
Chapter

Markov random fields and Gibbs
measures

1. Conditional independence

Suppose Xi is a random element of (Xi , Bi ), for i = 1, 2, 3, with all Xi

defined on the same probability space (�.F, P). The random elements X1

and X3 are said to be conditionally independent given X2 if, at least for all
bounded, Bi -measuable real functions fi ,

P
(

f1(X1) f3(X3) | X2
) = P

(
f1(X1) | X2

)
P

(
f3(X3) | X2

)
almost surely.

Equivalently, with Fi (X2) = P
(

fi (Xi ) | X2
)

for i = 1, 3,

<1> P f1(X1) f2(X2) f3(X3) = PF1(X2) f2(X2)F3(X2) for all fi .

Notice that equality <1> involves the random elements only through their
joint distribution. We could, with no loss of generality, assume � = X1×X2×X3

equipped with its product sigma-field B = B1 ⊗ B2 ⊗ B3, with P the joint
distribution of (X1, X2, X3) and Xi (ω) = ωi , the i th coordinate map.

Things are greatly simplified if P has a density p(ω) with respect to a sigma
finite product measure λ = λ1 ⊗ λ2 ⊗ λ3 on B. As in the case of densities with
respect to Lebesgue measure, the marginal distributions have densities obtained
by integrating out some coordinates. For example, the marginal distribution of
ω2 has density

p2(ω2) = λ1 ⊗ λ3 p(ω1, ω2, ω3) with respect to λ2.

Similarly, the various conditional distributions are given by conditional densities
(cf. Pollard 2001, Section 5.4). For example, the conditional distribution
of (ω1, ω3) given ω2 has density

p13|2(ω1, ω3 | ω2) = p(ω1, ω2, ω3)

p2(ω2)
{p2(ω2) > 0} with respect to λ1 ⊗ λ3.

Remark. It is traditional to use less formal notation, for example,
writing p(ω1, ω3 | ω2) instead of p13|2(ω1, ω3 | ω2). As long as the arguments
are specified symbolically there is no ambiguity. But an expression like
p(a, b | c) could refer to several different conditional densities evaluated at
values (a, b, c).

The conditional expectations are given by integrals involving conditional
densities. For example,

P
(

f1(ω1) | ω2
) = λ1 f1(ω1)p1|2(ω1 | ω2) almost surely.

6 February 2006 Stat 606, version: 6feb06 c©David Pollard 1



Equality <1> then becomes

λ f1(ω1) f2(ω2) f3(ω3)p(ω1, ω2, ω3)

= λ2 f2(ω2)p2(ω2)
(
λ1 f1(ω1)p1|2(ω1 | ω2)

) (
λ1 f3(ω3)p3|2(ω3 | ω2)

)
= λ f1(ω1) f2(ω2) f3(ω3)p2(ω2)p1|2(ω1 | ω2)p3|2(ω3 | ω2)

A simple generating-class argument then shows that the conditional indepen-
dence is equivalent to the factorization

<2> p(ω1, ω2, ω3) = p2(ω2)p1|2(ω1 | ω2)p3|2(ω3 | ω2) a.e. [λ]

Note that the right-hand side of the last display has the form φ(ω1, ω2)ψ(ω2, ω3).
Actually, any factorization

<3> p(ω1, ω2, ω3) = φ(ω1, ω2)ψ(ω2, ω3)

for nonnegative φ and ψ implies the conditional independence. For, if we
define �(ω2) = λ1φ(ω1, ω2) and �(ω2) = λ3ψ(ω2, ω3), we then have

p2(ω2) = λ1 ⊗ λ3 p = �(ω2)�(ω2)

p1,2(ω1, ω2) = λ3 p = φ(ω1, ω2)�(ω2)

p2,3(ω2, ω3) = λ1 p = �(ω2)ψ(ω2, ω3)

p1|2(ω1 | ω2) = φ(ω1, ω2)/�(ω2){p2 > 0}
p3|2(ω3 | ω2) = ψ(ω2, ω3)/�(ω2){p2 > 0}

from which <2> follows.
Similar arguments apply when P is the joint distribution for more than

three random elements.

Notation. Let S be a finite index set. (Later the points of S will be
called sites at which random variables are defined.) Consider probability
densities p(ωi : i ∈ S) with respect to a product measure λ = ⊗

i∈S λi on
the product sigma-field B = ⊗

i∈S Bi for a product space � = Xi∈S Xi . For
each A ⊆ S write ωA for (ωi : i ∈ A).

If A, B, and C are disjoint subsets with union S, then it follows by an
argumnet similar to the one leading from <3> that ωA and ωB are conditionally
independent given ωC if and only if the density factorizes as

<4> p(ω) = φ(ωA, ωC)ψ(ωB, ωC)

In fact, this condition follows directly from the earlier argument if we take
X1 = ωA, X3 = ωB , and X2 = ωC .Better: The rhs of <4> is a

version of p. If A, B, and C are disjoint subsets whose union is not the whole of S,
the extra variables can complicate the checking of conditional independence.
However a sufficient condition for conditional independence of ωA and ωB

given ωC is existence of a factorization

<5> p(ω) = φ(ωA, ωC , ωD)ψ(ωB, ωC , ωE )

where D and E are disjoint subsets of S\ (
A ∪ B ∪ C

)
. The integration over

ωD and ωE , which is needed to find the density for ωA∪B∪C , preserves the
factorization needed for conditional independence.

2. Gibbs distributions

There is a particularly easy way to create probability measures with recognizable
conditional independence properties. Let F be a collection of subsets of S. For
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each a in F, let �a(ω) = �a(ωa) be a nonnegative function that depends on ω

only through ωa . Provided the number Z := λ
∏

a∈F
�a is neither zero nor

infinite, we can define a Gibbs measure by means of the density

<6> p(ω) = 1

Z

∏
a∈F

�a(ωa) with respect to λ.

The conditional independence properties are easily seen from the corresponding
factor graph, which has vertex set V = S ∪ F with edges drawn only between
those i ∈ S and a ∈ F for which i ∈ a. For example, if S = {1, 2, 3, 4, 5, 6, 7}
and F = { {1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6, 7} }:

1

2

3

4

5

6

7

1

2

3

4

5

6

7

The same connectivities could be represented, less economically, without the F

vertices by joining all sites i, j for which there is some a ∈ F with {i, j} ⊆ a,
as shown in the graph on the right of the display.

If i and j share a common neighbor a in the factor graph (equivalently,
if i and j are neighbors in the representation without F), write i ∼ j . Write
Ni = { j ∈ S\{i} : i ∼ j}.

<7> Theorem. Suppose A, B, and C are disjoint subsets of S with the separation
property: each path joining a site in A to a site in B must pass through some
site in C . Then ωA and ωB are conditionally independent given ωC under the
Gibbs measure given by the density <6>.

Proof. Define VA as the set of vertices from V that can be connected to some
site in A by a path that passes through no sites from C . By the separation
assumption, A ⊆ VA and B ⊆ V

c
A. Sites in C might belong to either VA or V

c
A.

Note that

p(ω) = φ(ω)ψ(ω) where φ = ∏
a∈VA

�a and ψ = ∏
a /∈VA

�a .

The function φ depends on ω only through the sites in VA. Conservatively,
we could write it as φ(ωA, ωC , ωD), where D denotes the set of all sites
in VA\ (

A ∪ C
)
. Similarly, ψ(ω) = ψ(ωB, ωC , ωE ) where E ⊆ S\ (

B ∪ C
)

consists of all those sites i connected to some a ∈ V
c
A. There can be no path

joining i to a point k in A without passing through C , for otherwise there
would be a path from k to a via i that would force a to belong to VA. In
other words, D and E are disjoint subsets of S\ (

A ∪ B ∪ C
)
. That is, we

have a factorization of p as in <5>, which implies the asserted conditional
independence.�

<8> Exercise. For each site i , show that the conditional distribution of ωi given
ωS\i depends only on (ωj ; j ∈ Ni ). Specifically, show that

pi |S\i (ωi | ωS\i ) =
This fact is called the Markov property for the Gibbs distribution.�
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3. Hammersley-Clifford

When P is defined by a strictly positive density p(ω) with respect to λ, there
is a representation for P as a Gibbs measure with a factor graph that represents
any Markov properties that P might have. The representation will follow from
an application of the following Lemma to log p(ω).

<9> Lemma. Let g be any real-valued function on � = Xi∈S Xi . Let ω̃ be
any arbitrarily chosen, but fixed, point of �. There exists a representation
g(ω) = ∑

a⊆S �a(ω) with the following properties.
(i) �a(ω) = �a(ωa) depends on ω only through the coordinates ωa . In

particular, �∅ is a constant.
(ii) If a �= ∅ and if ωi = ω̃i for any i in a then �a(ω) = 0.

Proof. For each subset a ⊆ S define

ga(ωa) = ga(ω) = g(ωa, ω̃S\a)

and
�a(ω) =

∑
b⊆a

(−1)#(a\b)gb(ωb).

Clearly � depends on ω only through ωa .
To prove (ii), for simplicity suppose 1 ∈ a and ω1 = ω̃1. Divide

the subsets of a into a set of pairs: those b for which 1 /∈ b and the
corresponding b′ = b ∪ {1}. The subsets b and b′ together contribute

(−1)#(a\b)
(
g(ωb, ω̃1, ω̃S\b′) − g(ωb, ω1, ω̃S\b′)

) = 0 because ω1 = ω̃1.

Finally, to establish the representation for g, consider the coefficient of gb

in ∑
a⊆S

�a(ω) =
∑

a,b
{b ⊆ a ⊆ S}(−1)#(a\b)gb(ωb)

When b = a = S, we recover (−1)0gS(ω) = g(ω). When b is a proper subset
of S, the coefficient of gb equals∑

a
{b ⊆ a ⊆ S}(−1)#(a\b) =

∑
D⊆S\b

(−1)#D,

which equals zero because half of the subsets D of S\b have #D even and the
other half have #D odd.�

Applying the Lemma with g(ω) = log p(ω) gives

p(ω) =
∏

a⊆S
exp �a(ωa),

which is a trivial sort Gibbs density. We could, of course, immediately discard
any terms for which �a(ω) = 0 for all ω. The factorizations that follow from
any conditional independnce properties of P lead in this way to more interesting
representations.

The following argument definitely works when � is finite and λ is counting
measure. I am not so confident for the general case because I haven’t thought
carefully enough about the role of negligible sets and versions.

<10> Lemma. Suppose ωi and ωj are conditionally independent given ωC , where
C = S\{i, j}. Then �a ≡ 0 for every a with {i, j} ⊆ a ⊆ S.

Proof. Invoke equality <4> with A = {i} and B = { j} to get

log p(ω) = f (ωi , ωC) + h(ωj , ωC) where f = log φ and h = log ψ.
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Notice that the representation for �a from Lemma <9> is linear in g. Thus
�a = �

f
a + �h

a , the sum of the terms by applying the same construction to f
then to h. For example,

� f
a (ωa) =

∑
b⊆a

(−1)#a\b f (ωb, ω̃S\b)

If j ∈ a, the right-hand side is unaffected if we replace ωj by ω̃j , because f
does not depend on ωj . However, the left-hand side is zero when ωj = ω̃j .
It follows that �

f
a (ωa) ≡ 0 when j ∈ a. A similar argument shows that

�h
a(ωa) ≡ 0 when i ∈ a.�
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