
Chapter

Gibbs measures

This Chapter contains a simplified account of some theory for Gibbs
measures, which I learned from the very thorough monograph by
Georgii (1988) with a little help from the gentler exposition by
Kindermann & Snell (1980).

1. Notation

• Let S be a countably infinite index set of sites. For each i in S, suppose
Xi is a set equippped with a sigma-field Bi . For each A ⊆ S write
�A for Xi∈A Xi . Equip �A with its product sigma-field BA = ⊗

i∈A Bi .
Abbreviate �S to � and BS to B.

• Write ωA = (ωi : i ∈ A) for both the generic point of �A and for the
coordinate projection of a generic ω in � onto �A.

• By definition, B is the smallest sigma-field on � for which each coordinate
projection ω �→ ωi is B\Bi -measurable. Consequently, for each A ⊆ S, the
projection map ω �→ ωA is B\BA-measurable. Write FA for the smallest
sigma-field on � for which the map ω �→ ωA is FA\BA-measurable. Each
set in FA is of the form B × �S\A with B ∈ BA.

• Write S for the set of all finite, nonempty subsets of S.
• Let H denote the set of all bounded, real-valued, B-measurable functions

on �. For A ⊆ S define

LA = { f ∈ H : f depends on ω only through the coordinates ωA }
That is, f ∈ LA if and only if f (ω) = g(ωA) for some bounded,
BA\B(R)-measurable function g on �A. The functions in LA generate a
sigma-field FA on �. Write L for ∪A∈SLA, the set of all functions in H

that depend on ω only through some finite subset of coordinates. If f ∈ L,
write S( f ) for the smallest A such that f ∈ LA.

• Call a sequence {A(n) : n ∈ N} ⊂ S an S-cover for S if A(n) ↑ S as
n → ∞.

2. A cautionary example

Ignore this Section.

We will be building Gibbs measures from a collection of desired conditional
distributions. As you saw in Chapter MRF, it is not a completely trivial task to
find Markov kernels that have the consistency properties required for conditional
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distributions. For a finite S, the construction of a Gibbs measure via a density (defined
by a family � of nonnegative functions) guarantees the necessary consistency. We
cannot follow exactly the same route when S is infinite, because it is not always
possible to define a joint density for ωS by taking an infinite product of � functions.

<1> Example. Suppose Xi = {0, 1} and λi is the uniform distribution on Xi , for
every i ∈ S = N. Suppose F = {{i, i + 1} : i ∈ S} andbetter example needed

�{i,i+1} = 2{ωi = ωi+1} + {ωi 
= ωi+1}.
The product measure λS = ⊗i∈Sλ

i is well defined. We might hope to construct P by
defining

dP

dλS
(ωS) = 1

Z

∏
i∈S

�{i,i+1}(ωi , ωi+1)

where Z = λS
∏

i∈S �{i,i+1}(ωi , ωi+1).

Unfortunately,

Z ≥
∏

j∈N
λ ⊗ λ�{2 j,2 j+1}(ω2 j , ω2 j+1) =

∏
j∈N

(
1
2 × 2 + 1

2 × 1
) = ∞

We would end up with ∞/∞.�

3. Consistent sets of conditional distributions

For each i in S, suppose λi is a sigma-finite measure on Bi . For each A in S,
write λA for the product measure

⊗
i∈A λi on BA.

For some index set F ⊆ S, suppose � := {�a : a ∈ F} is a collection of
nonnegative, B-measurable functions on � for which �a depends on ω only
through the coordinates ωa .

Some important features of � are captured by its factor graph, which has
a node for each site i in S and a node for each factor a in F, with i connected
to a if and only if i is one of the sites in a. For each A ⊆ S define

∂ A := {a ∈ F : A ∩ a 
= ∅}
N(A) := { j ∈ S\A : j ∈ a for some a in ∂ A }

To avoid problems with infinite products, I will assume that both ∂ A
and N(A) are finite if A ∈ S. For each such A define

G A(ω) =
∏

a∈∂ A
�a(ωa).

Sometimes I will write G(ωA, ωN(A)) to emphasize the fact that G A depends
on ω only through the coordinates ωi for i ∈ A ∪ N(A). Similarly, define

Z A(ωS\A) = Z A(ωN(A)) := λAG A(ωA, ωN(A)),

where the λA integrates out over the ωA coordinates to leave a dependence on
(a subset of) the ωS\A coordinates.

Assume Z A(ωS\A) < ∞ for each ω ∈ �. At the risk of some unforeseen
complications, I will not assume that Z A is everywhere strictly positive.
However, for the purposes of Stat 606, you could safely restrict yourself to
the case where Z A(ωS\A) > 0 for every ω.
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Define probability measures QS\A(· | ωS\A) on B for each A ∈ S and
each ωS\A ∈ �S\A for which Z A(ωS\A) 
= 0 by

QS\A( f | ωS\A) = 1

Z A(ωS\A)
λA f (ωA, ωS\A)G A(ωA, ωN(A)) for f ∈ H.

Here the ωS\A fixes both the ωN(A) coordinates for G A and some of the coordi-
nates for f . The λA integrates out over the ωA coordinates. If Z A(ωS\A) = 0,
define QS\A(· | ωS\A) to be the zero measure.

Remark. If f ∈ LD then QS\A( f | ωS\A) depends on ω only through
the coordinates ωi for i ∈ (D\A) ∪ N(A).

We could regard QS\A as a linear map from H into LS\A, in which case it
would be natural to omit the explicit ωS\A and write just QS\A f .

<2> Lemma. Suppose A, B ∈ S with A ⊆ B. For each ωS\B ∈ �S\B the
following two properties hold.

(i) QS\B{ω : Z A(ωS\A) = 0 | ωS\B} = 0

(ii) for each f ∈ H,

QS\B( f | ωS\B) = QS\B
[
QS\A

(
f (ωA, ωB\A, ωS\B) | ωS\A

) | ωS\B
]

Remark. On the right-hand side in (ii), the QS\A integrates over ωA

with the coordinates ωB\A, ωS\B being fixed by ωS\A. The QS\B then
integrates over ωB\A for fixed ωS\B .

Proof. We have only to consider the case of a fixed ωS\B for which Z B(ωS\B)

is nonzero, for otherwise both assertions are trivially true.
Temporarily write N for N(A). Note that G B factorizes as

<3> G B(ω) = G A(ωA, ωN )H(ωS\A) where H(ωS\A) =
∏

a∈∂ B\∂ A

�a(ωa).

In fact, H depends only on coordinates ωi for i ∈ (B ∪ N(B))\A.
Use the fact that λB = λB\A ⊗ λA to write Z B times the left-hand side

of (i) as

λB\AλAG A(ωA, ωN )H(ωS\A){Z A(ωS\A) = 0}
= λB\A Z A(ωS\A)H(ωS\A){Z A(ωS\A) = 0} = 0.

By virtue of (i), neither side of (ii) is changed if we replace f
by {Z A(ωS\A) 
= 0} f . Define

F(ωS\A) = {Z A(ωS\A) 
= 0}QS\A
(

f | ωS\A
)

= {Z A(ωS\A) 
= 0}
Z A(ωS\A)

λAG A(ωA, ωN ) f (ω).

Then

Z B(ωS\B) × RHS of (ii) = λB\AλAG A(ωA, ωN )H(ωS\A)F(ωS\A)

= λB\A H(ωS\A)F(ωS\A)Z A(ωS\A)

= λB\A H(ωS\A){Z A 
= 0}λA
(
G A(ωA, ωN ) f (ω)

)
= λB G B(ω){Z A 
= 0} f (ω) by <3>

= Z B(ωS\B) × LHS of (ii).

�
Remark. Most of the theory depends on � only through the QS\A

measures, which are often referred to as a specification. See Georgii (1988,
page 16), for example.
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4. Existence of Gibbs measures

A probability measure P on B is said to be a Gibbs measure for the family �

if it has the Q’s from the previous Section as its conditional distributions, that
is, for every A in S and at least for f ∈ H,

P( f | FS\A) = QS\A
(

f | ωS\A
)

a.e. [P],

Equivalently,

<4> P f = PQS\A
(

f | ωS\A
)

for all f ∈ H.

The set of all Gibbs probability measures for a given � is denoted by G(�).

Remark. Some authors would call QS\A(· | ωS\A) a regular conditional
distribution for P given FS\A. In my opinion, it is a backward step to
express the conditioning properties of P in terms of Kolmogorov conditional
expectations when we know that regular conditional distributions exist.

At an ω for which Z D(ωS\D) = 0, the conditional distribution QS\D is the
zero measure and not a probability. This is of no major importance because,
from part (i) of Lemma <2>,

P{ω : Z D(ωS\D) = 0} = PQS\A{Z A(ωS\D) = 0} = 0

if P satisfies <4> for f = {Z D = 0}, for some A ⊇ D.
It is not completely obvious that Gibbs measures exist—that G(�) is

nonempty—for any particular �. At least when each Xi is a finite set, it is very
easy to prove existence because (as a special case of the Kolmogorov extensionsee Kolmogorov.pdf
theorem) there is a one-to-one correspondence between probability measures
on B and increasing linear functionals P : L → R for which P1 = 1.

<5> Theorem. Suppose each coordinate space Xi is finite. Suppose also that
there exists an S-cover {A(n) : n ∈ N} for which each of the sets Fn :=
{ωS\A(n) ∈ �S\A(n) : Z A(n)(ωS\A(n)) > 0} is nonempty. Then G(�) 
= ∅.

Proof. Define S(n) := S\A(n). Let νn be any probability measure on BS(n)

for which νn(Fn) = 1. Define increasing linear functionals µn on L by

µn f := νn QS(n)( f | ωS(n)).

Note that µn1 = 1 for every n because QS(n)(� | ωS(n)) = 1 for all ωS(n) ∈ Fn .
Identify µn with a point in the product space

K = X f ∈L[−m f , m f ] where m f := supω | f (ω)|.
When equipped with its product topology (the weakest topology that makes
each coordinate map κ �→ κ( f ) continuous), the space K is compact. The
sequence {µn : n ∈ N} has a cluster point, P, in K.

It is easy to show that P inherits from the µn’s the linearity and increasing
properties and that P1 = 1; by the Kolmogorov extension theorem, it corresponds
to a probability measure on B.

To establish the defining property <4> for a Gibbs measure, consider
first an f in some LA, with A ∈ S, and an n so large that A(n) ⊇ A. From
Lemmma <2>,

QS(n)( f | ωS(n)) = QS(n)

[
QS\A

(
f | ωS\A

) | ωS(n)

]
.

Integrate both sides with respect to νn to get

µn f = µng where g(ωS\A) = QS\A
(

f | ωS\A
)
.

The function g depends on ωS\A only through the coordinates in N(A). Thus
g ∈ L. Let n tend to infinity (along a subsequence) to deduce that P f = Pg.
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That is, the equality in <4> holds at least for f ∈ L. An appeal to the
π -λ-theorem for functions extends the equality to all f in H. The clustersee lambda-space.pdf
point P is a Gibbs probability measure.�

5. Representation of Gibbs measures as mixtures

Suppose G(�) is nonempty. It follows directly from the defining property <4>

that G(�) is convex. A Gibbs measure P is said to be an extremal element
of G(�) if it cannot be written as a proper convex combination of two other
Gibbs measures: if P = θP1 + (1 − θ)P2 with 0 < θ < 1 and P1, P2 ∈ G(�)

then we must have P1 = P2 = P. Write Gex(�) for the set of extreme elements
of G(�). This Section will show that there is a very simple way to characterize
the extreme Gibbs measures and that, in an appropriate sense, G(�) is the
closed convex hull of Gex(�).Georgii (1988, Chapter 7)

<6> Definition. The tail sigma-field on � is defined as ∩A∈SFS\A. Write Htail

for the set of all T-measurable functions in H.

Remark. From the fact that FS\A ⊇ FS\B when A ⊆ B, it is easy to
see that if {A(n) : n ∈ N} is an S-cover for S then T = ∩n∈NFS\A(n).

<7> Lemma. Suppose P ∈ G(�) and µ is another probability measure on B that
is absolutely continuous with respect to P. Then µ ∈ G(�) if and only if there
exists a T-measurable version of the density φ(ω) = dµ/dP.

Proof. Suppose φ(ω) is a T-measurable version of dµ/dP. Then for each
f ∈ H and each A ∈ S,

µ f = Pφ f

= P
(
QS\A(φ(ω) f (ω) | ωS\A)

)
= P

(
φ(ω)QS\A( f (ω) | ωS\A)

)
because φ is also FS\A-measurable

= µQS\A( f | ωS\A).

It follows that µ ∈ G(�).
Conversely, suppose µ is a Gibbs measure. Let S(n) := S\A(n) for

some S-cover {A(n) : n ∈ N}. The restriction of µ to FS(n) is dominated by the
restriction of P to FS(n). Let φn(ωS(n)) be an FS(n)-measurable choice for the
corresponding density. For every n and f ∈ H we have

P f φ = µ f = µg where g(ωS(n)) = QS(n)( f | ωS(n))

= Pφn(ωS(n))g(ωS(n)) because g is FS(n)-measurable

= PQS(n)

(
f (ω)φn(ωS(n)) | ωS(n)

)
because φn is FS(n)-measurable

= P f φn.

It follows that φn = φ a.e. [P] for each n and hence lim infn φn is a T-measurable
version of the density.�

<8> Definition. A probability measure P on B is said to be trivial on T if PF
is either 0 or 1 for each F in T. Equivalently, P( f | Htail) = P f a.e. [P] for
each f in H.

<9> Theorem. Suppose P ∈ G(�).
(i) P ∈ Gex(�) if and only if P is trivial on T.

(ii) If µ ∈ G(�) and µF = PF for all F in T then µ = P, as measures
on B.
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(iii) If P, µ ∈ Gex(�) and P 
= µ then the two measures are mutually
singular.

Proof. Suppose F0 ∈ T with 0 < PF0 < 1. Define µi (·) = P(· | Fi ), where
F1 = �\F0. That is, dµi/dP = {ω ∈ Fi }/PFi , a T-measurable function of ω

for i = 0, 1. By Lemma <7>, the µi are distinct (because µ0 F0 = 1 = µ1 F1)
Gibbs measures for which P = (PF0)µ0 + (PF1)µ1. Thus P is not extremal.

Conversely, suppose P is trivial on T but P can be written as a convex
combination of two Gibbs measures, θP0 + (1 − θ)P1. Again by Lemma <7>,
there must exist T-measurable versions of the densities φi = dPi/dP. Triviality
implies φi = Pφi = 1 a.e. [P], ensuring that P0 = P1 = P. The Gibbs
measure P must be extremal.

For (ii), note that both µ and P are absolutely continuous with respect to
the Gibbs measure P0 = (µ + P)/2. Let φ(ω) be a T-measurable version of
the density dµ/dP0. For an f in H let F = P0( f | T). Then

µ f = P0φ(ω) f (ω) = P0φ(ω)F(ω)

= 1
2 (µ + P)(φF)

= µF because µ = P on T.

Similarly, P f = PF . The equality µF = PF , for the integrals of the
T-measurable function F , then implies µ f = P f .

For (iii), the measures µ and P must have different restrictions to T.
That is, there exists some F ∈ T such that µF < PF . As both measures are
extremal, we must have µF = 0 and PF = 1. That is, P concentrates on F
and µ concentrates on Fc.�

<10> Theorem. Suppose each coordinate space Xi is finite.
(i) There exists a set �0 ∈ T for which P�0 = 1 for every P in G(�).

(ii) There exists a collection {λω : ω ∈ �0} ⊆ Gex(�) for which ω �→ λω f
is T-measurable and P f = Pλω f for each f ∈ H and each P ∈ G(�).

Proof. Let S(n)) := S\A(n) for a fixed S-cover {A(n) : N ∈ N}. Finiteness
of each �A(n) implies that the vector space LA(n) is spanned by a finite
set of functions. Taking all rational combinations of the basis functions we
get a countable subset L◦

n that is uniformly dense in LA(n). The countable
set L◦ := ∪n∈NL◦

n is uniformly dense in L.
Suppose µ ∈ G and f ∈ H. By the convergence theorem for reverse

martingales,

QS(n)( f | ωS(n)) = µ( f | FS(n)) → µ( f | T) a.e. [µ]

Put another way, µ gives measure one to the set

� f := {ω ∈ � : lim supn QS(n)( f | ωS(n)) = lim infn QS(n)( f | ωS(n))}
and on � f the limit λω := limn QS(n)( f | ωS(n)) exists and equals µ( f | T)

a.e. [µ]. The sets

�2 :=
⋂
f ∈L◦

� f and �1 := {ω ∈ �2 : lim supn QS(n)(� | ωS(n)) = 1}

are both T-measurable and have µ measure one, for each µ ∈ G.
Convergence of QS(n)( f | ωS(n)) for each f in the uniformly dense set L◦

implies convergence for all f in L. For each ω ∈ �1, the functional λω, as a
map from L to R, inherits linearity and the increasing property and λω1 = 1.
We may extend λω to a probability measure on B.
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Remark. Note: I am not asserting that limn QS(n)( f | ωS(n)) exists for
every f in H. The operations needed to extend λω from L to H need not
commute with the limit operation that defines λω f for f ∈ L.

For each f ∈ L, each ω ∈ �1, and each A ∈ S, Lemma <2> shows that

λω f = limn QS(n)

(
QS\A( f | ωS\A) | ωS(n)

)
= λω

(
QS\A( f | ωS\A)

)
because QS\A f ∈ L.

Thus λω ∈ G for each ω ∈ �0.
Similarly, the equalities µ( f | T) = λω f a.e. [µ] for each f ∈ L◦ extend

to L and then, by the usual sort of π -λ argument, to all f in H. Consequently,

µ f = µωλω f for all f ∈ H and all µ ∈ G

It remains only to show that λω ∈ Gex for µ almost all ω.
First we need to use L◦ to characterize the measures in Gex. From

Theorem <9>, for a Gibbs measure µ,

µ ∈ Gex iff λω f = µ( f | T) = µ f a.e. [µ] for each f ∈ H.

Uniform approximation followed by a π -λ argument gives

{ω ∈ �1 : λω f = µ f for all f ∈ H} = ∩ f ∈L◦ {ω ∈ �1 : λω f = µ f }.
Define Ff (ω) := {ω ∈ �1}λω f . For a fixed f , we have Ff (ω) = µ f a.e. [µ]

if and only if µ
(
Ff (ω) − µ f

)2 = 0. Thus

<11> µ ∈ Gex iff µ(Ff − µ f )2 = 0 for all f ∈ L◦.

Specializing to the case µ = λω′ , we get

�0 := {ω′ ∈ �1 : λω′ ∈ Gex} = ∩ f ∈L◦ {ω′ ∈ �1 : λω
ω′

(
Ff (ω) − Ff (ω

′)
)2 = 0}

= ∩ f ∈L◦ {ω′ ∈ �1 : λω′ F2
f = Ff (ω

′)2}
The last representation shows that �0 ∈ T.

Finally, note that P�0 = 1 if P ∈ G because, for each f ∈ L◦,

P
ω′

λω
ω′

(
Ff (ω) − Ff (ω

′)
)2 = P

ω′
λω

ω′ Ff (ω)2 − P
ω′

Ff (ω
′)2

= PF2
f − PF2

f = 0

Thus P f = P
ω

({ω ∈ �0}λω f
)

is a representation of P as a mixture of extremal
Gibbs measures.�

Remark. Equip G with the smallest sigma-field G for which each of
the maps µ �→ µ f , for f ∈ H, is G\B(R)-measurable. Then Gex ∈ G and
� : ω → λω is a T\G-measurable map from �0 into Gex. The image of a
Gibbs measure P under the map � is a probability measure π on Gex. We
could think of P as a π average over Gex.

Uniqueness? cf Gheorghii p. 132.
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