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FKG AND RELATED INEQUALITIES
For x = (x1,...,x,) e R"and y = (y1, ..., y») € R" define
XVY=XVY,.oos Xy V) and XAY =X AV, Xn AYn).

Write x < y to mean x vV y = x. Say that a function f on R”" is increasing if it
is an increasing function in each of its arguments (for fixed values of the other
arguments). Equivalently, f is increasing if f(x) < f(y) whenever x < y.

Theorem. Suppose P and Q are probability measures on B(X") with
densities p = dP/du and ¢ = dQ/dp with respect to a product measure .
Suppose

p()q(y) = p(x Ay)g(x vVy)  forall x,yeX"

Then Pf < Qf for each increasing function f that is both P- and Q-integrable.
Theorem. Suppose P is a probability measure with a density p = dP /du

with respect to a product measure (1, for which
p()p(y) = px Ay)p(xvy)  forallx,yeX"

If f and g are increasing, P-square integrable functions on X" then
Pf(x)g(x) = (Pf)(Pg). That is, f and g are positively correlated as
random variables under P.

Both results will follow as special case of the following general inequality.

Theorem. Suppose fi, ..., fs are nonnegative, Borel-measurable functions
on X", where X C R, for which

H(x) () = e Ay falxvy)  forall x,y € X"
Let u =1 ®...® u, be a sigma-finite product measure on B(X"). Then

n(fou(f) = n(f3)ulfs)

Proof. The method of proof is induction on n. The main idea is that
an inequality analogous to <4> is preserved by integration over a single
coordinate.

To make the patterns easier to see, I adopt some temporary notation that
focuses attention on the nth coordinate. Write x = (X, u) and y = (Y, v), where
X=,....xp—1)and Y = (y1,..., Yu—1), and let M = p,,. Inequality <4>
then becomes

X, ) /LY, 0) < L(XAY,uAv)fa(X VY, uvo) forall X,Y, u,v.
We need to show that
AXART) = AEAVRXVY)  where fi(Z) = M" fi(Z, w).

The arguments X and Y stay fixed throughout the inductive step. The
important calculations all involve the functions

A, v) := fi(X,u) 2(Y,v) = B(v,u)
Cu,v):= f5(XAY,u)fs(X VY, v)=D(,u)

Replacement of the dummy variables (u, v) by (v, u’) on the set {u < v}
transforms the left-hand side of <6> to

M"M?{u = v} f1(X, u) (Y, v)
+M*M {u < v} fi(X,u) (Y, v)
+MU MU > ') LX) fo(Y i)
= M"M"{u =v}A(u,v) + M"M"{u < v} (A(u, v) + B(u, v)) .
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Similarly, the right-hand side of <6> equals
M'"M'{u = v}C(u,v) + M*M"{u < v} (C(u, v) + D(u, v)) .

Inequality <5> gives A(u,v) < C(u, v) on the set {u = v}. On the set
{u < v} it gives both max(A, B) < C and

AB = fi(X,u) /(Y u) fi(X, v) f2(Y, v)

< BEAY, WX VY, 0)f5(X AY,0)fa(X VY, v) =CD,

which imply
A(u,v) + B(u,v) < C(u,v)+ D(u,v) on {u < v}

because

0<(1—A/C)1—-B/C)=1—(A+B)/C+ (AB)/C*

<(C—-A—-B+D)/C.
Multiple appeals to the inductive argument eventually reduce the assertion

of the Theorem to the case where n = 1, which can be handled as in the

argument leading to <6> with the extra simplification that there are no longer
any X or Y.

Proof of Theorem <1>.  First consider the case where f is bounded and
nonegative. Define

fi(x) = p(x) f(x) and fi(w) = p(w)
£20)=q®) and f1(2) = q(2) f(2)
Check that

fi) L) = fF@)p(x)g(y)
S faVYpxAYIgx Vy) = f3(x Ay)falx Vy).

Invoke Theorem <3>.

For the general case, apply the result just established to the function
fo:=2n A (f +n)* to deduce that P(f, —n) < Q(f, — n). The let n tend
to infinity, noting that |f, —n| < f and f, —n — f to justify an appeal to
Dominated Convergence.

Proof of Theorem <2>.  As for the proof of Theorem <1>, it is enouugh to
consider the case of bounded f and g. Define

f1(x) = p(x) f(x) and f3(w) = p(w)
L) =pO»g®») and f1(2) = p(2) f(2)g(2)
Check that
I L) = fF)gMpx)p(y)
S favy)gxvy)px Ay)p(x Vy) = fi(x Ay)falx Vy).

Invoke Theorem <3>.

Notes

‘ Notes unedited; might be incorrect

Theorem <3> is due to Ahlswede & Daykin (1978), but the proof
comes from Karlin & Rinott (1980). Eaton (1986, Chapter 5) contains a nice
exposition.
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I need to get the history of
FKG straight.

.1 Notes 3

The original paper of Fortuin, Kasteleyn & Ginibre (1971) stated the result
of Theorem <2> for increasing functions defined on a finite distributive lattice.
It also contained applications to Physics, including the Ising model.

Preston (1974a) noted that finite distributive lattices can always be
represented as a collection ofsubsets of some finite set. Equivalently, the points
of such a lattice can be represented as n-tuples of 0’s and 1’s, or as n-tuples
of £1’s. Preston (1974b, Chapter 3) reproduced a proof Holley (1974), which
was expressed as a coupling of two probability measures satisfying the setwise
analog of the condition in Theorem <1>. In fact, a general coupling result of
Strassen (1965) shows that the Holley result is equivalent to the result asserted
by Theorem <1>.

See the survey by Den Hollander & Keane (1986) for more about the
history of the FKG inequality and its variants.
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