
Chapter

Markov random fields and Gibbs
measures

1. Notation

Let S be a finite index set. (Later the points of S will be called sites at
which random variables are defined.) For each i in S, suppose Xi is a set
equippped with a sigma-field Bi . Let � = Xi∈S Xi . Equip � with the product
sigma-field B = ⊗

i∈S Bi .
For each A ⊆ S write ωA for (ωi : i ∈ A).
We will mostly be concerned with probability measures dominated by a

fixed, sigma-finite product measure λ = ⊗
i∈S λi on B. For each A ⊆ S, the

symbol λA will denote the product measure
⊗

i∈A λi on BA = ⊗
i∈A Bi . I will

also write λB,C for λB∪C if B and C are disjoint subsets of S.
Similarly, for each subset A of S write P

A for the marginal distribution
of ωA, that is, P

A f (ωA) = P f (ωA), where the second f (ωA) is regarded as a
function of ω that happens not to depend on the coordinates ωS\A. Note that
this notation should not be interpreted to mean that P is a product measure.

For disjoint subsets A and B of S, the (Kolmogorov) conditional expectation
operator will be denoted by P

B
A . That is, at least for bounded, BB-measurable g,

the assertion G(ωA) = P
B
Ag(ωB) will mean that

P f (ωA)g(ωB) = P f (ωA)G(ωA)

at least for bounded BA-measurable f . If a conditional distribution for ωB

given ωA exists, I will denote it also by P
B
A . In that case, P

B
A(· | ωA) is a

probability measure on BB for P
A almost all ωA.

For these notes, the most important case will have each Xi finite with λi

equal to counting measure on Xi . Many, but not all, of the subtleties involving
negligible sets with respect to various measures will then disappear.

2. Conditional independence

Suppose P is a probability measure on the product sigma-field B for the product
space �. For disjoint subsets A, B, and C of S, the random elements ωA

and ωB are said to be conditionally independent given ωC if, at least for all
bounded, product-measurable real functions f and g,

P
(

f (ωA)g(ωB) | ωC
) = P

(
f (ωA) | ωC

)
P

(
g(ωB) | ωC

)
a.e. [P].

Equivalently, with F(ωC) as any version of P
(

f (ωA) | ωC
)

and G(ωC) as any
version of P

(
g(ωB) | ωC

)
,

<1> P f (ωA)g(ωB)h(ωC) = PF(ωC)G(ωC)h(ωC)
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for all bounded, measurable f , g, and h.
Things are greatly simplified if P has a density p(ω) with respect to λ.

As in the case of densities with respect to Lebesgue measure, we can obtain
versions of the densities for the marginal distributions by integrating out some
coordinates. For example, the marginal distribution of P

C has density

pC(ωC) = λS\C p(ωC , ωS\C) with respect to λC .

Here the λS\C integrates out over the coordinates ωS\A. The density pC is
unique only up to a λC equivalence.

Similarly, versions of the various conditional distributions can be specified
by conditional densities (cf. Pollard 2001, Section 5.4). For example, the
conditional distribution P

B
C of ωB given ωC has density

pB|C(ωB | ωC) = p(ωB, ωC)

pC(ωC)
{pC(ωC) > 0} with respect to λB .

This density is unique only up to a λB ⊗ P
C -equivalence. For example, we

could change the definition arbitrarily on the {pC = 0} without disturbing the
defining property of the conditional distribution. If λC{pC = 0} > 0, there can
be no hope of having the conditional density unique up to a λC -equivalence.

Remark. It is traditional to use less formal notation, for example,
writing p(ωB | ωC ) instead of pB|C (ωB | ωC ). As long as the arguments
are specified symbolically there is no ambiguity. But an expression like
p(b | c) could refer to several different conditional densities evaluated at
values (b, c).

The conditional expectations can be written as integrals involving condi-
tional densities. For example,

P
(

f (ωA) | ωC
) = λA f (ωA)pA|C(ωA | ωC) a.e. [PC ].

Similarly,

F(ωC)G(ωC) = λA,B f (ωA)g(ωB)pA|C(ωA | ωC)pB|C(ωB | ωC) a.e. [PC ]

so that equality <1> becomes

λ f (ωA)g(ωB)h(ωC)p(ωA, ωB, ωC)

= P f (ωA)g(ωB)h(ωC)

= P
C F(ωC)G(ωC)h(ωC)

= λ f (ωA)g(ωB)h(ωC)pC(ωC)pA|C(ωA | ωC)pB|C(ωB | ωC).

A simple generating-class argument then shows that the conditional indepen-
dence is equivalent to the factorization

<2> p(ωA, ωB, ωC) = pC(ωC)pA|C(ωA | ωC)pB|C(ωB | ωC) a.e. [λ]

or to

<3> pA,B|C(ωA, ωB | ωC) = pA|C(ωA | ωC)pB|C(ωB | ωC) a.e. [λA,B ⊗ P
C ]

because λC and P
C have the same negligible subsets of {ωC : pC(ωC) > 0} and

p(ωA, ωB, ωC) = 0 a.e. [λA,B] on the set {ωC : pC(ωC) = 0}.
Note that the right-hand side of <2> is a product of a function of (ωA, ωC)

and a function of (ωB, ωC). Actually, any factorization

<4> p(ωA, ωB, ωC) = φ(ωA, ωC)ψ(ωB, ωC) a.e. [λA,B ⊗ P
C ]
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for nonnegative φ and ψ implies the conditional independence of ωA

and ωB given ωC . For, if we define �(ωC) = λAφ(ωA, ωC) and
�(ωC) = λBψ(ωB, ωC), we then have

pC(ωC) = λA,B p = �(ωC)�(ωC) a.e. [PC ]

pA,C(ωA, ωC) = λB p = φ(ωA, ω2)�(ω2) a.e. [λA ⊗ P
C ]

pB,C(ωB, ωC) = λA p = �(ωC)ψ(ωB, ωC) a.e. [λB ⊗ P
C ]

from which it follows that, except on a λA,B ⊗ P
C -negligible set,

pA|C(ωA | ωC)pB|C(ωB | ωC)

= φ(ωA, ωC)

�(ωC)

ψ(ωB, ωC)

�(ωC)
{� > 0, � > 0}

= pA,B|C(ωA, ωB | ωC),

as required by the condition <3> for conditional independence.
Notice that we also have,

pA|C(ωA | ωC) = φ(ωA, ωC)

�(ωC)
{� > 0} a.e. [λA ⊗ P

C ]

pB|C(ωA | ωC) = ψ(ωB, ωC)

�(ωC)
{� > 0} a.e. [λA ⊗ P

C ].

The extra indicator functions are not needed when we do not divide by the
corresponding � or � factors. By similar reasoning we have

pB,C(ωB, ωC) = �(ωC)ψ(ωB, ωC) a.e. [λB,C ]

and

pA|B,C(ωA | ωB, ωC)

= p(ω)

pB,C(ωb, ωC)
{pB,C > 0} a.e. [λA ⊗ P

B,C ]

= φ(ωA, ωC)

�(ωC)
{�(ωC) > 0} a.e. [λA ⊗ P

B,C ]

= pA|C(ωA | ωC) a.e. [λA ⊗ P
C ]<5>

because P
B,C{ψ(ωB, ωC) = 0} = λB,Cψ{ψ = 0} = 0.

If A, B, and C are disjoint subsets whose union is not the whole of S,
the extra variables can complicate the checking of conditional independence.
However a sufficient condition for conditional independence of ωA and ωB

given ωC is existence of a factorization

<6> p(ω) = φ(ωA, ωC , ωD)ψ(ωB, ωC , ωE ) a.e. [λA,B ⊗ λC,D ⊗ P
C ]

where D and E are disjoint subsets of S\ (
A ∪ B ∪ C

)
. The integration over

ωD and ωE , which is needed to find the density for (ωA, ωB, ωC), preserves the
factorization needed for conditional independence.

3. Gibbs distributions

There is a particularly easy way to create probability measures with recognizable
conditional independence properties. Let F be a collection of subsets of S. For
each a in F, let �a(ω) = �a(ωa) be a nonnegative, measurable function that
depends on ω only through ωa . Provided the number Z := λ

∏
a∈F

�a is neither
zero nor infinite, we can define a Gibbs measure P by means of the density

<7>
dP

dλ
= p(ω) = 1

Z

∏
a∈F

�a(ωa) with respect to λ.
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<8> Example. Consider the very simple case where S = {1, 2, 3} and λi is
counting measure on Xi = {0, 1}.

1 2 3

The measure P defined by

�1,2(ω1, ω2) = {max(ω1, ω2) = 1} and �2,3(ω2, ω3) = {ω3 = 1}
has density

p(ω) = 1
3 {ω1 = 1, ω2 = 1, ω3 = 1} + 1

3 {ω1 = 1, ω2 = 0, ω3 = 1}
+ 1

3 {ω1 = 0, ω2 = 1, ω3 = 1} with respect to λ.

You should check that

p1|2(ω1 | ω2) = 1
2 {ω1 = 0, ω2 = 1} + 1

2 {ω1 = 1, ω2 = 0} + {ω1 = 1, ω2 = 0}.
Why is there no need for a qualification involving λ1 ⊗ P

2? You should also
check that

p1|2,3(ω1 | ω2, ω3) = p1|2(ω1 | ω2) a.e. [P3]

What happens on the set {ω3 = 0}?�
In general, the conditional independence properties for a Gibbs measure are

easily seen from the corresponding factor graph, which has vertex set V = S∪F

with edges drawn only between those i ∈ S and a ∈ F for which i ∈ a. For
example, if S = {1, 2, 3, 4, 5, 6, 7} and F = { {1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6, 7} }:

1

2

3

4

5

6

7

1

2

3

4

5

6

7

The same connectivities could be represented, less economically, without the F

vertices by joining all sites i, j for which there is some a ∈ F with {i, j} ⊆ a,
as shown in the graph on the right of the display.

<9> Theorem. Suppose A, B, and C are disjoint subsets of S with the separation
property: each path joining a site in A to a site in B must pass through some
site in C . Then ωA and ωB are conditionally independent given ωC under the
Gibbs measure given by the density <7>.

Proof. Define VA as the set of all vertices from V that can be connected to
a site in A by a path that passes through no sites from C . By the separation
assumption, A ⊆ VA and B ⊆ V

c
A. Sites in C might belong to either VA or V

c
A.

Note that

p(ω) = φ(ω)ψ(ω) where φ = ∏
a∈FVA

�a and ψ = ∏
a∈FV

c
A
�a .

The function φ depends on ω only through the sites in VA. Conservatively,
we could write it as φ(ωA, ωC , ωD), where D denotes the set of all sites
in VA\ (

A ∪ C
)
. Similarly, ψ(ω) = ψ(ωB, ωC , ωE ) where E ⊆ S\ (

B ∪ C
)

consists of all those sites i direcctly connected to some a ∈ V
c
A. There can be
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no path joining i to a point k in A without passing through C , for otherwise
there would be a path from k to a via i that would force a to belong to VA.
In other words, D and E are disjoint subsets of S\ (

A ∪ B ∪ C
)
. That is, we

have a factorization of p as in <6>, which implies the asserted conditional
independence.�

<10> Definition. If i and j share a common neighbor a in the factor graph (that
is, if {i, j} ⊆ a), write i ∼ j . Write N{i} = { j ∈ S\{i} : i ∼ j}. More
generally, if A ⊂ S, write N(A) for { j ∈ S\A : i ∼ j for some i ∈ A }.

<11> Example. For a subset A of S let C = N(A) and B = S\(A ∪ C). The
set C separates A from B. It follows that ωA is conditionally independent
of ωB given ωN(A). Equivalently, via <5>,

pA| Ac(ωA | ωAc) = pA|N(A)(ωA | ωN(A)) a.e. [λA ⊗ P
Ac

].

The special case where A consists of a single site is called the Markov property
for the Gibbs distribution.�

4. Hammersley-Clifford

When P is defined by a strictly positive density p(ω) with respect to λ, there
is a representation for P as a Gibbs measure with a factor graph that represents
the Markov properties for P.

The argument depends on the λi, j ⊗ P
C -almost sure factorization

pi, j |C(ωi , ωj | ωC) = pi |C(ωi | ωC)pj |C(ωj | ωC) where C = S\{i, j}.
Remark. I am worried about the effects on the arguments given
below if there are values of ω for which the factorization can fail. I will
therefore assume that the factorizations hold everywhere, in which case
the representation will follow from an application of the following Lemma
to log p(ω).

I would be interested to see whether the arguments still work under
weaaker assumptions.

<12> Lemma. Let f be any real-valued function on � = Xi∈S Xi . Let ω̃ be
any arbitrarily chosen, but fixed, point of �. There exists a representation
f (ω) = ∑

a⊆S �a(ω) with the following properties.
(i) �a(ω) = �a(ωa) depends on ω only through the coordinates ωa . In

particular, �∅ is a constant.
(ii) If a 	= ∅ and if ωi = ω̃i for any i in a then �a(ω) = 0.

Proof. For each subset a ⊆ S define

fa(ωa) = fa(ω) = f (ωa, ω̃S\a)

and
�a(ω) =

∑
b⊆a

(−1)#(a\b) fb(ωb).

Clearly � depends on ω only through ωa .
To prove (ii), for simplicity suppose 1 ∈ a and ω1 = ω̃1. Divide

the subsets of a into a set of pairs: those b for which 1 /∈ b and the
corresponding b′ = b ∪ {1}. The subsets b and b′ together contribute

(−1)#(a\b)
(

f (ωb, ω̃1, ω̃S\b′) − f (ωb, ω1, ω̃S\b′)
) = 0 because ω1 = ω̃1.

Finally, to establish the representation for f , consider the coefficient of fb

in ∑
a⊆S

�a(ω) =
∑

a,b
{b ⊆ a ⊆ S}(−1)#(a\b) fb(ωb)
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When b = a = S, we recover (−1)0 fS(ω) = f (ω). When b is a proper subset
of S, the coefficient of fb equals∑

a
{b ⊆ a ⊆ S}(−1)#(a\b) =

∑
D⊆S\b

(−1)#D,

which equals zero because half of the subsets D of S\b have #D even and the
other half have #D odd.�
Alternative proof. Suppose µ = ⊗i∈Sµ

i and ν = ⊗i∈Sν
i are probability

measures on B. Write 	i for the signed measure µi − νi . Then

µ f = ⊗i∈S
(
νi + 	i

)
f

=
∑

a⊆S
νS\a	a f (ωa, ωS\a)

=
∑

a⊆S
	a fa(ωa) where fa := νS\A f

If i ∈ a and µi = νi then 	a is the zero measure; the contribution from fa to
µ f then disappears from the sum.

Specialize to the case where µi is a point mass at xi and νi is a point mass
at ω̃i to get f (x) = ∑

a⊆S 	a fa(ωa), with 	a fa = 0 if xi = ω̃i for any i in a.�
Applying the Lemma with g(ω) = log p(ω) gives

p(ω) =
∏

a⊆S
exp �a(ωa),

which is a trivial sort Gibbs density. We could, of course, immediately discard
any terms for which �a(ω) = 0 for all ω. If the factorizations of p are
controlled by a factor graph then a muuch more precise assertion is possible.

Say that a function f on � respects a factor graph if, for each pair of
sites with i � j , there is a decomposition

f (ω) = g(ω−i ) + h(ω− j ).

That is, g does not depend on ωi annd h does not depend on ωj .

<13> Lemma. Suppose p(ω) > 0 for all ω. Suppose also that log p
respects a given factor graph. Then p has a factorization p(ω) =∏

i∈S ψi (ωi )
∏

a∈F
ψa(ωa).

Remark. The ψi factors can be absorbed into the other product if
each i in S is connected to at least one a in F.

Proof. Suppose i � j . Then f (ω) := log p(ω) = g(ω−i ) + h(ω− j ). Notice
that the representation for �a from Lemma <12> is linear in f . Thus
�a = �

g
a + �h

a , the sum of the terms by applying the same construction to g
then to h. For example,

�g
a(ωa) =

∑
b⊆a

(−1)#a\bg(ωb, ω̃S\b)

If i ∈ a, the right-hand side is unaffected if we replace ωi by ω̃i , because g does
not depend on ωi . However, the left-hand side is zero when ωi = ω̃i . It follows
that �

g
a(ωa) ≡ 0 when i ∈ a. A similar argument shows that �h

a(ωa) ≡ 0 when
j ∈ a. Thus �a(ωa) = 0 for each subset a of S for which {i, j} ⊆ a.�

5. Conditional distributions for finite sets of sites

The assertion of Example <11> can be proved directly by noting that the �a(ωa)

terms that involve any components of ωA correspond to ∂ A := {a ∈ F : a A 	= ∅}.
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Thus

pAc(ωAc) = λA p(ωA, ωAc) = Z−A

Z

∏
a∈F\∂ A

ψa(ωa)

where Z−A = Z−A(ωN(A)) := λA
∏

a∈∂ A
�a(ωa)

and

pA| Ac(ωA | ωAc) = p̃N(A)(ωA | ωN(A))

:= {Z−A 	= 0}
Z−A

∏
a∈∂ A

�a(ωa) a.e. [λA ⊗ P
Ac

].

Notice that p̃N(A) depends on ω only through the coordinates ωA∪N(A). In fact,
it defines a new Markov kernel, a family of measures QN(A)( · | ωN(A)) on BA:
for each ωN(A),

d QN(A)

dλA
= p̃N(A)(ωA | ωN(A))

Notice that QN(A)( · | ωN(A)) is a probability measure at each ωN(A) for
which Z−A(ωN(A)) 	= 0.

For D ⊆ A, write Q D
N(A) for the marginal distribution of ωD under QN(A).

The new Markov kernels fit together in an elegant way. For example, suppose
B = A ∪ N(A). Then, at least for nonnegative, BA-measurable f ,

<14> QN(A)

N(B) Q A
N(A) f (ωA) = Q A

N(B) f (ωA)

Proof. Notice that both sides of the asserted equality are zero at ωN(B)

where Z−B is zero. We need only consider an ωN(B), which will stay fixed
thoughout the argument, at which Z−B is nonzero. To simplify notation, drop
the subscript N(B) from Q and p̃, and write D for N(A). Note that

d Q D

dλD
= 1

Z−B
λA p̃(ωA | ωN(B)) = Z−A(ωD)

Z−B

∏
a∈∂ B\∂ A

�a(ωa),

because the factors �a for a ∈ ∂ B\∂ A do not depend on ωA. The asserted
equality then becomes

Q D Q A
D f (ωA) = Q A f (ωA)

When multiplied by Z−B , the left-hand side becomes

λD Z−A(ωD)
( ∏

a∈∂ B\∂ A
�a

)
λA {Z−A(ωD) 	= 0}

Z−A(ωD)

( ∏
a∈∂ A

�a

)
f (ωA)

= λDλA{Z−A(ωD) 	= 0}
( ∏

a∈∂ B
�a

)
f (ωA)

On the set {Z−A(ωD) = 0} we have
∏

a∈∂ A �a = 0 a.e. [λA]. The last iterated
integral is unchanged if we omit the indicator function {Z−A 	= 0}, leaving

λB
( ∏

a∈∂ B
�a

)
f (ωA) = Z−B × (

rhs of <14>
)

The asserted equality follows.�

Everything from here onwards is under revision.

6. Conditional distributions for countable sets of sites

• Example to show difficulty of defining P via density when S is countable.
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• Example to show dangers of careless specification of condit distns.

7. Notes

See Griffeath (1976) for the main idea (the so-called Möbius inversion, as
presented in Lemma <12>) behind the proof of the Hammersley-Clifford result.

Georgii (1988, page 16) called a family of Markov kernels that satisfies a
condition like <14> a specification.
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