
Markov Chains

1. Notation

Define N = {1, 2, . . .}, the set of natural numbers. Define

N0 = N ∪ {0}, N = N ∪ {∞}, N0 = N ∪ {0} ∪ {∞}
Let X be a set, equipped with the sigma-field B. Define � = XN0 . The

typical element of � is a sequence ω = (ω0, ω1, ω2, . . .). Equip � with F∞,
the smallest sigma-field on � for which each of the maps ω �→ ωn , for n ∈ N0,
is F∞\B-measurable. Write Fn for the smallest sigma-field on � for which all
of the maps ω �→ ωi for 0 ≤ i ≤ n are Fn\B-measurable.

For 0 ≤ n ≤ ∞, write M+(Fn) for the set of all Fn-measurable [0, ∞]-
valued functions on �. For n < ∞, a function belongs to M+(Fn) if and
only if it can be represented as fn(ω0, . . . , ωn) with fn a Bn+1-measurable,
nonegative function on Xn+1.

A Markov kernel on X is a family of probability measures {P(x, ·) : x ∈ X}
on B for which x �→ P(x, B) is B-measurable for each B ∈ B. I will also
write Px for P(x, ·) and, for an integrable function f on X, define

P f = Px f = P y
x f (y) = P(x, f ) =

∫
f (y)P(x, dy).

When X is finite, one can also think of P as a matrix of nonnegative numbers
for which

∑
y P(x, y) = 1 for each x . The notation P f then agrees with the

usual notation for the product of P and a column vector f .
Let µ be a probability measure on B. For each function f (ω) =

fn(ω0, . . . , ωn) in M+(Fn) define

Pµ f =
∫

. . .

∫
µ(dω0)P(ω0, dω1)P(ω1, dω2) . . . P(ωn−1, dωn) fn(ω0, . . . , ωn)

= µω0 Pω1
ω0

Pω2
ω1

. . . Pωn
ωn−1

fn(ω0, . . . , ωn)

It can be shown (Pollard 2001, Section 4.8) that Pµ has a unique extention to a
probability measure on F∞.

Write Px for Pµ when µ concentrates at the single point x

2. Markov chains

To begin with, suppose X is a countable set and B consists of all subsets
of X. Call {Xn : n ∈ N0} a Markov chain with state space X and transition
probabilities P(x, y) if

P{Xn+1 = y | X0 = x0, X1 = x1, . . . , Xn = xn} = P(xn, y)

for all all n, all x0, . . . , xn , and all y. If X0 has distribution µ then

P{X0 = x0, X1 = x1, . . . , Xn = xn} = µ{x0}P(x0, x1)P(x1, x2) . . . P(xn−1, xn)

More generally, for suitably integrable f ,

P f (X0, X1, . . . , Xn) = µx0 Px1
x0

. . . Pxn
xn−1

f (x0, f1, . . . , xn) = Pµ f.

Even more generally,

<1> P f (X0, X1, . . .) = Pµ f at least for all f ∈ M+(F∞).

In other words, as a map from the underlying probability space into the sequence
space �, the infinite random vector (X0, X1, . . .) has distribution Pµ.
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Property <1> also makes sense for a general state space X. It can be
used as the definition of a Markov chain with state space X and transition
probabilities P(x, y)

In fact, if we are only interested in probabilities and expectations involving
the Xi ’s, we can work exclusively with Pµ. More formally, we could identify Xi

with the i th coordinate map, that is Xi (ω) = ωi , so that the Markov chain is
actually defined by a sequence of random variables on the sequence space �.
Under Pµ, the chain has initial distribution µ; under Px , the chain starts from x .

3. The Markov property

Suppose k < n. Suppose f and g are nonnegative, measurable functions of
finitely many arguments. Then

Pµ f (ω0, ω1, . . . , ωk)g(ωk, . . . , ωn)

= µω0 Pω1
ω0

Pω2
ω1

. . . Pωk
ωk−1

f (ω0, . . . , ωk)
(
Pωk+1

ωk
. . . Pωn

ωn−1
g(ωk, . . . , ωn)

)
.

The expression in parentheses at the end corresponds to an expectation for a
chain started at ωk . Indeed, if we rename the dummy variables we get

Pωk+1
ωk

. . . Pωn
ωn−1

g(ωk, . . . , ωn)

= P y1
ωk

. . . P y�

y�−1
g(ωk, y1 . . . , y�) where � = n − k

= Pωk g

Thus

Pµ f (ω0, ω1, . . . , ωk)g(ωk, . . . , ωn) = Pµ

(
f (ω0, ω1, . . . , ωk)Pωk g

)
A simple generating class argument extends the equality at least to all g
in M+(F∞). The resulting assertion is called the Markov property.

4. Stopping times

A function τ : � → N0 is called a stopping time if {τ ≤ k} ∈ Fk for
each k ∈ N0. Equivalently, {τ = k} ∈ Fk for each k ∈ N0.

The sigma-field corresponding to “information available at time τ” is
defined by

Fτ = {F ∈ F∞ : F{τ ≤ k} ∈ Fk for all k ∈ N0}.
It is not too difficult to show that f ∈ M+(Fτ ) if and only if

f (ω) =
∑
k∈N0

fk(ω0, . . . , ωk){τ = k}

where fk is Bk+1-measurable and nonnegative.

5. The strong Markov property

Suppose f ∈ M+(Fτ ) and g ∈ M+(F∞). Then

Pµ f (ω)g
(
Xτ , Xτ+1, . . .

) {τ < ∞}
=

∑
k∈N0

Pµ f (ω){τ = k}g(ωk, ωk+1, . . .)

=
∑
k∈N0

Pµ f (ω){τ = k}Pωk g by the Markov property

= P
(

f (ω){τ < ∞}PXτ (ω)g
)
.
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This assertion is called the strong Markov property. It can also be expressed
as

Pµ

(
g

(
Xτ , Xτ+1, . . .

) | Fτ

) = Px g on the set {τ < ∞, Xτ = x}.

6. Exercises

Suppose X is a countable state space and α is some arbitrary, but fixed, state.
Try to use the strong Markov property to establish the following assertions.

Remember that τy = inf{n ∈ N : Xi = y}. Define ηy = ∑
n∈N

{Xn = y},
the number of times the chain visits state y.

Say that a state α is accessible from a state x , denoted by x � α, if
Px {τα < ∞} > 0.

[1] Show that the following three assertions are equivalent.

(i) Pα{τα < ∞} = 1

(ii) Pαηα = ∞
(iii) Pα{ηα = ∞} = 1

Remark. A state α that satisfies any (and hence all) of these three
requirements is said to be recurrent.

[2] Suppose x � α and Px {τx < ∞} = 1, for two states x, α ∈ X. Show that
Px {τα < ∞} = Pα{τα < ∞} = 1.

7. Notes

There are many texts that develop the standard theory for Markov chains on
countable state spaces. Chung (1967) is a classic. I find Freedman (1983) very
clear because many details are spelled out.
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