1. Notation

Start with a Markov kernel $P(x, \cdot)$ defined for sigma-field \mathcal{B} on a state space \mathcal{X} . For $n \in \mathbb{N}$ define the *n*-step transition probabilities $P^{(n)}(x, \cdot)$ by $P^{(1)}(x, \cdot) = P(x, \cdot)$ and

$$P^{(n)}(x, \cdot) = P_x^y P^{(n-1)}(y, \cdot)$$

That is, $P^{(n)}(x, f) = \mathbb{P}_x f(X_n)$.

Define a new Markov kernel by

$$K(x,\cdot) = \sum_{n \in \mathbb{N}} 2^{-n} P^{(n)}(x, f)$$

so that $K(x, f) = \sum_{n \in \mathbb{N}} 2^{-n} \mathbb{P}_x f(X_n)$. Note that $\mathbb{P}_x \{\tau_A < \infty\} > 0$ if and only if K(x, A) > 0.

A set $\alpha \in \mathcal{B}$ is said to be an *atom* for the Markov kernel if $P(x, \cdot) = P(x', \cdot)$ for all $x, x' \in \alpha$. Write \mathbb{P}_{α} for the common distribution \mathbb{P}_x for all $x \in \alpha$. The atom is said to be *accessible* if $x \curvearrowright \alpha$ for all $x \in \mathcal{X}$, that is, if $\mathbb{P}_x\{\tau_\alpha < \infty\} > 0$ for all $x \in \mathcal{X}$.

2. Subinvariant measures

A measure λ on \mathcal{B} is said to be *subinvariant* for the Markov kernel P if $\lambda^x P_x \leq \lambda$, that is, $\lambda^x P_x^y f(y) \leq \lambda f$ for all $f \in \mathcal{M}^+(\mathcal{B})$.

If λ is subinvariant, argue inductively that $\lambda^x P^{(n)}(x, f) \leq \lambda f$ for each $f \in \mathcal{M}^+(\mathcal{B})$. Then take a weighted sum to deduce that $\lambda^x K(x, f) \leq \lambda f$. If α is an accessible atom we have $K(x, \alpha) > 0$ for every $x \in \mathcal{X}$. If $\lambda \alpha < \infty$, it then follows that λ is sigma-finite.

<1> Theorem. Suppose α is an accessible atom for the Markov kernel. Define a measure λ on \mathbb{B} by

$$\lambda f = \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} f(\omega_n) \{ n \le \tau_{\alpha} \} \quad \text{for each } f \in \mathcal{M}^+(\mathcal{B}).$$

- (i) λ is a subinvariant, sigma-finite measure
- (ii) λ is invariant if and only if α is recurrent, that is, $\mathbb{P}_{\alpha}\{\tau_{\alpha} < \infty\} = 1$.
- (iii) $\lambda \mathfrak{X} = \mathbb{P}_{\alpha} \tau_a$

<2>

- (iv) if v is a subinvariant measure then $v \ge (v\alpha)\lambda$.
- (v) if there exists a finite subinvariant measure ν with $\nu \alpha > 0$ then $c^{-1} := \mathbb{P}_{\alpha} \tau_{\alpha}$ is finite then $\lambda \alpha = 1$, the atom α is recurrent, and $c\lambda$ is an invariant probability measure.

Proof. Note that $Pf(\omega_n) = \mathbb{P}_{\omega_n} f(\omega_{n+1})$. Thus

$$\begin{split} \lambda(Pf) &= \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{ n \leq \tau_{\alpha} \} \mathbb{P}_{\omega_{n}} f(\omega_{n+1}) \\ &= \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{ n \leq \tau_{\alpha} \} f(\omega_{n+1}) \quad \text{by Markov property} \\ &= \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{ n = \tau_{\alpha} \} f(\omega_{\tau+1}) + \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{ n + 1 \leq \tau_{\alpha} \} f(\omega_{n+1}) \\ &= \mathbb{P}_{\alpha} \{ \tau_{\alpha} < \infty \} f(\omega_{\tau+1}) + \sum_{n \geq 2} \mathbb{P}_{\alpha} \{ n \leq \tau_{\alpha} \} f(\omega_{n}). \end{split}$$

By the strong Markov property, the first term equals $\mathbb{P}_{\alpha}\{\tau < \infty\}f(\omega_1)$. The last sum is the same as the sum for λf except that the first term, $\mathbb{P}_{\alpha}f(\omega_1)$, is missing. Add $\mathbb{P}_{\alpha}\{\tau = \infty\}f(\omega_1)$ to both sides to get

$$\lambda(Pf) + \mathbb{P}_{\alpha}\{\tau = \infty\}f(\omega_1) = \lambda f.$$

16 January 2006 Stat 606, version: 15jan06 © David Pollard

Clearly λ is subinvariant, and invariant if $\mathbb{P}_{\alpha} \{ \tau_{\alpha} = \infty \} = 0$.

Sigma-finiteness of λ follows from the fact that

$$\lambda \alpha = \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{ \omega_n \in \alpha \} \{ n \le \tau_{\alpha} \} = \mathbb{P}_{\alpha} \{ \tau_{\alpha} < \infty \} \le 1$$

because $\omega_n \notin \alpha$ for $n < \tau_{\alpha}$.

To show that invariance implies recurrence, consider the strictly positive function $f(x) = K_x \alpha$, for which <2> implies

$$\lambda^{x} K_{x} \alpha + \mathbb{P}_{\alpha} \{ \tau_{\alpha} = \infty \} K_{\omega_{1}} \alpha = \lambda^{x} K_{x} \alpha \leq 1.$$

Deduce that $\mathbb{P}{\tau_{\alpha} = \infty} = 0$, that is, α is recurrent.

The measure λ is finite when

$$\infty > \lambda \mathfrak{X} = \sum_{n \in \mathbb{N}} \mathbb{P}_{\alpha} \{ n \leq \tau_{\alpha} \} = \mathbb{P}_{\alpha} \tau_{\alpha},$$

in which case $\mathbb{P}{\tau_{\alpha} = \infty} = 0$ and λ is invariant.

Next, suppose ν is a subinvariant measure. For a fixed f in $\mathcal{M}^+(\mathcal{B})$ define

$$h_n(\omega_0, \omega_1, \ldots) = \{n \le \tau_\alpha\} f(\omega_n) = \{\omega_i \notin \alpha \text{ for } 1 \le i < n\} f(\omega_n).$$

Define $G_n(x) = \mathbb{P}_x h_n(\omega)$. Note that $G_1(x) = P_x f$ and

$$P_x^y \{ y \notin \alpha \} G_n(y) = \mathbb{P}_x \{ \omega_1 \notin \alpha \} \mathbb{P}_{\omega_1} h_n$$

= $\mathbb{P}_x \{ \omega_1 \notin \alpha \} h_n(\omega_1, \omega_2, \ldots)$ by Markov property
= $\mathbb{P}_x \{ \omega_1 \notin \alpha \} \{ \omega_i \notin \alpha \text{ for } 2 \le i < n+1 \} f(\omega_{n+1})$
= $G_{n+1}(x)$.

<3>

Each G_n takes a constant value, $G_n(\alpha) = \mathbb{P}_{\alpha}h_n$, on α . Now invoke subinvariance of ν repeatedly:

$$\nu f \ge \nu^{x} P_{x} f = \nu^{x} G_{1}(x)$$

$$= \nu^{x} \{x \in \alpha\} G_{1}(x) + \nu^{x} \{x \notin \alpha\} G_{1}(x)$$

$$\ge C G_{1}(\alpha) + \nu^{x} P_{x}^{y} \left(\{y \notin \alpha\} G_{1}(y)\right) \quad \text{where } C := \nu \alpha$$

$$= C G_{1}(\alpha) + \nu^{x} \{x \in \alpha\} G_{2}(x) + \nu^{x} \{x \notin \alpha\} G_{2}(x) \quad \text{by } <3>$$

$$\ge C \left(G_{1}(\alpha) + G_{2}(\alpha)\right) + \nu^{x} P_{x}^{y} \left(\{y \notin \alpha\} G_{1}(y)\right).$$

And so on. For each $n \in \mathbb{N}$,

$$\nu f \ge C \left(G_1(\alpha) + G_2(\alpha) + \ldots + G_n(\alpha) \right)$$

Let *n* tend to infinity, noting that $\sum_{n \in \mathbb{N}} G_n(\alpha) = \lambda f$ to complete the proof \Box of (iv).

3. Exercises

2

Suppose Q is a probability measure concentrated on \mathbb{N} . Define a Markov kernel P on \mathbb{N} by

$$P(1, y) = Q\{y\}$$
 for $y \in \mathbb{N}$

and P(x, x - 1) = 1 for $x \ge 2$. Define $\sigma_1 = \tau_0 := \inf\{n \in \mathbb{N} : \omega_n = 0\}$ and $\sigma_{i+1} = \inf\{n > \sigma_i : \omega_n = 0\}$.

- [1] Show that $\alpha = 0$ in an accessible atom for *P*.
- [2] Suppose Q has finite mean, $\gamma := Q^y y$. Show that the random variables $T_i = \sigma_i \sigma_{i-1}$ for $i \in \mathbb{N}$ are independent and identically distributed, each with distribution Q. Show also that P has an invariant probability, defined by $\pi\{x\} = Q[x, \infty)/\gamma$.
- [3] Suppose $\mathbb{D} \subseteq \mathbb{N}$ is stable under finite sums and $1 = \operatorname{gcd} \mathbb{D}$. Show that $n \in \mathbb{D}$ for all *n* large enough by following these steps.

- (i) First show that there exists an $x \in \mathbb{D}$ such that $x + 1 \in \mathbb{D}$. Start with an arbitrarily chosen pair $x_1 < x_2 = x_1 + r$ from \mathbb{D} . If every x in \mathbb{D} is divisible by r then r = 1, and we are done. Otherwise there exists some $x \in \mathbb{D}$ such that $x = \alpha r + \gamma = \alpha x_2 - \alpha x_1 + \gamma$ with $\alpha \in \mathbb{N}$ and $0 < \gamma < r$, that is, $\alpha x_2 + \gamma = x + \alpha x_1 \in \mathbb{D}$. If $\gamma > 1$ repeat the argument with x_1 replaced αx_2 and x_2 replaced by $x + \alpha x_1$. And so on.
- (ii) If $x, x + 1 \in \mathbb{D}$ then $x(x j) + (x + 1)j + kx \in \mathbb{D}$ for $0 \le j \le x$ and $k \in \mathbb{N}_0$. Deduce that $\{x^2 + m : m \in \mathbb{N}_0\} \subseteq \mathbb{D}$.

4. Notes

Theorem <1> is based on Meyn & Tweedie (1993, Theorem 10.2.1). I do not know the history of the result.

References

Meyn, S. P. & Tweedie, R. L. (1993), *Markov Chains and Stochastic Stability*, Springer-Verlag.