Chapter

Gibbs measures

1.

2.

This Chapter contains a simplified account of some theory for Gibbs
measures, which I learned from the very thorough monograph by
Georgii (1988) with a little help from the gentler exposition by
Kindermann & Snell (1980).

Notation

e Let S be a countably infinite index set of sites. For each i in S, suppose
X; is a set equippped with a sigma-field B;. For each A C § write
Q4 for Xijea X;. Equip Q4 with its product sigma-field By = )., Bi.
Abbreviate Qg to Q and By to B.

e Write wq = (w; : i € A) for both the generic point of 24 and for the
coordinate projection of a generic @ in Q2 onto 24.

e By definition, B is the smallest sigma-field on €2 for which each coordinate
projection w — w; is B\B;-measurable. Consequently, for each A C S, the
projection map w +— w, is B\B 4-measurable. Write F4 for the smallest
sigma-field on 2 for which the map w — w, is F4\B 4-measurable. Each
set in F4 is of the form B x Qg 4 with B € B,.

e Write S for the set of all finite, nonempty subsets of S.

o Let H denote the set of all bounded, real-valued, B-measurable functions
on Q. For A C S define

Ls={f €H: f depends on w only through the coordinates w, }

That is, f € L, if and only if f(w) = g(wa) for some bounded,
B 4\B(R)-measurable function g on Q4. The functions in £, generate a
sigma-field F,4 on Q. Write L for UycsL 4, the set of all functions in
that depend on w only through some finite subset of coordinates. If f € L,
write S(f) for the smallest A such that f € L 4.

e Call a sequence {A(n) : n € N} C S an S-cover for S if A(n) 1 S as
n — oo.

A cautionary example

Ignore this Section.

We will be building Gibbs measures from a collection of desired conditional
distributions. As you saw in Chapter MRF, it is not a completely trivial task to
find Markov kernels that have the consistency properties required for conditional
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better example needed

<l>

3.

distributions. For a finite S, the construction of a Gibbs measure via a density (defined
by a family W of nonnegative functions) guarantees the necessary consistency. We
cannot follow exactly the same route when S is infinite, because it is not always
possible to define a joint density for wg by taking an infinite product of W functions.

Example. Suppose X; = {0, 1} and A’ is the uniform distribution on X;, for
every i € S = N. Suppose F = {{i,i +1}:i € S} and

Wity = 2o = o} + {o; # oin}
The product measure AS = ®;csA’ is well defined. We might hope to construct P by
defining

dP 1
m(ws) = E nies "Ij(i,i+l)(wi’ wi+1)
where Z = A5 [, s Wiiitn (@i, 0i41).

Unfortunately,
Z > l—IjEN)L ®A\IJ{2j,21+])(w2/-, a)zj_*_]) = l_IjeN (% X 2+ % X 1) =0

We would end up with co/oc0.

Consistent sets of conditional distributions

For each i in S, suppose A’ is a sigma-finite measure on B;. For each A in S,
write A4 for the product measure );_, A’ on B 4.

For some index set F C S, suppose ¥ := {W, : a € F} is a collection of
nonnegative, B-measurable functions on 2 for which ¥, depends on @ only
through the coordinates w,.

Some important features of W are captured by its factor graph, which has
a node for each site i in S and a node for each factor a in [F, with i connected
to a if and only if i is one of the sites in a. For each A C § define

0A:={aelF:ANa # 0}
N(A) :={j e S\A:j €a for some a in 0A }

To avoid problems with infinite products, I will assume that both 9 A
and N(A) are finite if A € S. For each such A define

Ga@) =[], Yal@a).

Sometimes I will write G(wa, wn(a)) to emphasize the fact that G4 depends
on w only through the coordinates w; for i € A UN(A). Similarly, define

Za(ws\a) = Za(onay) = MG a(@a, ona)),s

where the A4 integrates out over the w, coordinates to leave a dependence on
(a subset of) the wg\ 4 coordinates.

Assume Z,(wg\4) < oo for each w € . At the risk of some unforeseen
complications, I will not assume that Z, is everywhere strictly positive.
However, for the purposes of Stat 606, you could safely restrict yourself to
the case where Z4(ws\4) > O for every w.
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Define probability measures Qg 4(- | ws\4) on B for each A € S and
each ws\A € QS\A for which ZA(CL)S\A) 75 0 by

Os\alf | ws\a) = A f (@i, 05\4)G a(@a, @n(a)) for f € H.

Z p(ws\4)
Here the wg\ 4 fixes both the wy4) coordinates for G4 and some of the coordi-
nates for f. The A4 integrates out over the w4 coordinates. If Z4(wgs\4) =0,
define Qs a(- | ws\4) to be the zero measure.

REMARK. If feLp then Os\a(f | ws\a) depends on w only through
the coordinates w; for i € (D\A) UN(A).

We could regard Qg\4 as a linear map from H into L\ 4, in which case it
would be natural to omit the explicit wg\4 and write just Qg4 f.

<2> Lemma. Suppose A,B € S with A C B. For each ws\p € Qgs\p the
following two properties hold.

(i) Os\plow : Za(ws\a) =0 | ws\g} =0
(ii) for each f € K,
Os\5(f | ws\) = O\ [Os\a (f (@4, wp\a, 05\8) | @s\4) | 05\58]

REMARK. On the right-hand side in (ii), the Qg 4 integrates over w,
with the coordinates wp\ 4, ws\p being fixed by wg 4. The Qg p then
integrates over wp\ 4 for fixed wg\p.

Proof. 'We have only to consider the case of a fixed wg\z for which Zg(wg\p)
is nonzero, for otherwise both assertions are trivially true.
Temporarily write N for N(A). Note that G g factorizes as

<3> Gp(w) = Ga(wa, woy)H(ws\4) where H(wgs\4) = l_[ W, (wq).
a€dB\IA
In fact, H depends only on coordinates w; for i € (B U N(B))\A.
Use the fact that A8 = A8\ @ A4 to write Zp times the left-hand side
of (i) as
AVIAAG A (4, wn) H (0s\ A Z a(054) = 0}
= AP Z 4 (w5\4) H (0s\ A){Z a(ws\4) = 0} = 0.
By virtue of (i), neither side of (ii) is changed if we replace f
by {Za(ws\a) # 0}f. Define
F(ws\a) = {Za(ws\4) # 0}0s\a (f | @s514)
Z 0
= @) 20546 04 om) f(@).
Za(ws\4)
Then
Zg(ws\p) x RHS of (ii) = A*\*A1G 4 (w4, o) H (05\4) F (051 4)
= A\ H (05 4) F (ws514) Z a(05\4)
= 2P\ H(ws\a){Za # 01" (G a(@a, o) f (@)
=1 Gp(@){Z4 # 0} f(®) by <3>
= ZB(CUS\B) x LHS of (11)

REMARK. Most of the theory depends on W only through the Qg4
measures, which are often referred to as a specification. See Georgii (1988,
page 16), for example.
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see Kolmogorov.pdf

4.

<4>

<5>

Existence of Gibbs measures

A probability measure P on B is said to be a Gibbs measure for the family W
if it has the Q’s from the previous Section as its conditional distributions, that
is, for every A in S and at least for f € K,

P(f | Fsva) = Osva (f | ws\a) ae. [P,
Equivalently,
]Pf = PQS\A (f | CUS\A) for all f e H.
The set of all Gibbs probability measures for a given W is denoted by G(W).

REMARK. Some authors would call Qg (- | ws\a) a regular conditional
distribution for P given F\ 4. In my opinion, it is a backward step to
express the conditioning properties of IP in terms of Kolmogorov conditional
expectations when we know that regular conditional distributions exist.

At an o for which Zp(wg\p) = 0, the conditional distribution Qg\p is the
zero measure and not a probability. This is of no major importance because,
from part (i) of Lemma <2>,

Plw : Zp(ws\p) =0} = POs\a{Za(ws\p) =0} =0

if P satisfies <4> for f = {Zp = 0}, for some A D D.

It is not completely obvious that Gibbs measures exist—that G(W¥) is
nonempty — for any particular W. At least when each X; is a finite set, it is very
easy to prove existence because (as a special case of the Kolmogorov extension
theorem) there is a one-to-one correspondence between probability measures
on B and increasing linear functionals P : L — R for which P1 = 1.

Theorem. Suppose each coordinate space X; is finite. Suppose also that
there exists an S-cover {A(n) : n € N} for which each of the sets F, :=
{a)S\A(n) S QS\A(n) . ZA(n) (Q)S\A(n)) > O} is nonempty. Then G(\I’) 75 @.

Proof. Define S(n) := S\ A(n). Let v, be any probability measure on B,
for which v, (F,) = 1. Define increasing linear functionals u, on L by

/‘Lnf = VnQS(n)(f | a)S(n))-

Note that u,1 =1 for every n because Qg (2 | wsyy) =1 for all wgy) € F,.
Identify p, with a point in the product space

K = Xyec[—mys, my] where ms := sup, | f(w)].

When equipped with its product topology (the weakest topology that makes
each coordinate map « — «(f) continuous), the space K is compact. The
sequence {i, : n € N} has a cluster point, P, in K.

It is easy to show that IP inherits from the w,’s the linearity and increasing
properties and that P1 = 1; by the Kolmogorov extension theorem, it corresponds
to a probability measure on B.

To establish the defining property <4> for a Gibbs measure, consider
first an f in some L4, with A € S, and an n so large that A(n) 2 A. From
Lemmma <2>,

sy (f | @sm) = sy [Osva (f | @s\4) | wsn] -
Integrate both sides with respect to v, to get
Mnf = n& where g(ws\a) = Os\a (f | @s\4) -

The function g depends on wg\4 only through the coordinates in N(A). Thus
g € L. Let n tend to infinity (along a subsequence) to deduce that P f = Pg.
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That is, the equality in <4> holds at least for f € L. An appeal to the
m-A-theorem for functions extends the equality to all f in H. The cluster
[0 point P is a Gibbs probability measure.

see lambda-space.pdf

5. Representation of Gibbs measures as mixtures

Suppose G(W) is nonempty. It follows directly from the defining property <4>
that G(¥) is convex. A Gibbs measure P is said to be an extremal element

of G(W) if it cannot be written as a proper convex combination of two other

Gibbs measures: if P = 6P + (1 —0)P, with 0 < 6 < 1 and P, P, € G(¥)

then we must have Py = P, = P. Write G, (W) for the set of extreme elements
of G(W). This Section will show that there is a very simple way to characterize
the extreme Gibbs measures and that, in an appropriate sense, G(¥) is the

Georgii (1988, Chapter 7) closed convex hull of G (W).
<6> Definition. The tail sigma-field on Q is defined as NyesTFs\a. Write i
for the set of all T-measurable functions in JH.

REMARK.  From the fact that Fs\4» 2 Fsp when A C B, it is easy to
see that if {A(n) : n € N} is an S-cover for S then T = N,enTF sy atn)-

<7> Lemma. Suppose P € G(V) and p is another probability measure on B that
is absolutely continuous with respect to P. Then w € G(WV) if and only if there
exists a T-measurable version of the density ¢ (w) = du/dP.

Proof. Suppose ¢ (w) is a T-measurable version of du/dP. Then for each
f eX and each A € S,

wf =Pof
=P (Qs514(¢(@) f (@) | ws14))
—P (¢ (@) Qs a(f(®) | wS\A)) because ¢ is also Jg\ 4-measurable
= uOs\a(f | ws\a).

It follows that u € G(W).

Conversely, suppose p is a Gibbs measure. Let S(n) := S\ A(n) for
some S-cover {A(n) : n € N}. The restriction of x to Fg(,) is dominated by the
restriction of P to Fg(,y. Let ¢, (wsm)) be an T, -measurable choice for the
corresponding density. For every n and f € H we have

Pfo=nf =ng where g(wsu) = Qsmy(f | ©sm)
=P, (wsmn) g (@sm)) because g is Jg(,)-measurable
=PQsw) (f (@)dn(@sum) | wsm) because ¢, is Fs(,-measurable
=Pfon.
It follows that ¢, = ¢ a.e. [IP] for each n and hence liminf, ¢, is a T-measurable

00 version of the density.

<8> Definition. A probability measure P on B is said to be trivial on T if PF
is either 0 or 1 for each F in TJ. Equivalently, P(f | Hyy) = Pf a.e. [[P] for
each f in H.

<9> Theorem. Suppose P € G(V).

(i) P € Gex (W) if and only if P is trivial on 7J.

(ii) If p € G(¥) and uF = PF for all F in T then u = IP, as measures
on B.
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<10>

(iii) If P, u € G (V) and P # p then the two measures are mutually
singular.

Proof. Suppose Fy € T with 0 < PFy < 1. Define u;(-) = P(- | F;), where
Fy = Q\Fy. Thatis, du;/dP = {w € F;}/PF;, a T-measurable function of w
for i =0, 1. By Lemma <7>, the p; are distinct (because woFop = 1= u;F)
Gibbs measures for which P = (PFy)uo + (PF;)u;. Thus P is not extremal.

Conversely, suppose P is trivial on T but P can be written as a convex
combination of two Gibbs measures, 0Py + (1 — 6)P;. Again by Lemma <7>,
there must exist J-measurable versions of the densities ¢; = dP; /dP. Triviality
implies ¢; = P¢; = 1 a.e. [P], ensuring that Py = P, = P. The Gibbs
measure P must be extremal.

For (ii), note that both v and P are absolutely continuous with respect to
the Gibbs measure Py = (u + P)/2. Let ¢ (w) be a T-measurable version of
the density du/dPy. For an f in H let F = Py(f | 7). Then

wf =Pop(w) f(w) = Pop(0) F(w)
= 3(u+P)(pF)
=uF because 4 =P on 7.

Similarly, Pf = PF. The equality uF = PF, for the integrals of the
J-measurable function F, then implies puf =Pf.

For (iii), the measures p and P must have different restrictions to 7.
That is, there exists some F € T such that uF < PF. As both measures are
extremal, we must have uF = 0 and PF = 1. That is, IP concentrates on F
and & concentrates on F°.

Theorem. Suppose each coordinate space X; is finite.
(i) There exists a set Qo € T for which PQy =1 for every P in G(V).

(i) There exists a collection {\, : w € Qy} C Gex (V) for which w +— A, f
is T-measurable and Pf = PA,, f for each f € H and each P € G(W¥).

Proof. Let S(n)) := S\ A(n) for a fixed S-cover {A(n) : N € N}. Finiteness
of each Qy4(,) implies that the vector space L ¢, is spanned by a finite
set of functions. Taking all rational combinations of the basis functions we
get a countable subset L; that is uniformly dense in L 4(,. The countable
set L° := U,enL; is uniformly dense in L.

Suppose u© € G and f € H. By the convergence theorem for reverse
martingales,

Osiy(f | wswy) = u(f | Fswy) = u(f 17 ae. [u]

Put another way, i gives measure one to the set

Q= {w e Q:limsup, Qs (f | @sw) = liminf, Q5o (f | wswm))}

and on 2y the limit A, := lim, Qs (f | wsu) exists and equals u(f | 7)
a.e. [u]. The sets

Q=2 ad Q:={0eQ:limsup, Qsum(Q | wsm) =1}
fekle
are both T-measurable and have p measure one, for each u € G.

Convergence of Qs (f | wsy) for each f in the uniformly dense set L£°
implies convergence for all f in L. For each w € 4, the functional A, as a
map from L to R, inherits linearity and the increasing property and 1,1 = 1.
We may extend A, to a probability measure on B.
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<11>

REMARK. Note: I am not asserting that lim, Qs (f | wsw)) exists for
every f in H. The operations needed to extend A, from L to H need not
commute with the limit operation that defines A, f for f € L.

For each f € L, each w € 1, and each A € S, Lemma <2> shows that
Ao f = 1lim, Qs (Os\a(f | ws\a) | @s())
=0 (Qs\a(f | ws\4)) because Os\af € L.

Thus A, € G for each w € Q.
Similarly, the equalities u(f | T) = A, f a.e. [u] for each f € L° extend
to L and then, by the usual sort of 7-A argument, to all f in J{. Consequently,

wf = ury f forall feHandall u e G

It remains only to show that A, € G¢ for u almost all w.
First we need to use L° to characterize the measures in Gg,. From
Theorem <9>, for a Gibbs measure pu,

u € Geyx iff Aof =pn(f|T)=punf ae. [pu]foreach f e H.
Uniform approximation followed by a w-A argument gives
{weQ:hpf =puf forall feXH}=Nsere{lwe Qi :hef=nfl
Define Fy(w) := {w € Q}A, f. For a fixed f, we have Fr(w) = uf ae. [u]
if and only if u (Fy(w) — uf)’ = 0. Thus
peGe iff  w(F—pf)*=0  forall fele.
Specializing to the case u = A/, we get
Q= {0 € Qi : Ay € Gor} = Npepe{o € Q) 1 12 (Fy(w) — Fr(0))’ =0}
=Nfecefo’ € Qi Ao F} = Fp(0)?}

The last representation shows that Q¢ € 7.
Finally, note that PQ2y = 1 if P € G because, for each f € L°,

P22 (Fy(w) — Fr (@) = PY28 Fr(@)? — PV Fy(o)?
=PF} —PF} =0

Thus Pf =P ({a) € Qoo f ) is a representation of PP as a mixture of extremal
Gibbs measures.

REMARK.  Equip G with the smallest sigma-field G for which each of
the maps u — uf, for f € H, is G\B(R)-measurable. Then G, € G and
l:w— A, is a T\G-measurable map from  into G.,. The image of a
Gibbs measure PP under the map ¢ is a probability measure 7 on G,. We
could think of IP as a 7 average over G,.

Uniqueness? cf Gheorghii p. 132.
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