STATIONARY DISTRIBUTIONS (REVISED 29 JANUARY)

1. Notation

Start with a Markov kernel P(x,-) defined for sigma-field B on a state
space X. For k € N define the k-step transition probabilities P (x,-) by
PW(x,.) = P(x,-) and

PO, )= PPy,

That is, P® (x, f) = P, f(Xy). For each k, the Markov kernel P® P (x, -)
gives the transition probabilities for a P-chain observed at times O, &, 2k, . . ..
Define a new Markov kernel by

K@, fy=) (2"PP0, =) 27"P.f(Xy)

Note that P, {r4 < oo} > 0 if and only if K(x, A) > 0.

A seta € B is said to be an atom for the Markov kernel if P(x, -) = P(x’, -)
for all x,x" € a. Write P, for the common distribution P, and P, for the
common distribution P, for all x € o. The atom is said to be accessible if
x ~ o for all x € X, that is, if P, {1, < oo} > 0 for all x € X, in which case
the function fy(x) := K« is everywhere strictly positive.

2. Subinvariant measures

A measure & on B is said to be subinvariant for the Markov kernel P
if W* Py <, that is, u* Py f(y) < uf for all f € M+ (B).
<1> Lemma. Suppose u is subinvariant for P. Then
i) w*P™W(x, f) < uf for each f € M*(B).
(ii)) uW*K, f < uf for each f € MT(B).
(iii) If « is an accessible atom then p is sigma-finite.

Proof. For (i) argue inductively. For (ii) take weighted sums from (i).
For (iii), note that accessibilty of « gives K,a > 0 for every x € X and hence
O 1>Aix>eui{x: Kya > €} for each € > 0.

<2> Theorem. Suppose o is an accessible atom for the Markov kernel. Define
a measure A on B by

Af = ZneNPaf(w,,){n <1,}  foreach f € M*(B).

(i) A is a subinvariant, sigma-finite measure with ha = Py{t, < oo} < 1
and A X = P, 1,.

(ii) If p is a subinvariant measure then u > (va)A.

(iii) A is invariant if and only if « is recurrent, that is, ha = Py {7, < 0o} = 1.
In that case, A is the unique subinvariant measure giving mass 1 to the
set a.

(iv) If there exists a finite subinvariant measure y with puo > 0 then

¢! :=Pyt, is finite and ha = 1, the atom « is recurrent, and c) is an
invariant probability measure.
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<4>

Proof. Note that Pf(w,) =Py, f(wy+1). Thus
MPFY =) Poln < 0Py, f(@n11)
= ZﬂeN Py{n < 1o} f(@nt1) by Markov property
= ZneN Pofn = w0} f(wr11) + Z%N Po(n+1 < 13} f(wps1)
= Polte < 00} f(@es) + ) Paln < w0} f(@0).
By the strong Markov property, the first term equals P {t < oo}P,f.
The last sum is the same as the sum for Af except that the first term,
Py f(wi){ty = 1} = P, f, is missing. Add (Paf) P,{t = o0} to both sides to
get
)"(Pf) + (Paf)Poz{T = oo} ZA'f'
Clearly A is subinvariant. Sigma-finiteness of A follows from the fact that
=3 Pofo, €alfn <1} =Pufr, <00} <1
because w, ¢ o for n < t,. The measure A has total mass
AX:&}megng=mm

To establish assertion (ii), suppose ( is a subinvariant measure. Write C
for pwa. For a fixed f; € M (B),

wfi = uPfi=p{x € a} P fi + u*{x ¢ o} P fi
= CPfi+uPf,  where fo(x) :={x ¢ a} P, f1.
A similar argument gives
wPfr = CPyfo+nPfs  where f3(x) :={x ¢ a}Px f>.
And so on. It follows that, for each n € N,
pfi = C (Pafi+ Pafo+ Pufs+ ...+ Pufn)
A simple inductive argument shows that
Py fu =Pl = n}fi(w,) = Pihy
where
ho(wo, w1, ...) ={n < o} fwy) ={wi ¢ a for I <i < n}f(wn).
Indeed, P, fi =P, fi(w;) = Py h; and
Py for1 = PP{w1 ¢ a} Py, fi
=P{w ¢ a}P,, hy inductive hypothesis
=P {w; & alh,(w, ws,...) by Markov property
=P o g al{w; ¢ a for2 <i <n+1}f(@p11)
= thn-H
In particular, P, f; > Py{ty, > i} fi(w;) for each i € N, so that
whzCY . Pafta 2 i) f (@)

Let n tend to oo to deduce that ufy > CAf], as asserted by (ii).

For (iii), first note that equality <3> shows that A is invariant if
Py{ty, = oo} = 0. To establish the reverse implication—that invariance
implies recurrence—consider the strictly positive function fy(x) = Ko, for
which <3> and Lemma <1> imply

M (Pfo) + (Po fo) Palta = 00} = Afo = M Ky < A < 1.
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3.

(3]

4.

The fact that APfy = Afy <1 and P, fy > O then implies that P{z, = co} =0,
that is, « is recurrent, with 1 = Ao = Afy. If p is another subinvariant
mmeasure with wo = 1 then

1 =pa > pfo=Arfo =1,

which forces ufo = Afy. For each g € M (B) with 0 < g < 1 we must then
have u(fog) = A(fog), for otherwise

wfo = nfog + ufo(l —g) > Afog + Afo(1 — g) = Afo.

Rescaling then taking monotone limits we then get u(fog) = A(fog) for
each g € Mt (B). Replace g by g/fy to conclude that u = A.

For (iv), we may assume that the finite invariant measure u has po = 1.
From u > A we get 00 > AX = P, 1, =: ¢! so that « is recurrent and A = p
by (iii). The probability measure c is also invariant.

Exercises

Suppose Q is a probability measure concentrated on N. Define a Markov
kernel P on N by
P(l,y)=Qfy}  foryeN

and P(x,x — 1) = 1 for x > 2. Define 0y = 19 := inf{n € N : w, = 0} and
o+ = inf{n > 0; : w, = 0}.
Show that « = 0 in an accessible atom for P.

Suppose Q has finite mean, y := Q”y. Show that the random variables T; =
o; —o;—; for i € N are independent and identically distributed, each with
distribution Q. Show also that P has an invariant probability, defined by
m{x} = Q[x,00)/y.

Suppose D C N is stable under finite sums and 1 = gcdDD. Show that n € D
for all n large enough by following these steps.

(i) First show that there exists an x € D such that x + 1 € ID. Start with
an arbitrarily chosen pair x; < x, = x; + r from D. If every x in D
is divisible by r then r = 1, and we are done. Otherwise there exists
some x € D such that x = ar + y = ax; —ax; + y with ¢ € N and
0<y <r,thatis,ax, +y =x +ax; € D. If y > 1 repeat the argument
with x; replaced ax, and x; replaced by x 4+ ax;. And so on.

() fx,x+1eDthenx(x —j)+ (x+1)j+kx € Dfor0 < j <x and
k € No. Deduce that {x> +m : m € Ny} € D.

Notes

Theorem <2> is based on Meyn & Tweedie (1993, Theorem 10.2.1). I do not
know the history of the result.
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