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FKG and related inequalities

For x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n define

x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn) and x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn).

Write x ≤ y to mean x ∨ y = x . Say that a function f on R
n is increasing if it

is an increasing function in each of its arguments (for fixed values of the other
arguments). Equivalently, f is increasing if f (x) ≤ f (y) whenever x ≤ y.

<1> Theorem. Suppose P and Q are probability measures on B(Xn) with
densities p = d P/dµ and q = d Q/dµ with respect to a product measure µ.
Suppose

p(x)q(y) ≤ p(x ∧ y)q(x ∨ y) for all x, y ∈ Xn

Then P f ≤ Q f for each increasing function f that is both P- and Q-integrable.

<2> Theorem. Suppose P is a probability measure with a density p = d P/dµ

with respect to a product measure µ, for which

p(x)p(y) ≤ p(x ∧ y)p(x ∨ y) for all x, y ∈ Xn

If f and g are increasing, P-square integrable functions on Xn then
P f (x)g(x) ≥ (P f )(Pg). That is, f and g are positively correlated as
random variables under P .

Both results will follow as special case of the following general inequality.

<3> Theorem. Suppose f1, . . . , f4 are nonnegative, Borel-measurable functions
on Xn , where X ⊆ R, for which

<4> f1(x) f2(y) ≤ f3(x ∧ y) f4(x ∨ y) for all x, y ∈ Xn .

Let µ = µ1 ⊗ . . . ⊗ µn be a sigma-finite product measure on B(Xn). Then

µ( f1)µ( f2) ≤ µ( f3)µ( f4)

Proof. The method of proof is induction on n. The main idea is that
an inequality analogous to <4> is preserved by integration over a single
coordinate.

To make the patterns easier to see, I adopt some temporary notation that
focuses attention on the nth coordinate. Write x = (X, u) and y = (Y, v), where
X = (x1, . . . , xn−1) and Y = (y1, . . . , yn−1), and let M = µn . Inequality <4>

then becomes

<5> f1(X, u) f2(Y, v) ≤ f3(X ∧ Y, u ∧ v) f4(X ∨ Y, u ∨ v) for all X, Y, u, v.

We need to show that

<6> f̃1(X) f̃2(Y ) ≤ f̃3(X ∧ Y ) f̃4(X ∨ Y ) where f̃i (Z) := Mw fi (Z , w).

The arguments X and Y stay fixed throughout the inductive step. The
important calculations all involve the functions

A(u, v) := f1(X, u) f2(Y, v) = B(v, u)

C(u, v) := f3(X ∧ Y, u) f4(X ∨ Y, v) = D(v, u)

Replacement of the dummy variables (u, v) by (v′, u′) on the set {u < v}
transforms the left-hand side of <6> to

Mu Mv{u = v} f1(X, u) f2(Y, v)

+Mu Mv{u < v} f1(X, u) f2(Y, v)

+Mv′
Mu′ {v′ > u′} f1(X, v′) f2(Y, u′)

= Mu Mv{u = v}A(u, v) + Mu Mv{u < v} (
A(u, v) + B(u, v)

)
.
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Similarly, the right-hand side of <6> equals

Mu Mv{u = v}C(u, v) + Mu Mv{u < v} (
C(u, v) + D(u, v)

)
.

Inequality <5> gives A(u, v) ≤ C(u, v) on the set {u = v}. On the set
{u < v} it gives both max(A, B) ≤ C and

AB = f1(X, u) f2(Y, u) f1(X, v) f2(Y, v)

≤ f3(X ∧ Y, u) f4(X ∨ Y, u) f3(X ∧ Y, v) f4(X ∨ Y, v) = C D,

which imply

A(u, v) + B(u, v) ≤ C(u, v) + D(u, v) on {u < v}
because

0 ≤ (1 − A/C)(1 − B/C) = 1 − (A + B)/C + (AB)/C2

≤ (C − A − B + D)/C.

Multiple appeals to the inductive argument eventually reduce the assertion
of the Theorem to the case where n = 1, which can be handled as in the
argument leading to <6> with the extra simplification that there are no longer
any X or Y .�
Proof of Theorem <1>. First consider the case where f is bounded and
nonegative. Define

f1(x) = p(x) f (x) and f3(w) = p(w)

f2(y) = q(y) and f4(z) = q(z) f (z)

Check that

f1(x) f2(y) = f (x)p(x)q(y)

≤ f (x ∨ y)p(x ∧ y)q(x ∨ y) = f3(x ∧ y) f4(x ∨ y).

Invoke Theorem <3>.
For the general case, apply the result just established to the function

fn := 2n ∧ ( f + n)+ to deduce that P( fn − n) ≤ Q( fn − n). The let n tend
to infinity, noting that | fn − n| ≤ f and fn − n → f to justify an appeal to
Dominated Convergence.�
Proof of Theorem <2>. As for the proof of Theorem <1>, it is enouugh to
consider the case of bounded f and g. Define

f1(x) = p(x) f (x) and f3(w) = p(w)

f2(y) = p(y)g(y) and f4(z) = p(z) f (z)g(z)

Check that

f1(x) f2(y) = f (x)g(y)p(x)p(y)

≤ f (x ∨ y)g(x ∨ y)p(x ∧ y)p(x ∨ y) = f3(x ∧ y) f4(x ∨ y).

Invoke Theorem <3>.�

1. Notes

Notes unedited; might be incorrect

Theorem <3> is due to Ahlswede & Daykin (1978), but the proof
comes from Karlin & Rinott (1980). Eaton (1986, Chapter 5) contains a nice
exposition.
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.1 Notes 3

The original paper of Fortuin, Kasteleyn & Ginibre (1971) stated the result
of Theorem <2> for increasing functions defined on a finite distributive lattice.
It also contained applications to Physics, including the Ising model.

Preston (1974a) noted that finite distributive lattices can always be
represented as a collection ofsubsets of some finite set. Equivalently, the points
of such a lattice can be represented as n-tuples of 0’s and 1’s, or as n-tuples
of ±1’s. Preston (1974b, Chapter 3) reproduced a proof Holley (1974), which
was expressed as a coupling of two probability measures satisfying the setwise
analog of the condition in Theorem <1>. In fact, a general coupling result of
Strassen (1965) shows that the Holley result is equivalent to the result asserted
by Theorem <1>.

See the survey by Den Hollander & Keane (1986) for more about the
history of the FKG inequality and its variants.I need to get the history of

FKG straight.
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