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The two-dimensional Ising model

The model has S = Z
2 as its set of sites, with F = {{i, j} ∈ S × S :

|i1 − j1| + |i2 − j2| = 1}. For each i , the dominating λi is counting measure
on Xi = {−1, +1}.

For each A ∈ S define φA(ω) = ∏
i∈A ωi . The set of Gibbs measures G(β)

is defined by the functions

ψa(ω) = exp(βφa(ωa)) for a ∈ F

As the positive parameter β changes, the form of G(β) changes dramatically.
In this handout I will explain some of the facts established in the literature.

For what follows, I will mostly choose A(n) to be the ‘square’

{(i1, i2) ∈ S : max(|i1|, |i2|) ≤ n},
writing, as usual, S(n) for S\A(n) and N (n) for N(A(n)).

The Gibbs measures in G(β) are defined to have the discrete conditional
distributions QS\A,β(· | ωS\A) defined by

QS\A,β( f (ωA, ωS\A) | ωS\A)

= 1

Z A,β(ωN(A))
λA f (ωA, ωS\A) exp

(
β

∑
a∈∂ A

φa(ω)

)

where Z A,β(ωN(A)) is a normalizing constant. If f depends only on ωA then
only the components of ωS\A for sites in N(A) are needed to define the
integral. For that case, I will abuse notation by writing QS\A( f (ωA) | ωN(A)).
In particular, the measure QS\A,β(· | ωN(A)) puts mass

exp
(
β

∑
a∈∂ A φa(ω)

)
Z A,β(ωN(A))

at ωA.

[§ising] 1. Things I can prove

• A real function on � := ∏
i∈S Xi is said to be increasing if it is increasing

in each argument.

(i) There exist two extremal measures, Pβ,+, Pβ,−, in G(β) for which

Pβ,− f ≤ µ f ≤ Pβ,+ f for all µ ∈ G(β), all increasing f ∈ L

[In fact, these are the only extremal Gibbs measures but I can’t prove
that. See Aizenman (1980).]

(ii) Both Pβ,+ and Pβ,− are translation invariant.

(iii) Pβ,− = Pβ,+ if and only if Pβ,+ω0 = 0.

(iv) There exists some critical value βc ∈ (0, ∞) such that{
Pβ,− = Pβ,+ for 0 < β < βc

Pβ,− �= Pβ,+ for β > βc

[If I understood Aizenman’s proof I could also show that G(β) is a
one-parameter family, {θPβ,− + (1 − θ)Pβ,+ : 0 ≤ θ ≤ 1} for β > βc.]

[§dobrushin] 2. Uniqueness for small β

Use the Dobrushin uniqueness condition to show that there is only one Gibbs
measure if β is close enough to zero.
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[§extremal] 3. Two extremal Gibbs measures

Each µ in G(β) can be generated as a cluster point of a sequence of functionals
µn = νn QS(n),β(· | ωS(n)) on L, for probability measures νn on FS(n).

Remark. In one sense the assertion about cluster points is trivially
true: by definition of a Gibbs measure, µn equals µ if we take νn to be the
restriction of µ to FS(n).

For each fixed f in L, when the support of f is a subset of A(n) the
value µn f is completely determined by the restriction of νn to FN (n). That is,
we have only to specify the distribution over the ‘boundary values’ ωN (n) to
determine µn f for such an f .

The measures Pβ,− and Pβ,+ are determined by the extreme boundary
conditions: ⊕n , which denotes the configuration of ωN (n) with ωi = +1 for
all i ∈ N (n); and �n , which denotes the configuration of ωN (n) with ωi = −1
for all i ∈ N (n).

Use the Peierls argument to prove existence of the two distinct Gibbs
measures when β is large enough: show that Pβ,−{ω0 = +1} ≤ 1/3 and
Pβ,+{ω0 = +1} ≥ 2/3 is β is large enough.

At the moment the notation is misleadingly specific because I have not
yet shown that the cluster points are unique. The next Lemma will help me to
establish convergence by means of a monotonicity property of the Q’s.

fixedA <1> Lemma. For a fixed finite subset A of Z
2, let b and b∗ be two possible

boundary conditions for which b ≤ b∗, that is, bj ≤ b∗
j for all j ∈ N(A). Let f

be an increasing function on �A. Then

QS\A,β

(
f (ωA) | b

) ≤ QS\A,β

(
f (ωA) | b∗)

Proof. For simplicity of notation, if x ∈ �A defineCompare with Liggett 1985,
page 188.

p(x) = QS\A,β

(
ωA = x | b

)
and p∗(x) = QS\A,β

(
ωA = x | b∗) .

By Holley’s inequality, it is enough if we show thatsee the handout FKG.pdf

p(x)p∗(y) ≤ p(x ∧ y)p∗(x ∨ y) for all x, y ∈ �A.

Equivalently, we need to show

phi4 <2>
∑
a∈∂ A

(
φa(x ∨ y, b∗) − φa(y, b∗) + φa(x ∧ y, b) − φa(x, b)

) ≥ 0

In fact, it is not hard to show that each summand is nonnegative.
Consider first the case where a = {i, j} with both i and j in A. Define

ui = (xi − yi )
+ and uj = (xj − yj )

+

vi = xi ∧ yi and vj = xj ∧ yj

Use the identities

s ∨ t = t + (s − t)+ and s = (s − t)+ + s ∧ t for all s, t ∈ R

to rewrite the ath summand in <2> as

(yi + ui )
(
yj + uj

) − yi yj + vivj − (ui + vi )
(
uj + vj

)
= ui yj + uj yi − vi u j − vj ui

= ui (yj − vj ) + uj (yi − vi )

≥ 0 because t − s ∧ t ≥ 0 for all s, t .
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For the case where a = {i, j} with i ∈ A and j ∈ N(A), the ath summand
of <2> becomes

(xi ∨ yi )b
∗
j − yi b

∗
j + (xi ∧ yi )bj − xi bj

=(yi + ui )b
∗
j − yi b

∗
j + vi bj − (ui + vi )bj

= ui (b
∗
j − bj ) ≥ 0

�
Consider a fixed increasing function f in LA. When n is large enough

that A ⊆ A(n), the Lemma shows that for all ωN (n),

QS(n),β

(
f | �n

) ≤ QS(n),β

(
f | ωN (n)

) ≤ QS\A,β

(
f | ⊕n

)
If µ ∈ G(β) we have µ f = µQS(n),β

(
f | ωN (n)

)
. It follows, for all n large

enough, that
QS(n),β

(
f | �n

) ≤ µ f ≤ QS(n),β

(
f | ⊕n

)
.

The consistency condition for the Q’s gives an even better inequality:

QS(n+1)( f | ⊕n+1) = QS(n+1)

(
QS(n)( f | ωN (n)) | ⊕n+1

)
≤ QS(n)( f | ⊕n)

Thus

downQ <3> QS(n)( f | ⊕n) ↓ Pβ,+ f for each increasing f in L.

Similarly,

upQ <4> QS(n)( f | �n) ↑ Pβ,− f for each increasing f in L.

In the limit we have

sandwich <5> Pβ,− f ≤ µ f ≤ Pβ,+ f for each increasing f in L.

span <6> Lemma. The increasing functions in LA span LA.

Proof. Note thatcf. Kindermann & Snell (1980,
page 129)

ωiωj = (1 + ωi )(1 + ωj ) − 1 − ωi − ωj ,

a representation of ωiωj as a linear combination of increasing functions.
Similarly,

ωiωjωk = (1 + ωi )(1 + ωj )(1 + ωk)

− 1 − ωi − ωj − ωk − ωiωj − ωjωk − ωkωi .

And so on.
Thus 
 := {φD : D ⊆ A} is contained in the linear span. Finish the

argument by noting that 
 is an orthonormal basis for LA under the uniform
distribution on �A.�

squish <7> Corollary. The measures Pβ,− and Pβ,+ are the same if and only if
Pβ,− f = Pβ,+ f for each increasing f in L.

From <4>, <3>, and Lemma <6>, we get

QS(n)( f | ⊕n) → Pβ,+ f for each f ∈ L

That is, Pβ,+ is not just a cluster points of the QS(n)(· | ⊕n) functionals, it is
actually a limit. A similar assertion holds for Pβ,−.

The inequalities in <5> establish the extremality of both Pβ,− and Pβ,+
in G(β). For example, suppose we have Pβ,− = θµ1+(1−θ)µ2 with 0 < θ < 1
and both µi in G(β). Then <5>, applied to each µi , forces Pβ,− f = µi f for
all increasing f in L. That is, Pβ,− is extremal.
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Inequalities <5> would also show that both extremal measures are
translation invariant. Indeed, we could repeat the construction for the measures
with A(n) replaced by a square centered at another site, say s. We would then
get another pair of extremal measures for which, for all µ ∈ G(β),

sandwich.s <8> P̃β,− f ≤ µ f ≤ P̃β,+ f for each increasing f in L.

In fact P̃β,+ would be the image of Pβ,+ under the translation map on S that
takes 0 to s. An appeal to <5> with µ equal to P̃β,+, followed by an appeal
to <8> with µ equal to Pβ,+, would then give Pβ,+ = P̃β,+. And so on.

[§monotonicity] 4. Monotonicity in β

There is a unique Gibbs measure in G(β) if and only if Pβ,− = Pβ,+. We know
that

Pβ,− f ≤ Pβ,+ f for each increasing f in L.

The next Lemma will show that the two measures are equal if and only if
Pβ,−ωi = Pβ,+ωi for each i ∈ S. By translation invariance, it is enough to
check this equality for a single site, such as the origin. That is, Pβ,− = Pβ,+ if
and only if Pβ,−ω0 = Pβ,+ω0. By symmetry,

Pβ,+{ω0 = +1} = Pβ,−{ω0 = −1} = 1 − Pβ,−{ω0 = +1}
The two extremal measures are the same precisely when Pβ,+{ω0 = +1} = 1/2,
that is, when Pβ,+ω0 = 0.

Griffiths’s inequality shows that QS(n),β(ω0 | ⊕n) is an increasing function
Giffiths.pdf

of β for each n. In the limit, Pβ,+ω0 must also be an increasing function
of β. The set {β > 0 : Pβ,+ω0 > 0} must be an interval of the form [βc, ∞)

or (βc, ∞), for some positive βc.

stoch.order <9> Lemma. Suppose P and Q are probability measures on �A for which
P f ≤ Q f , for each increasing function f on �A. Then P = Q if and only if
Pωi = Qωi for each i ∈ A.

Proof. Necessity is trivial.
Suppose D is a nonempty subset of A. For convenience suppose the sites

in D are ω1, . . . , ωk . Invoke the inequalities for f (ωA) equal to ω1 ∨ ω2 and
then equal to ω1 ∧ ω2 to get

Pω1+Pω2 = P(ω1∧ω2)+P(ω1∨ω2) ≤ Q(ω1∧ω2)+Q(ω1∨ω2) = Qω1+Qω2

The equality Pω1 + Pω2 = Qω1 + Qω2 then forces P(ω1 ∧ω2) = Q(ω1 ∧ω2).
Similarly

P(ω1 ∧ ω2) + Pω3 = P(ω1 ∧ ω2 ∧ ω3) + P
(
(ω1 ∧ ω2) ∨ ω3

)
≤ Q(ω1 ∧ ω2 ∧ ω3) + Q

(
(ω1 ∧ ω2) ∨ ω3

)
= Q(ω1 ∧ ω2) + Qω3,

which forces P(ω1 ∧ ω2 ∧ ω3) = Q(ω1 ∧ ω2 ∧ ω3). And so on.
Thus we have

PγD = 1
2 P(1 + min

i∈D
ωi ) = 1

2 Q(1 + min
i∈D

ωi ) = QγD

for each D ⊆ A. An appeal to a π–λ theorem then gives P = Q, as measures
on �A.�
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.5 Notes 5

[§notes] 5. Notes

See Kindermann & Snell (1980, Appendix 1) for calculations with the Ising
model. See Georgii (1988, Chapter 6) for a detailed, rigorous analysis of
the Ising model. See Lebowitz & Martin-Löf (1972) or Ruelle (1972) for a
characterization of the βc value at which phase transition begins.
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