
Stationary distributions (revised 29 January)

1. Notation

Start with a Markov kernel P(x, ·) defined for sigma-field B on a state
space X. For k ∈ N define the k-step transition probabilities P (k)(x, ·) by
P (1)(x, ·) = P(x, ·) and

P (k)(x, ·) = P y
x P (k−1)(y, ·)

That is, P (k)(x, f ) = Px f (Xk). For each k, the Markov kernel P (k) P(x, ·)
gives the transition probabilities for a P-chain observed at times 0, k, 2k, . . ..

Define a new Markov kernel by

K (x, f ) =
∑

n∈N
2−n P (n)(x, f ) =

∑
n∈N

2−n
Px f (Xn)

Note that Px {τA < ∞} > 0 if and only if K (x, A) > 0.
A set α ∈ B is said to be an atom for the Markov kernel if P(x, ·) = P(x ′, ·)

for all x, x ′ ∈ α. Write Pα for the common distribution Px and Pα for the
common distribution Px for all x ∈ α. The atom is said to be accessible if
x � α for all x ∈ X, that is, if Px {τα < ∞} > 0 for all x ∈ X, in which case
the function f0(x) := Kxα is everywhere strictly positive.

2. Subinvariant measures

A measure µ on B is said to be subinvariant for the Markov kernel P
if µx Px ≤ µ, that is, µx P y

x f (y) ≤ µ f for all f ∈ M+(B).

<1> Lemma. Suppose µ is subinvariant for P . Then
(i) µx P (n)(x, f ) ≤ µ f for each f ∈ M+(B).

(ii) µx Kx f ≤ µ f for each f ∈ M+(B).
(iii) If α is an accessible atom then µ is sigma-finite.

Proof. For (i) argue inductively. For (ii) take weighted sums from (i).
For (iii), note that accessibilty of α gives Kxα > 0 for every x ∈ X and hence
1 ≥ λα ≥ εµ{x : Kxα ≥ ε} for each ε > 0.�

<2> Theorem. Suppose α is an accessible atom for the Markov kernel. Define
a measure λ on B by

λ f =
∑

n∈N
Pα f (ωn){n ≤ τα} for each f ∈ M+(B).

(i) λ is a subinvariant, sigma-finite measure with λα = Pα{τα < ∞} ≤ 1
and λX = Pατα .

(ii) If µ is a subinvariant measure then µ ≥ (να)λ.
(iii) λ is invariant if and only if α is recurrent, that is, λα = Pα{τα < ∞} = 1.

In that case, λ is the unique subinvariant measure giving mass 1 to the
set α.

(iv) If there exists a finite subinvariant measure µ with µα > 0 then
c−1 := Pατα is finite and λα = 1, the atom α is recurrent, and cλ is an
invariant probability measure.

29 January 2006 Stat 606, version: 15jan06 c©David Pollard 1



Proof. Note that P f (ωn) = Pωn f (ωn+1). Thus

λ(P f ) =
∑

n∈N
Pα{n ≤ τα}Pωn f (ωn+1)

=
∑

n∈N
Pα{n ≤ τα} f (ωn+1) by Markov property

=
∑

n∈N
Pα{n = τα} f (ωτ+1) +

∑
n∈N

Pα{n + 1 ≤ τα} f (ωn+1)

= Pα{τα < ∞} f (ωτ+1) +
∑

n≥2
Pα{n ≤ τα} f (ωn).

By the strong Markov property, the first term equals Pα{τ < ∞}Pα f .
The last sum is the same as the sum for λ f except that the first term,
Pα f (ω1){τα ≥ 1} = Pα f , is missing. Add

(
Pα f

)
Pα{τ = ∞} to both sides to

get

<3> λ(P f ) + (
Pα f

)
Pα{τ = ∞} = λ f.

Clearly λ is subinvariant. Sigma-finiteness of λ follows from the fact that

λα =
∑

n∈N
Pα{ωn ∈ α}{n ≤ τα} = Pα{τα < ∞} ≤ 1

because ωn /∈ α for n < τα . The measure λ has total mass

λX = Pα

∑
n∈N

{n ≤ τα} = Pατα.

To establish assertion (ii), suppose µ is a subinvariant measure. Write C
for µα. For a fixed f1 ∈ M+(B),

µ f1 ≥ µP f1 = µx {x ∈ α}Px f1 + µx {x /∈ α}Px f1

≥ C Pα f1 + µP f2 where f2(x) := {x /∈ α}Px f1.

A similar argument gives

µP f2 ≥ C Pα f2 + µP f3 where f3(x) := {x /∈ α}Px f2.

And so on. It follows that, for each n ∈ N,

µ f1 ≥ C
(
Pα f1 + Pα f2 + Pα f3 + . . . + Pα fn

)

A simple inductive argument shows that

<4> Px fn = Px {τα ≥ n} f1(ωn) = Px hn

where

hn(ω0, ω1, . . .) = {n ≤ τα} f (ωn) = {ωi /∈ α for 1 ≤ i < n} f (ωn).

Indeed, Px f1 = Px f1(ω1) = Px h1 and

Px fn+1 = Pω1
x {ω1 /∈ α}Pω1 fn

= P
ω1
x {ω1 /∈ α}Pω1 hn inductive hypothesis

= Px {ω1 /∈ α}hn(ω1, ω2, . . .) by Markov property

= Px {ω1 /∈ α}{ωi /∈ α for 2 ≤ i < n + 1} f (ωn+1)

= Px hn+1

In particular, Pα fi ≥ Pα{τα ≥ i} f1(ωi ) for each i ∈ N, so that

µ f1 ≥ C
∑

1≤i≤n
Pα{τa ≥ i} f (ωi )

Let n tend to ∞ to deduce that µ f1 ≥ Cλ f1, as asserted by (ii).
For (iii), first note that equality <3> shows that λ is invariant if

Pα{τα = ∞} = 0. To establish the reverse implication—that invariance
implies recurrence—consider the strictly positive function f0(x) = Kxα, for
which <3> and Lemma <1> imply

λx (P f0) + (
Pα f0

)
Pα{τα = ∞} = λ f0 = λx Kxα ≤ λα ≤ 1.
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The fact that λP f0 = λ f0 ≤ 1 and Pα f0 > 0 then implies that P{τα = ∞} = 0,
that is, α is recurrent, with 1 = λα = λ f0. If µ is another subinvariant
mmeasure with µα = 1 then

1 = µα ≥ µ f0 ≥ λ f0 = 1,

which forces µ f0 = λ f0. For each g ∈ M+(B) with 0 ≤ g ≤ 1 we must then
have µ( f0g) = λ( f0g), for otherwise

µ f0 = µ f0g + µ f0(1 − g) > λ f0g + λ f0(1 − g) = λ f0.

Rescaling then taking monotone limits we then get µ( f0g) = λ( f0g) for
each g ∈ M+(B). Replace g by g/ f0 to conclude that µ = λ.

For (iv), we may assume that the finite invariant measure µ has µα = 1.
From µ ≥ λ we get ∞ > λX = Pατα =: c−1 so that α is recurrent and λ = µ

by (iii). The probability measure cλ is also invariant.�

3. Exercises

Suppose Q is a probability measure concentrated on N. Define a Markov
kernel P on N by

P(1, y) = Q{y} for y ∈ N

and P(x, x − 1) = 1 for x ≥ 2. Define σ1 = τ0 := inf{n ∈ N : ωn = 0} and
σi+1 = inf{n > σi : ωn = 0}.

[1] Show that α = 0 in an accessible atom for P .

[2] Suppose Q has finite mean, γ := Qy y. Show that the random variables Ti =
σi − σi−1 for i ∈ N are independent and identically distributed, each with
distribution Q. Show also that P has an invariant probability, defined by
π{x} = Q[x, ∞)/γ .

[3] Suppose D ⊆ N is stable under finite sums and 1 = gcd D. Show that n ∈ D

for all n large enough by following these steps.

(i) First show that there exists an x ∈ D such that x + 1 ∈ D. Start with
an arbitrarily chosen pair x1 < x2 = x1 + r from D. If every x in D

is divisible by r then r = 1, and we are done. Otherwise there exists
some x ∈ D such that x = αr + γ = αx2 − αx1 + γ with α ∈ N and
0 < γ < r , that is, αx2 + γ = x + αx1 ∈ D. If γ > 1 repeat the argument
with x1 replaced αx2 and x2 replaced by x + αx1. And so on.

(ii) If x, x + 1 ∈ D then x(x − j) + (x + 1) j + kx ∈ D for 0 ≤ j ≤ x and
k ∈ N0. Deduce that {x2 + m : m ∈ N0} ⊆ D.

4. Notes

Theorem <2> is based on Meyn & Tweedie (1993, Theorem 10.2.1). I do not
know the history of the result.
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