THE TWO-DIMENSIONAL ISING MODEL
The model has S = Z? as its set of sites, with F = {{i, j} € S x § :
lit — jil + |i2 — jo| = 1}. For each i, the dominating Al is counting measure
on X; = {—1, +1}.
For each A € S define ¢4 (w) = [[;., wi. The set of Gibbs measures G(8)
is defined by the functions

Yy (@) = exp(BPy(wq)) foraelF

As the positive parameter 8 changes, the form of G(8) changes dramatically.
In this handout I will explain some of the facts established in the literature.
For what follows, I will mostly choose A(n) to be the ‘square’

{G1,12) € § :max(|iy], li2]) < n},

writing, as usual, S(n) for S\A(n) and N (n) for N(A(n)).
The Gibbs measures in G(8) are defined to have the discrete conditional
distributions Qs 4 (- | ws\4) defined by

Os\a.p(f(wa, ws\a) | ws\4)

~ Zag(onay)

A f (@4, ws\a) €Xp (,3 Z ba (w))

acdA

where Z 4 g(wn(4)) is a normalizing constant. If f depends only on w, then
only the components of wg\4 for sites in N(A) are needed to define the
integral. For that case, I will abuse notation by writing Qs a(f(@a) | @Na))-
In particular, the measure Qs 4,(- | wn(4)) puts mass

exp (/3 ZaeaA ba (a)))
Z 5,p(wx(4))

at wy.

(§ising] 1. Things I can prove

e A real function on Q := [],.¢ X; is said to be increasing if it is increasing
in each argument.

(i) There exist two extremal measures, Pg 1, Pg _, in G(B) for which
Pe_f <uf <Pgif for all u € G(B), all increasing f € L
[In fact, these are the only extremal Gibbs measures but I can’t prove
that. See Aizenman (1980).]
(ii) Both Psz . and Ps _ are translation invariant.
B.+ B
(iii) Pg,— = Pg 4 if and only if Pg L wo = 0.
(iv) There exists some critical value 8. € (0, co) such that
Pg_ =P for0<p <pe
Ps_ #Pss for > fe
[If T understood Aizenman’s proof I could also show that G(B) is a
one-parameter family, {§Pg _ + (1 —0)Pg 1 : 0 <6 < 1} for B > B..]

[§dobrushin] 2.  Uniqueness for small g

Use the Dobrushin uniqueness condition to show that there is only one Gibbs
measure if B is close enough to zero.

31 March 2006 Stat606, version: 27mar06 (©)David Pollard E




[Sextremal]

fixedA

Compare with Liggett 1985,
page 188.
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Two extremal Gibbs measures

Each p in G(B) can be generated as a cluster point of a sequence of functionals
Mn =V, Osm),p(- | wsmy) on L, for probability measures v, on Fs,).

REMARK. In one sense the assertion about cluster points is trivially
true: by definition of a Gibbs measure, u, equals u if we take v, to be the
restriction of w to Fse.

For each fixed f in £, when the support of f is a subset of A(n) the
value p, f is completely determined by the restriction of v, to Fy,). That is,
we have only to specify the distribution over the ‘boundary values’ wy, to
determine p, f for such an f.

The measures Pg _ and Pg , are determined by the extreme boundary
conditions: @,, which denotes the configuration of wy(, with w; = +1 for
all i € N(n); and ©,, which denotes the configuration of wy(,) with w; = —1
for all i € N(n).

Use the Peierls argument to prove existence of the two distinct Gibbs
measures when f is large enough: show that Pg _{wy = +1} < 1/3 and
Pg,+{wo = +1} > 2/3 is B is large enough.

At the moment the notation is misleadingly specific because I have not
yet shown that the cluster points are unique. The next Lemma will help me to
establish convergence by means of a monotonicity property of the Q’s.

Lemma. For a fixed finite subset A of Z?, let b and b* be two possible
boundary conditions for which b < b*, that is, b; < b}k for all j € N(A). Let f
be an increasing function on 24. Then

Os\ap (f(@a) | b) < Os\ap (f(wa) | bY)
Proof.  For simplicity of notation, if x € 4 define
p(x) = Os\ap (wa =x | b) and  p*(x) = Os\ap (w4 =x|b%).
By Holley’s inequality, it is enough if we show that
p)p*(y) = px Ay)p*(xvy)  forallx,ye Qu.

Equivalently, we need to show

D (@alx VY, b = daly, b) + Gu(x A ¥, b) — ¢ulx, b)) = 0

acdA

In fact, it is not hard to show that each summand is nonnegative.
Consider first the case where a = {i, j} with both i and j in A. Define

ui = (x; —y)* and uj = (xj —y)"*
Vi =X AYi and v =Xj Ay
Use the identities
sVt=t+(—1" and s=@GE -0 +sAt forall s, € R
to rewrite the ath summand in <2> as
i 4 i) (v +uj) = yiy; + vivy — @i + ) (4 + vy)
= UpYj T Ujyp — Vilkj — vl
=ui(y; — ;) +uj(yi —vi)
>0 because t — s At > 0 for all s, ¢.
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cf. Kindermann & Snell (1980,
page 129)

squish <7>

For the case where a = {i, j} withi € A and j € N(A), the ath summand
of <2> becomes

(i V yi)b; — yib; + (xi A yi)bj — xib;
=(yi +u;)bj — yib; +vib; — (u; + v;)b;
=u;(b; —bj) =0

Consider a fixed increasing function f in £L,. When n is large enough
that A C A(n), the Lemma shows that for all wy ),

Osip (f160) < Qsmp (f 1 onvin) < Qsvap (f | ®n)

If u € G(B) we have uf = uQswm.p (f | wnw)- It follows, for all n large
enough, that

Osw.p (f 1©n) < f < Qs p (f | ®n)-
The consistency condition for the Q’s gives an even better inequality:
sty (f | ®ut1) = Osurt) (Qsiy (f | ©nwy) | But1)
< Osm(f | ®n)
Thus
Osiy(f 1 @) | P4 f for each increasing f in L.
Similarly,
Osimy(f16w) 1t Pg_f for each increasing f in L.
In the limit we have
Pg_f<uf <Pg.f for each increasing f in L.
Lemma. The increasing functions in L4 span L 4.
Proof. Note that
ww;j=1+w)1+w)—1-0 —w;,

a representation of w;w; as a linear combination of increasing functions.
Similarly,

wiwjor = (1 + ;) (1 + w;)(1 + o)
— 1l —w; — 0 — o — W — W — ;.

And so on.

Thus @ := {¢p : D C A} is contained in the linear span. Finish the
argument by noting that @ is an orthonormal basis for £, under the uniform
distribution on Q4.

Corollary. The measures Pg_ and Pg . are the same if and only if
Pg,_ f =g+ f for each increasing f in L.

From <4>, <3>, and Lemma <6>, we get

Osiy(f | ®n) = Ppyf for each f € L

That is, P 4 is not just a cluster points of the Qg (- | ®,) functionals, it is
actually a limit. A similar assertion holds for Pg _.

The inequalities in <5> establish the extremality of both Pg _ and Pg
in G(B). For example, suppose we have Pg _ = 01 +(1—60)u, with0 < 6 < 1
and both u; in G(B). Then <5>, applied to each u;, forces Pg _ f = u; f for
all increasing f in L. That is, Pg _ is extremal.
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Inequalities <5> would also show that both extremal measures are
translation invariant. Indeed, we could repeat the construction for the measures
with A(n) replaced by a square centered at another site, say s. We would then
get another pair of extremal measures for which, for all u € G(8),

If”,g,,f <uf < If"tHf for each increasing f in L.

In fact ]f”ﬂA_ would be the image of Pg ;. under the translation map on S that
takes O to s. An appeal to <5> with p equal to Pg , followed by an appeal
to <8> with u equal to Py, would then give Pg = Pg . And so on.

Monotonicity in g

There is a unique Gibbs measure in G(f) if and only if Pg_ = Pg . We know
that
Ps_f <Ppif for each increasing f in L.

The next Lemma will show that the two measures are equal if and only if
Pg,_w; = Pg yw; for each i € §. By translation invariance, it is enough to
check this equality for a single site, such as the origin. That is, Pg _ = Pg  if
and only if Pg _wy = Pg ;wp. By symmetry,
P {wo = +1} =Pp {wo = =1} =1 - Pp _{wy = +1}

The two extremal measures are the same precisely when Pg | {wy = +1} = 1/2,
that is, when IPg Lo = 0.

Griffiths’s inequality shows that Qg g(wo | @,) is an increasing function
of B for each n. In the limit, P wy must also be an increasing function

of B. The set {8 > 0 : Pg ywy > 0} must be an interval of the form [B., co)
or (B., 00), for some positive B..

Lemma. Suppose P and Q are probability measures on 2, for which
Pf < Qf, for each increasing function f on Q4. Then P = Q if and only if
Pw; = Quw; for eachi € A.

Proof. Necessity is trivial.

Suppose D is a nonempty subset of A. For convenience suppose the sites
in D are wy, ..., w;. Invoke the inequalities for f(w,4) equal to w; V w, and
then equal to w; A w, to get

Pwi+Pw; = P(wiAw2)+P(wVwy) < Q(wiAwy)+ 0 (w1 Vwr) = Qi+ Qw;

The equality Pw; + Pw; = Qw; + Qw, then forces P(w) A wp) = Q(w A wn).
Similarly

P(wy A wp) + Pw; = P(w; /\a)g/\w3)+P((a)1 /\a)z)\/a)3)
< Qw1 Ay Aw3) + O (w1 Aw) V w3)
= Q(w1 A w) + Qws,

which forces P(w; A wy A w3) = Q(wy A wy A w3). And so on.
Thus we have

Pyp = 3P(1+mine;) = 30(1 + mine;) = Qyp

for each D C A. An appeal to a m—A theorem then gives P = Q, as measures
on 4.
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[§notes]

.5 Notes

5. Notes

See Kindermann & Snell (1980, Appendix 1) for calculations with the Ising
model. See Georgii (1988, Chapter 6) for a detailed, rigorous analysis of
the Ising model. See Lebowitz & Martin-Lof (1972) or Ruelle (1972) for a
characterization of the f. value at which phase transition begins.
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