1. Notation

Start with a Markov kernel $P(x, \cdot)$ defined for sigma-field \mathcal{B} on a state space \mathcal{X} . For $k \in \mathbb{N}$ define the *k-step transition probabilities* $P^{(k)}(x, \cdot)$ by $P^{(1)}(x, \cdot) = P(x, \cdot)$ and

$$P^{(k)}(x, \cdot) = P_{x}^{y} P^{(k-1)}(y, \cdot)$$

That is, $P^{(k)}(x, f) = \mathbb{P}_x f(X_k)$. For each k, the Markov kernel $P^{(k)}P(x, \cdot)$ gives the transition probabilities for a *P*-chain observed at times $0, k, 2k, \ldots$

Define a new Markov kernel by

$$K(x, f) = \sum_{n \in \mathbb{N}} 2^{-n} P^{(n)}(x, f) = \sum_{n \in \mathbb{N}} 2^{-n} \mathbb{P}_x f(X_n)$$

Note that $\mathbb{P}_{x}{\tau_{A} < \infty} > 0$ if and only if K(x, A) > 0.

A set $\alpha \in \mathcal{B}$ is said to be an *atom* for the Markov kernel if $P(x, \cdot) = P(x', \cdot)$ for all $x, x' \in \alpha$. Write P_{α} for the common distribution P_x and \mathbb{P}_{α} for the common distribution \mathbb{P}_x for all $x \in \alpha$. The atom is said to be *accessible* if $x \curvearrowright \alpha$ for all $x \in \mathcal{X}$, that is, if $\mathbb{P}_x \{\tau_\alpha < \infty\} > 0$ for all $x \in \mathcal{X}$, in which case the function $f_0(x) := K_x \alpha$ is everywhere strictly positive.

2. Subinvariant measures

Π

A measure μ on \mathcal{B} is said to be *subinvariant* for the Markov kernel P if $\mu^x P_x \leq \mu$, that is, $\mu^x P_x^y f(y) \leq \mu f$ for all $f \in \mathcal{M}^+(\mathcal{B})$.

<1> Lemma. Suppose μ is subinvariant for *P*. Then

(i) $\mu^{x} P^{(n)}(x, f) \leq \mu f$ for each $f \in \mathcal{M}^{+}(\mathcal{B})$.

(ii) $\mu^{x} K_{x} f \leq \mu f$ for each $f \in \mathcal{M}^{+}(\mathcal{B})$.

(iii) If α is an accessible atom then μ is sigma-finite.

Proof. For (i) argue inductively. For (ii) take weighted sums from (i). For (iii), note that accessibility of α gives $K_x \alpha > 0$ for every $x \in \mathcal{X}$ and hence $1 \ge \lambda \alpha \ge \epsilon \mu \{x : K_x \alpha \ge \epsilon\}$ for each $\epsilon > 0$.

<2> Theorem. Suppose α is an accessible atom for the Markov kernel. Define a measure λ on \mathbb{B} by

$$\lambda f = \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} f(\omega_n) \{ n \le \tau_{\alpha} \} \quad \text{for each } f \in \mathcal{M}^+(\mathcal{B}).$$

- (i) λ is a subinvariant, sigma-finite measure with $\lambda \alpha = \mathbb{P}_{\alpha} \{ \tau_{\alpha} < \infty \} \leq 1$ and $\lambda \mathfrak{X} = \mathbb{P}_{\alpha} \tau_{\alpha}$.
- (ii) If μ is a subinvariant measure then $\mu \ge (\nu \alpha)\lambda$.
- (iii) λ is invariant if and only if α is recurrent, that is, λα = P_α{τ_α < ∞} = 1. In that case, λ is the unique subinvariant measure giving mass 1 to the set α.
- (iv) If there exists a finite subinvariant measure μ with $\mu \alpha > 0$ then $c^{-1} := \mathbb{P}_{\alpha} \tau_{\alpha}$ is finite and $\lambda \alpha = 1$, the atom α is recurrent, and $c\lambda$ is an invariant probability measure.

Proof. Note that $Pf(\omega_n) = \mathbb{P}_{\omega_n} f(\omega_{n+1})$. Thus

$$\lambda(Pf) = \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{n \leq \tau_{\alpha}\} \mathbb{P}_{\omega_{n}} f(\omega_{n+1})$$

= $\sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{n \leq \tau_{\alpha}\} f(\omega_{n+1})$ by Markov property
= $\sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{n = \tau_{\alpha}\} f(\omega_{\tau+1}) + \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{n + 1 \leq \tau_{\alpha}\} f(\omega_{n+1})$
= $\mathbb{P}_{\alpha} \{\tau_{\alpha} < \infty\} f(\omega_{\tau+1}) + \sum_{n \geq 2} \mathbb{P}_{\alpha} \{n \leq \tau_{\alpha}\} f(\omega_{n}).$

By the strong Markov property, the first term equals $\mathbb{P}_{\alpha}\{\tau < \infty\}P_{\alpha}f$. The last sum is the same as the sum for λf except that the first term, $\mathbb{P}_{\alpha}f(\omega_1)\{\tau_{\alpha} \ge 1\} = P_{\alpha}f$, is missing. Add $(P_{\alpha}f)\mathbb{P}_{\alpha}\{\tau = \infty\}$ to both sides to get

<3>

$$\lambda(Pf) + (P_{\alpha}f)\mathbb{P}_{\alpha}\{\tau = \infty\} = \lambda f.$$

Clearly λ is subinvariant. Sigma-finiteness of λ follows from the fact that

$$\lambda \alpha = \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{ \omega_n \in \alpha \} \{ n \le \tau_{\alpha} \} = \mathbb{P}_{\alpha} \{ \tau_{\alpha} < \infty \} \le 1$$

because $\omega_n \notin \alpha$ for $n < \tau_{\alpha}$. The measure λ has total mass

$$\lambda \mathfrak{X} = \mathbb{P}_{\alpha} \sum_{n \in \mathbb{N}} \{ n \leq \tau_{\alpha} \} = \mathbb{P}_{\alpha} \tau_{\alpha}.$$

To establish assertion (ii), suppose μ is a subinvariant measure. Write C for $\mu\alpha$. For a fixed $f_1 \in \mathcal{M}^+(\mathcal{B})$,

$$\mu f_1 \ge \mu P f_1 = \mu^x \{x \in \alpha\} P_x f_1 + \mu^x \{x \notin \alpha\} P_x f_1$$

$$\ge C P_\alpha f_1 + \mu P f_2 \qquad \text{where } f_2(x) := \{x \notin \alpha\} P_x f_1.$$

A similar argument gives

$$\mu P f_2 \ge C P_{\alpha} f_2 + \mu P f_3 \qquad \text{where } f_3(x) := \{x \notin \alpha\} P_x f_2.$$

And so on. It follows that, for each $n \in \mathbb{N}$,

$$\mu f_1 \ge C \left(P_\alpha f_1 + P_\alpha f_2 + P_\alpha f_3 + \ldots + P_\alpha f_n \right)$$

A simple inductive argument shows that

<4>

$$P_x f_n = \mathbb{P}_x \{ \tau_\alpha \ge n \} f_1(\omega_n) = \mathbb{P}_x h_n$$

where

$$h_n(\omega_0, \omega_1, \ldots) = \{n \le \tau_\alpha\} f(\omega_n) = \{\omega_i \notin \alpha \text{ for } 1 \le i < n\} f(\omega_n)$$

Indeed, $P_x f_1 = \mathbb{P}_x f_1(\omega_1) = \mathbb{P}_x h_1$ and

$$P_{x}f_{n+1} = P_{x}^{\omega_{1}} \{\omega_{1} \notin \alpha\} P_{\omega_{1}}f_{n}$$

$$= \mathbb{P}_{x}^{\omega_{1}} \{\omega_{1} \notin \alpha\} \mathbb{P}_{\omega_{1}}h_{n} \quad \text{inductive hypothesis}$$

$$= \mathbb{P}_{x} \{\omega_{1} \notin \alpha\} h_{n}(\omega_{1}, \omega_{2}, \ldots) \quad \text{by Markov property}$$

$$= \mathbb{P}_{x} \{\omega_{1} \notin \alpha\} \{\omega_{i} \notin \alpha \text{ for } 2 \leq i < n+1\} f(\omega_{n+1})$$

$$= \mathbb{P}_{x}h_{n+1}$$

In particular, $P_{\alpha}f_i \geq \mathbb{P}_{\alpha}\{\tau_{\alpha} \geq i\}f_1(\omega_i)$ for each $i \in \mathbb{N}$, so that

$$\mu f_1 \ge C \sum_{1 \le i \le n} \mathbb{P}_{\alpha} \{ \tau_a \ge i \} f(\omega_i)$$

Let *n* tend to ∞ to deduce that $\mu f_1 \ge C \lambda f_1$, as asserted by (ii).

For (iii), first note that equality $\langle 3 \rangle$ shows that λ is invariant if $\mathbb{P}_{\alpha}\{\tau_{\alpha} = \infty\} = 0$. To establish the reverse implication—that invariance implies recurrence—consider the strictly positive function $f_0(x) = K_x \alpha$, for which $\langle 3 \rangle$ and Lemma $\langle 1 \rangle$ imply

$$\lambda^{x}(Pf_{0}) + (P_{\alpha}f_{0})\mathbb{P}_{\alpha}\{\tau_{\alpha} = \infty\} = \lambda f_{0} = \lambda^{x}K_{x}\alpha \leq \lambda\alpha \leq 1.$$

The fact that $\lambda P f_0 = \lambda f_0 \le 1$ and $P_{\alpha} f_0 > 0$ then implies that $\mathbb{P}\{\tau_{\alpha} = \infty\} = 0$, that is, α is recurrent, with $1 = \lambda \alpha = \lambda f_0$. If μ is another subinvariant mmeasure with $\mu \alpha = 1$ then

$$1 = \mu \alpha \ge \mu f_0 \ge \lambda f_0 = 1,$$

which forces $\mu f_0 = \lambda f_0$. For each $g \in \mathcal{M}^+(\mathcal{B})$ with $0 \le g \le 1$ we must then have $\mu(f_0g) = \lambda(f_0g)$, for otherwise

$$\mu f_0 = \mu f_0 g + \mu f_0 (1 - g) > \lambda f_0 g + \lambda f_0 (1 - g) = \lambda f_0.$$

Rescaling then taking monotone limits we then get $\mu(f_0g) = \lambda(f_0g)$ for each $g \in \mathcal{M}^+(\mathcal{B})$. Replace g by g/f_0 to conclude that $\mu = \lambda$.

For (iv), we may assume that the finite invariant measure μ has $\mu \alpha = 1$. From $\mu \ge \lambda$ we get $\infty > \lambda \mathcal{X} = \mathbb{P}_{\alpha} \tau_{\alpha} =: c^{-1}$ so that α is recurrent and $\lambda = \mu$ \Box by (iii). The probability measure $c\lambda$ is also invariant.

3. Exercises

Suppose Q is a probability measure concentrated on \mathbb{N} . Define a Markov kernel P on \mathbb{N} by

 $P(1, y) = Q\{y\}$ for $y \in \mathbb{N}$

and P(x, x - 1) = 1 for $x \ge 2$. Define $\sigma_1 = \tau_0 := \inf\{n \in \mathbb{N} : \omega_n = 0\}$ and $\sigma_{i+1} = \inf\{n > \sigma_i : \omega_n = 0\}$.

- [1] Show that $\alpha = 0$ in an accessible atom for *P*.
- [2] Suppose Q has finite mean, $\gamma := Q^{y}y$. Show that the random variables $T_{i} = \sigma_{i} \sigma_{i-1}$ for $i \in \mathbb{N}$ are independent and identically distributed, each with distribution Q. Show also that P has an invariant probability, defined by $\pi\{x\} = Q[x, \infty)/\gamma$.
- [3] Suppose $\mathbb{D} \subseteq \mathbb{N}$ is stable under finite sums and $1 = \operatorname{gcd} \mathbb{D}$. Show that $n \in \mathbb{D}$ for all *n* large enough by following these steps.
 - (i) First show that there exists an $x \in \mathbb{D}$ such that $x + 1 \in \mathbb{D}$. Start with an arbitrarily chosen pair $x_1 < x_2 = x_1 + r$ from \mathbb{D} . If every x in \mathbb{D} is divisible by r then r = 1, and we are done. Otherwise there exists some $x \in \mathbb{D}$ such that $x = \alpha r + \gamma = \alpha x_2 - \alpha x_1 + \gamma$ with $\alpha \in \mathbb{N}$ and $0 < \gamma < r$, that is, $\alpha x_2 + \gamma = x + \alpha x_1 \in \mathbb{D}$. If $\gamma > 1$ repeat the argument with x_1 replaced αx_2 and x_2 replaced by $x + \alpha x_1$. And so on.
 - (ii) If $x, x + 1 \in \mathbb{D}$ then $x(x j) + (x + 1)j + kx \in \mathbb{D}$ for $0 \le j \le x$ and $k \in \mathbb{N}_0$. Deduce that $\{x^2 + m : m \in \mathbb{N}_0\} \subseteq \mathbb{D}$.

4. Notes

Theorem $\langle 2 \rangle$ is based on Meyn & Tweedie (1993, Theorem 10.2.1). I do not know the history of the result.

References

Meyn, S. P. & Tweedie, R. L. (1993), Markov Chains and Stochastic Stability, Springer-Verlag.