
Thus

pAc(ωAc) = λA p(ωA, ωAc) = ZN(A)

Z

∏
a∈F\∂ A

ψa(ωa)

where ZN(A) = ZN(A)(ωN(A)) := λA
∏

a∈∂ A
�a(ωa)

and

pA| Ac(ωA | ωAc) = p̃N(A)(ωA | ωN(A))

:= {ZN(A) �= 0}
ZN(A)

∏
a∈∂ A

�a(ωa) a.e. [λA ⊗ P
Ac

].

Notice that p̃N(A) depends on ω only through the coordinates ωA∪N(A). In fact,
it defines a new Markov kernel, a family of measures QN(A)( · | ωN(A)) on BA:
for each ωN(A),

d QN(A)

dλA
= p̃N(A)(ωA | ωN(A))

Notice that QN(A)( · | ωN(A)) is a probability measure at each ωN(A) for
which ZN(A)(ωN(A)) �= 0.

For D ⊆ A, write Q D
N(A) for the marginal distribution of ωD under QN(A).

The new Markov kernels fit together in an elegant way.

<14> Lemma. Suppose A ⊂ B. Then, at least for nonnegative, BA-measurable f ,

Q BN(A)

N(B) Q A
N(A) f (ωA) = Q A

N(B) f (ωA)

Remark. The Q BN(A)

N(B)
notation denotes an integral with respect

to the QN(B) distribution, for a fixed ωN(B), over the ωi coordinates
for i ∈ B ∩ N(A). The coordinates in N(A)\B are held fixed.

Proof. For later applications, I think it will be enough to have the result
when B ⊇ A ∪ N(A). I will prove only that case. The proof for case where
N(A)\B �= ∅ is similar but involves slightly more notation.

Let me simplify notation by defining N = N(A) and M = N(B) and
D = B\ (

A ∪ N
)
, so that B is a union of disjoint sets A ∪ N ∪ D. We need to

show that

<15> QN
M Q A

N f (ωA) = QM f.

Also note the dependence of the densities on particular blocks of coordinates
by writing

∏
a∈∂ A

�a(ωa) = G(ωA, ωN )
∏

a∈∂ B\∂ A
�a(ωa) = h(ωD, ωN , ωM)

so that

Z N (ωN ) = λAG(ωA, ωN )

Z M(ωM) = λD ⊗ λN ⊗ λAG(ωA, ωN )h(ωD, ωN , ωM)

= λN Z N (ωN )H(ωN , ωM)

where
H(ωN , ωM) := λDh(ωD, ωN , ωM)

The asserted equality <15> holds trivially (both sides are zero) when
Z M(ωM) is zero. For the rest of the proof consider a fixed ωM at which
Z M = Z M(ωM) �= 0. From the definition of QM on BB ,

d QM

d
(
λD ⊗ λN ⊗ λA

) = 1

Z M
G(ωA, ωN )h(ωD, ωN , ωM)
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The density of the marginal distribution of ωN under QM is obtained by
integrating out with respect to λD ⊗ λA:

d QN
M

dλN
= 1

Z M
λDλAG(ωA, ωN )H(ωD, ωN , ωM) = Z N (ωN )

Z M
H(ωN , ωM)

Thus the left-hand side of <15> equals

λN Z N (ωN )

Z M
H(ωN , ωM)

{Z N (ωN ) �= 0}
Z N (ωN )

λAG(ωA, ωN ) f (ωA)

= λN λA {Z N (ωN ) �= 0}
Z M

H(ωN , ωM)G(ωA, ωN ) f (ωA)

On the set {Z N (ωN ) = 0} we have G(ωA, ωN ) = 0 a.e. [λA]. The last iterated
integral is, therefore, unchanged if we omit the indicator function, leaving

1

Z M
λN λA H(ωN , ωM)G(ωA, ωN ) f (ωA)

= 1

Z M
λN λAλDh(ωD, ωN , ωM)G(ωA, ωN ) f (ωA) = QM f,

as asserted by <15>.�

6. Conditional distributions for countable sets of sites

When S is countably infinite it is not always possible to define a joint density
for ωS by taking an infinite product.

<16> Example. Suppose Xi = {0, 1} and λi is the uniform distribution on Xi , for
every i ∈ S = N. Suppose F = {{i, i + 1} : i ∈ S} andbetter example needed

�{i,i+1} = 2{ωi = ωi+1} + {ωi �= ωi+1}.
The product measure λS = ⊗i∈Sλ

i is well defined. We might hope to construct P

by defining

dP

dλS
(ωS) = 1

Z

∏
i∈S

�{i,i+1}(ωi , ωi+1)

where Z = λS
∏

i∈S �{i,i+1}(ωi , ωi+1).

Unfortunately,

Z ≥
∏

j∈N
λ ⊗ λ�{2 j,2 j+1}(ω2 j , ω2 j+1) =

∏
j∈N

(
1
2 × 2 + 1

2 × 1
) = ∞

We would end up with ∞/∞.�
An alternative method is to construct P as some sort of limit of distributions

on larger and larger finite chunks of S. The use of QN(A) conditional
distributions will help us to avoid an inconsistent assignment of conditional
distributions.

<17> Example. Suppose S = {1, 2} with Xi = {0, 1} and λi equal to counting
measure, for each i . Does there exist a probability density p(ω1, ω2) on X1 ×X2

with conditionaal densities

p1|2(ω1 | ω2) = α{ω1 = ω2} + α{ω1 �= ω2} where α = 1 − α

p2|1(ω2 | ω1) = β{ω1 = ω2} + β{ω1 �= ω2} where β = 1 − β

where α �= β? If there were such a p we would have

p(0, 0) + p(1, 1) = p1(0)p2|1(0 | 0) + p1(1)p2|1(1 | 1) = β
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A similar argument with the roles of the two coordinates interchanged would
give p(0, 0) + p(1, 1) = α, a contradiction.�

Everything from here onwards is under revision.

<18> Definition. Write S for the collection of all finite, nonempty subsets of S.
Write L for the set of all bounded, B-measurable, real functions on � thatcf. Georgii (1988, page 31)
depend on ω only through a finite set of coordinates S( f ) ⊂ S. For each A ∈ S,
write LA for { f ∈ L : S( f ) ⊆ A}. Write m f for supω | f (ω)|.

7. Notes

See Griffeath (1976) for the main idea (the so-called Möbius inversion, as
presented in Lemma <12>) behind the proof of the Hammersley-Clifford result.

Georgii (1988, page 16) called a family of Markov kernels that satisfies a
condition like the one asserted by Lemma <14> a specification.
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