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MARKOV CHAINS

Notation

Define N = {1, 2, ...}, the set of natural numbers. Define
No = N U {0}, N = NU {o0}, Ny = NU {0} U {oo}

Let X be a set, equipped with the sigma-field B. Define Q = X™°. The
typical element of €2 is a sequence @ = (wy, w1, W, ...). Equip Q with F,
the smallest sigma-field on 2 for which each of the maps w — w,, for n € Ny,
is Fo\B-measurable. Write F, for the smallest sigma-field on © for which all
of the maps w + w; for 0 <i < n are F,\B-measurable.

For 0 < n < oo, write M*(F,) for the set of all F,-measurable [0, co]-
valued functions on Q. For n < oo, a function belongs to M™*(J,) if and
only if it can be represented as f,(wy, ..., w,) with f, a Bt measurable,
nonegative function on X"+

A Markov kernel on X is a family of probability measures { P (x, -) : x € X}
on B for which x + P(x, B) is B-measurable for each B € B. I will also
write P, for P(x,-) and, for an integrable function f on X, define

Pf=P.f =Pl f(y)=Px. )= / FOIP(x, dy).

When X is finite, one can also think of P as a matrix of nonnegative numbers
for which Zy P(x,y) =1 for each x. The notation Pf then agrees with the
usual notation for the product of P and a column vector f.

Let u be a probability measure on B. For each function f(w) =
fulwo, ..., w,) in MT(F,) define

Pﬂf:/"-/M(dwo)P(wOvdwl)P(wl’dCUZ)---P(wnflsdwn)fn(wOv-uswn)
=pu*PAPY ... P fulwo, ..., wy)

It can be shown (Pollard 2001, Section 4.8) that P, has a unique extention to a
probability measure on Fo.
Write P, for P, when p concentrates at the single point x

Markov chains

To begin with, suppose X is a countable set and B consists of all subsets
of X. Call {X, : n € Ny} a Markov chain with state space X and transition
probabilities P(x, y) if

P{Xp11 =y | Xo=x0, X1 =x1,..., X = X3} = P(xn, y)
for all all n, all xo, ..., x,, and all y. If X, has distribution u then
P{Xo = x0, X1 = x1, ..., Xp = xn} = puf{xo} P (x0, x1) P(x1, x2) ... P(Xp—1, X)
More generally, for suitably integrable f,
Pf(Xo, X1, ..o Xo) = W Py P f(xos f1,e00sX0) =Py f.
Even more generally,
Pf(Xo, Xy,..) =P, f at least for all f € M1 (F).

In other words, as a map from the underlying probability space into the sequence
space €2, the infinite random vector (X, X, ...) has distribution P,.
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Property <1> also makes sense for a general state space X. It can be
used as the definition of a Markov chain with state space X and transition
probabilities P (x, y)

In fact, if we are only interested in probabilities and expectations involving
the X;’s, we can work exclusively with I’,. More formally, we could identify X;
with the ith coordinate map, that is X;(w) = w;, so that the Markov chain is
actually defined by a sequence of random variables on the sequence space €2.
Under P, the chain has initial distribution w; under IP,, the chain starts from x.

The Markov property

Suppose k < n. Suppose f and g are nonnegative, measurable functions of
finitely many arguments. Then

]P)H.f(w()a a)la MR} a)k)g(wka MR ] wn)
=pu*PY Py .. Py f(wo, ..., @) (Pa‘fkk+1 c P gy, a),,)) .

Wk—1
The expression in parentheses at the end corresponds to an expectation for a
chain started at wy. Indeed, if we rename the dummy variables we get

Pyt Pyr 8@k, ... @)
=P) ... P g, Y1, Ye) where £ =n — k
= Pwkg

Thus

Puf(wo, o1, ..., 008wk, ..., o) =P, (flwo, @i, ..., 00)P,8)

A simple generating class argument extends the equality at least to all g
in M*(Fo). The resulting assertion is called the Markov property.

Stopping times

A function 7 : @ — Ny is called a stopping time if {t < k} € F; for
each k € Ny. Equivalently, {t = k} € & for each k € NO.
The sigma-field corresponding to “information available at time t” is
defined by
F, ={F € Fs : F{r <k} € F for all k € Ny}.

It is not too difficult to show that f € M*(F;) if and only if
f@) =" filw.....00{t =k)

k EN@

where f; is B¥*!-measurable and nonnegative.

The strong Markov property

Suppose f € M*T(F;) and g € M*(F). Then
Puf(@)g (Xr, Xes1,...) {T < o0}
= Z Pu f(@){r = k}g(wr, w1, - .)

kENg

= Z P, f(w){t = k)P, g by the Markov property
kENU

=P (f(@){r < 0o}Px,w8)-
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This assertion is called the strong Markov property. It can also be expressed
as

P, (g (X,, X1, ) | 9}) =P.g on the set {t < 00, X; = x}.

Exercises

Suppose X is a countable state space and « is some arbitrary, but fixed, state.
Try to use the strong Markov property to establish the following assertions.
Remember that 7, = inf{n € N : X; = y}. Define n, = ), {X, = y},
the number of times the chain visits state y.
Say that a state « is accessible from a state x, denoted by x ~ «, if
P {1, < o0} > 0.

Show that the following three assertions are equivalent.
1) Py{ry <00} =1
(ii) Pyne = 00
(i) Py{na = oo} =1
REMARK. A state o that satisfies any (and hence all) of these three

requirements is said to be recurrent.

Suppose x ~ « and P, {7, < oo} = 1, for two states x, ¢ € X. Show that
Pty < 00} =Py{ty < o0} = 1.

Notes

There are many texts that develop the standard theory for Markov chains on
countable state spaces. Chung (1967) is a classic. I find Freedman (1983) very
clear because many details are spelled out.
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