converges
pointwise to F,.

(vii) Deduce that Zfi%)_l(AiX)Fx(n) LN F, e Xin,.

(viii) Argue similarly for the contribution from the third summand in <3>.

(ix) The argument (Protter 1990, page 69) for the second summand in <3>
is a little more complicated. Define Z; := X; — Xy and write A;Z
for Z — Zs,.

Ti+1

(a) Show that
k(n)—1 k(n)—1
Doy AXPPa(n)=) " Fu(n)(Z2,, - 27)

o3 (B ()2, (A2).
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(b) Show that the right-hand side converges in probability to
sz i ZtQ/\o' - 2(an:Z) b Zt/\a
=Fp,0 (2227020,
= Lgy ® [Z, Z]t/\o =Ligy ® [X, X}t/\o’-

(x) Deduce that

f(Xt/\OW}/t/\U) - f(X07}/0)
- Fx L4 X/\O't + %Fx:c L4 [X/\O'uX/\U]t + Fy L4 Y/\Ut
= Fx.XtAJ+ %me. [XaX]t/\U +Fy.Yt/\a-

(xi) Complete the proof by letting K expand up to G, so that o T oc.

Example. Let {X; : t € RT} be a locally square integrable martingale
with continuous sample paths. Its quadratic variation process Y := [X, X]
is continuous and of bounded variation. To be on the safe side, let me also
assume that Xy = 0, even though it is not necessary.

The semimartingale Z; := exp(X;— %Y}) is a candidate for an application
of the It6 formula, with f(z,y) = exp(z—1y). We have F, = F,, = —2F, =
Z, and

Zy—Zo=ZeX+5Ze[X, X]|,—tZeY,=ZeX,.

The Z process is also a locally square integrable martingale with continuous
paths.

Example. Let X be a locally square integrable martingale with continuous
sample paths, Xy = 0, and for which [X, X]; = ¢. For a fixed real 6, define
Z; := exp(i0 X, + 36°t). Apply the Ito formula (to real and imaginary parts)
to show that Z; = 1 4+ i0Z e X;. The Z process is also a locally square
integrable martingale with continuous paths. For some localizing sequence
of stopping times {73},

PZt/\Tk =1+i0PZ e Xt/\/rk =1

A dominated convergence argument then shows that Pexp(i6.X;) = exp(—36°t)
for every real 6. Thus X; ~ N(0,¢).

With a little more work you should be able to extend the preceding
argument to establish Lévy’s characterization of Brownian Motion, in a
slightly more general form than the one discussed in Project 5.
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There would be nothing to gain in Theorem 2 by requiring existence
of second-order partial derivatives f;, and fy,: the corresponding bracket
process [X, Y] and [Y, Y] are both zero, because the process Y has continuous
paths of finite variation. The story would change if Y did not have paths of
bounded variation. In that case, the error term €, . |A;Y| would no longer
disappear in the limit. We would instead need continuous second order
partial derivatives f;, and fy,, to handle the contributions from the A;Y
increments to the Taylor expansion (to quadratic terms) in both variables.
Error terms like

en Y (AY)?+ (A X)(AY)

%

would again converge in probability to zero. The cross-product term

> Fry (1) (A X)(AiY)
= Py (1) (Xri Yoy — X5 Yr)
- Zl Py (1) (X7 (AY) + Y7, (A X))
would converge in probability to
Foyo (XY — XYy —XeY —YeX), =F,e[X,Y].

A similar argument works for functions of more than two semimartin-
gales.

Theorem. [Multiprocess Ité Formula] Suppose X = (X1 ... X))
and Y = (Y(l), . ..Y(d/)) are semimartingales with continuous paths, such
that the d + d'-dimensional random process (X,Y) takes values in an open
subset G of R¥ . Suppose each Y ) has paths of finite variation.

If f is a continuous, real-valued function on G with continuous partial
derwatives fy(a), fo(a)e8)s fyty) fora,B=1,...,d andy=1,... ,d', then
f(X,Y) is a semimartingale with

f(XtuYt) - f(X07Y0)
=D, Faty o X(V 30 Fyy 0¥

+3 2,5 P o (X, X,

for each t in RT.
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