
Stationary distributionns

1. Notation

Start with a Markov kernel P(x, ·) defined for sigma-field B on a state
space X. For n ∈ N define the n-step transition probabilities P (n)(x, ·) by
P (1)(x, ·) = P(x, ·) and

P (n)(x, ·) = P y
x P (n−1)(y, ·)

That is, P (n)(x, f ) = Px f (Xn).
Define a new Markov kernel by

K (x, ·) =
∑

n∈N
2−n P (n)(x, f )

so that K (x, f ) = ∑
n∈N

2−n
Px f (Xn). Note that Px {τA < ∞} > 0 if and only

if K (x, A) > 0.
A set α ∈ B is said to be an atom for the Markov kernel if P(x, ·) = P(x ′, ·)

for all x, x ′ ∈ α. Write Pα for the common distribution Px for all x ∈ α. The
atom is said to be accessible if x � α for all x ∈ X, that is, if Px {τα < ∞} > 0
for all x ∈ X.

2. Subinvariant measures

A measure λ on B is said to be subinvariant for the Markov kernel P
if λx Px ≤ λ, that is, λx P y

x f (y) ≤ λ f for all f ∈ M+(B).
If λ is subinvariant, argue inductively that λx P (n)(x, f ) ≤ λ f for each

f ∈ M+(B). Then take a weighted sum to deduce that λx K (x, f ) ≤ λ f . If α

is an accessible atom we have K (x, α) > 0 for every x ∈ X. If λα < ∞, it
then follows that λ is sigma-fiinite.

<1> Theorem. Suppose α is an accessible atom for the Markov kernel. Define
a measure λ on B by

λ f =
∑

n∈N
Pα f (ωn){n ≤ τα} for each f ∈ M+(B).

(i) λ is a subinvariant, sigma-finite measure
(ii) λ is invariant if and only if α is recurrent, that is, Pα{τα < ∞} = 1.

(iii) λX = Pατa

(iv) if ν is a subinvariant measure then ν ≥ (να)λ.
(v) if there exists a finite subinvariant measure ν with να > 0 then

c−1 := Pατα is finite then λα = 1, the atom α is recurrent, and cλ is an
invariant probability measure.

Proof. Note that P f (ωn) = Pωn f (ωn+1). Thus

λ(P f ) =
∑

n∈N
Pα{n ≤ τα}Pωn f (ωn+1)

=
∑

n∈N
Pα{n ≤ τα} f (ωn+1) by Markov property

=
∑

n∈N
Pα{n = τα} f (ωτ+1) +

∑
n∈N

Pα{n + 1 ≤ τα} f (ωn+1)

= Pα{τα < ∞} f (ωτ+1) +
∑

n≥2
Pα{n ≤ τα} f (ωn).

By the strong Markov property, the first term equals Pα{τ < ∞} f (ω1). The
last sum is the same as the sum for λ f except that the first term, Pα f (ω1), is
missing. Add Pα{τ = ∞} f (ω1) to both sides to get

<2> λ(P f ) + Pα{τ = ∞} f (ω1) = λ f.
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Clearly λ is subinvariant, and invariant if Pα{τα = ∞} = 0.
Sigma-finiteness of λ follows from the fact that

λα =
∑

n∈N
Pα{ωn ∈ α}{n ≤ τα} = Pα{τα < ∞} ≤ 1

because ωn /∈ α for n < τα .
To show that invariance implies recurrence, consider the strictly positive

function f (x) = Kxα, for which <2> implies

λx Kxα + Pα{τα = ∞}Kω1α = λx Kxα ≤ 1.

Deduce that P{τα = ∞} = 0, that is, α is recurrent.
The measure λ is finite when

∞ > λX =
∑

n∈N
Pα{n ≤ τα} = Pατα,

in which case P{τα = ∞} = 0 and λ is invariant.
Next, suppose ν is a subinvariant measure. For a fixed f in M+(B) define

hn(ω0, ω1, . . .) = {n ≤ τα} f (ωn) = {ωi /∈ α for 1 ≤ i < n} f (ωn).

Define Gn(x) = Px hn(ω). Note that G1(x) = Px f and

P y
x {y /∈ α}Gn(y) = Px {ω1 /∈ α}Pω1 hn

= Px {ω1 /∈ α}hn(ω1, ω2, . . .) by Markov property

= Px {ω1 /∈ α}{ωi /∈ α for 2 ≤ i < n + 1} f (ωn+1)

= Gn+1(x).<3>

Each Gn takes a constant value, Gn(α) = Pαhn , on α. Now invoke subinvariance
of ν repeatedly:

ν f ≥ νx Px f = νx G1(x)

= νx {x ∈ α}G1(x) + νx {x /∈ α}G1(x)

≥ CG1(α) + νx P y
x

({y /∈ α}G1(y)
)

where C := να

= CG1(α) + νx {x ∈ α}G2(x) + νx {x /∈ α}G2(x) by <3>

≥ C
(
G1(α) + G2(α)

) + νx P y
x

({y /∈ α}G1(y)
)
.

And so on. For each n ∈ N,

ν f ≥ C
(
G1(α) + G2(α) + . . . + Gn(α)

)

Let n tend to infinity, noting that
∑

n∈N
Gn(α) = λ f to complete the proof

of (iv).�

3. Exercises

Suppose Q is a probability measure concentrated on N. Define a Markov
kernel P on N by

P(1, y) = Q{y} for y ∈ N

and P(x, x − 1) = 1 for x ≥ 2. Define σ1 = τ0 := inf{n ∈ N : ωn = 0} and
σi+1 = inf{n > σi : ωn = 0}.

[1] Show that α = 0 in an accessible atom for P .

[2] Suppose Q has finite mean, γ := Qy y. Show that the random variables Ti =
σi − σi−1 for i ∈ N are independent and identically distributed, each with
distribution Q. Show also that P has an invariant probability, defined by
π{x} = Q[x, ∞)/γ .

[3] Suppose D ⊆ N is stable under finite sums and 1 = gcd D. Show that n ∈ D

for all n large enough by following these steps.
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(i) First show that there exists an x ∈ D such that x + 1 ∈ D. Start with
an arbitrarily chosen pair x1 < x2 = x1 + r from D. If every x in D

is divisible by r then r = 1, and we are done. Otherwise there exists
some x ∈ D such that x = αr + γ = αx2 − αx1 + γ with α ∈ N and
0 < γ < r , that is, αx2 + γ = x + αx1 ∈ D. If γ > 1 repeat the argument
with x1 replaced αx2 and x2 replaced by x + αx1. And so on.

(ii) If x, x + 1 ∈ D then x(x − j) + (x + 1) j + kx ∈ D for 0 ≤ j ≤ x and
k ∈ N0. Deduce that {x2 + m : m ∈ N0} ⊆ D.

4. Notes

Theorem <1> is based on Meyn & Tweedie (1993, Theorem 10.2.1). I do not
know the history of the result.
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