
Chapter

Griffiths’s inequalities

Let λ denote the uniform distribution on the product space � = {−1, +1}S ,
for some finite set S. For each subset a of S define φa(ω) = φa(ωa) = ∏

i∈a ωi .
When a is the empty set, the corresponding φa is identically 1. Note that
φa(ω)φb(ω) = φa�b(ω), where a�b denotes the symmetric difference of a
and b.

Let F denote the set of all nonempty subsets of S. For each t in R
F define

H(ω, t) =
∑

a∈F
taφa(ω).

Define probability measures Pt , for t ∈ R
F, by

dPt

dλ
= exp

(
H(ω, t)

)
M(t)

where M(t) := λ exp
(
H(ω, t)

)
Recall (see Pollard 2001, Problem C.2, for example) that the function

L(t) = log M(t) is convex, with

∂

∂ta
L(t) = Ptφa(ω)

∂2

∂tb∂ta
L(t) = covt (φa, φb) = Pt

(
φa(ω)φb(ω)

) − Ptφa(ω)Pφb(ω)

Consequently, ∂Ptφa/∂tb = covt (φa, φb).

<1> Theorem. If ta ≥ 0 for all a ∈ F then
(i) Ptφa ≥ 0 for all a ∈ F

(ii) for all a, b ∈ F,
∂

∂tb
Ptφa = covt (φa, φb) ≥ 0

Proof. For all sets of integers {ka : a ∈ F}, note that

<2> λ
∏
a∈F

φa(ωa)
ka = λ

∏
i∈S

ω
�i
i =

{
1 if �i is even for all i
0 otherwise

,

where �i = ∑
a{i ∈ a}ka .

For (i), note that

M(t)Ptφa =
∞∑

n=0

λφa(ω)
H(ω, t)n

n!

The nth summand expands to a sum of terms like

n!∏
b∈F

kb!
λφa

∏
b∈F

t kb
b φb(ω)kb

where the kb are nonnegative integers summing to n. By <2>, each such
summand is nonnegative if all tb are nonnegative.
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For (ii), first note that, for every function f on � × �,

λωλω′
f (ω, ω′) = λωλω′

f (ω, ω̃) where ω̃i := ωiω
′
i for each i

because ω̃ is uniformly distributed on � independently of ω under λ ⊗ λ. Note
also that φd(ω̃) = φd(ω)φd(ω

′) for all d ∈ F. Thus

M(t)2covt (φa, φb)

= λωλω′ (
φa(ω)φb(ω) − φa(ω)φb(ω̃)

)
exp

(
H(ω, t) + H(ω̃, t)

)
= λωλω′

φa(ω)φb(ω)[1 − φb(ω
′)] exp

( ∑
d∈F

tdφd(ω)[1 + φd(ω
′)]

)
= λω′

[1 − φb(ω
′)]λωφa�b(ω) exp

(
H(ω, t̃

)
where t̃d = td [1 + φd(ω

′)].

Note that 1 ± φd(ω
′) ≥ 0 for all d and all ω′. The assertion of part (i), applied

with t̃ replacing t shows that

λωφa�b(ω) exp(H(ω, t̃ ) ≥ 0 for all ω′.

Assertion (ii) follows.�

1. Notes

The inequalities are originally due to Griffiths (1967). The proof comes from
Ginibre (1969) via the exposition of Liggett (1985, Section IV.1).
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