
Chapter 9

Chaining methods

Much of this Chapter is unedited or incomplete.

1. The chaining strategy

The previous Chapter gave several ways to bound the tails of maxi≤N |Xi |. The
chaining method applies such bounds recursively, taking advantage of extra
structure on the index set.

Roughly speaking, the chaining method will work for any stochastic
process {Zt : t ∈ T } for which we have some probabilistic control over the
maxima of finite sets of increments Z(s) − Z(t). For the basic arguments we
may assume T is finite. It will be important that the bounds do not depend
explicitly on the size of T if we wish to get inequalities for infinite T by
passing to the limit in inequalities for finite subsets of T .

The chaining method works by linking together approximations to Z based
on the values it takes on different finite subsets of T . Typically T is equipped
with a metric d(·, ·) (or pseudometric) and the subsets are chosen as δ-nets for
various δ.

<1> Definition. A finite subset Tδ of T is a δ-net if mins∈Tδ
d(s, t) ≤ δ for each t

in T . Equivalently, T is the union of the closed balls of radius δ with centers
in Tδ . The smallest value of #Tδ for all possible δ-nets is called the covering
number, which denoted by N (δ), or N (δ, d, T ) if there is any ambiguity over
the choice of metric.

Remarks.

(i) In practice we do not need to know N (δ) exactly; an upper bound
will suffice. In particular, we can often avoid messy details by
choosing an upper bound that is continuous and strictly decreasing
in δ. To avoid tedious qualifications, I will sometime call a subset Tδ

a δ-net if #Tδ is no larger than the upper bound on N (δ).

(ii) Often T itself will be a subset of a larger metric space S. As stated,
the definition of a δ-net for T does not allow centers to lie in S\T .
As shown by Section 3, the restriction has only a minor effect on
applications.

The typical chaining argument starts by choosing δi -nets Ti for numbers
δ0 > δ1 > . . . δk > 0, with Tk = T . We then define πi as the map that takes
each t to its closest point in Ti , with some arbitrary rule for breaking ties. That
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2 Chapter 9: Chaining methods

is, we construct maps πi : T → Ti for which d(t, πi t) ≤ δi . For the basic
approximation argument we do not have to know that the maps πi have been
chosen is such a way, and we do not even have to require the Ti to be δi -nets.

<2> Lemma. Suppose T0, . . . , Tk = T are subsets of a finite set T . Suppose
there exist maps πi−1 : Ti → Ti−1. Define γi : Ti → T0 as the composition
πi−1 ◦ πi−2 ◦ . . . ◦ π0. Then

max
t∈T

|Z(t) − Z(γk(t))| ≤ M1 + . . . + Mk

where Mi := maxs∈Ti |Z(s) − Z(πi−1(s))|.

T0

T1

Tk-1

T  =Tkt

tk-1= πk-1t

t0= γk(t)

tk-2= πk-2tk-1

Proof. Write Di for maxs∈Ti |Z(s) − Z(γi (s))|. Note that D1 = M1. For t
in T write tk−1 for πk−1t . Then

Dk = max
t∈Tk

|Z(t) − Z(tk−1) + Z(tk−1) − Z(γk−1(tk−1))|
≤ max

t∈Tk

|Z(t) − Z(tk−1)| + max
t∈Tk

|Z(tk−1) − Z(γk−1(tk−1)|
≤ Mk + Dk−1

Argue similarly to bound Dk−1, and so on.�
We could use the Lemma to bound the maximum of the process Z . For

each t in T ,

Zt ≤ Z(γk(t)) + |Zt − Z(γk(t))| ≤ max
s∈T0

Zs + max
s∈T

|Z(s) − Z(γk(s))|.
Taking the maximum over t on the left-hand side we then get

<3> max
t∈T

Zt ≤ max
s∈T0

Zs +
k∑

i=1

Mi

A very similar argument would show establish the analogous two-sided bound,

<4> max
t∈T

|Zt | ≤ max
s∈T0

|Zs | +
k∑

i=1

Mi

Write Ni for #Ti . Note that both the left-hand side of <3> and Mk involve
a maximium over Nk variables. We can hope to get an improvement if the
variables involved in Mk are “smaller than those involved in the left-hand side.
It is here that control of the increments by a metric becomes important.
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9.1 The chaining strategy 3

<5> Example. Let {Zt : 0 ≤ t ≤ 1} be a standard Brownian motion. We know
that

P{sup
t

Zt ≥ x} = 2P{Z1 ≥ x} = �̄(x) ≤ 1
2 exp(−x2/2)

Use Orlicz norm bound for ψ(t) = 1
2 exp(−t2) to get comparable maximal

inequality. Point out that the chaining method also works in higher dimensions.
More details needed.�

2. Chaining inequalities for norms

In Chapter ??? we found several inequalities for maxima of finitely many
random variables expressible in terms of norms. For example, if pth moments
are finite then

‖ max
i≤N

|Xi | ‖p ≤ N 1/p max
i≤N

‖Xi‖p

For an Orlicz norm defined by a convex increasing function ψ ,

P max
i≤N

|Xi | ≤ ψ−1(N ) max
i≤N

‖Xi‖ψ

and

<6> PA max
i≤N

|Xi | ≤ ψ−1(N/PA) max
i≤N

‖Xi‖ψ,

where PA denotes expectation conditional on an event A with PA > 0. If the ψ

function satisfies a moderate growth condition,

<7> ψ(α)ψ(β) ≤ ψ(C0αβ) for ψ(α) ∧ ψ(β) ≥ 1,

where C0 is a finite constant, then

<8>

∥∥∥∥max
i≤N

|Xi |
∥∥∥∥

ψ

≤ Cψ−1(N ) max
i≤N

‖Xi‖ψ where C := 2 − ψ(0)

1 − ψ(0)
C0

For example, if ψ(t) = 1
2 exp(t2) then condition <7> holds with C0 = 3/(log 2),

in which case C = 9/(log 2) ≈ 13.
The chaining method works well with any norm ρ(·) for random variables

(such as an Lp or Orlicz norm) for which there exists a (slowly) increasing
function H(·) such that

<9> ρ

(
max
i≤N

|Z(si ) − Z(ti )|
)

≤ H(N ) max
i≤N

d(si , ti )

Remark. We do not need ρ to be a norm. It would suffice if it were
a seminorm for which ρ(X) = 0 implies that X = 0 almost surely and
ρ(X) < ∞ implies |X | < ∞ almost surely. If we work with equivalence
classes of random variables for which ρ(X) < ∞ then we get a true norm.
It is traditional to abuse notation and call a seminorm a norm.

We also need to assume that ρ(X) ≤ ρ(Y ) whenever |X | ≤ |Y |. Applying
Lemma <2> with the Ti as δi -nets and the πi as the maps to the nearest point
of Ti , we then get

ρ

(
max
t∈T

|Z(t) − Z(γk(t))|
)

≤ ρ(M1) + . . . + ρ(Mk)

≤
k∑

i=1

H(Ni )δi−1<10>

It is traditional to bound sums by integrals to make the inequalities look cleaner.
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4 Chapter 9: Chaining methods

<11> Lemma. Let h be a nonnegative, decreasing function defined on an interval
(0, δ]. For a fixed α in (0, 1), define δi := δαi for i = 0, 1, 2, . . .. Then∑k

i=1
δi−1h(δi ) ≤ 1

α − α2

∫ δ1

δk+1

h(x) dx .

h(x)

xδi-1δiδi+1

area = h(δi) (α − α2)δi-1

Proof. By monotonicity of h we have
(
δi − δi+1

)
h(δi ) ≤ ∫ δi

δi+1
h(x) dx . Sum

over i , noting that δi − δi+1 = δi−1(α − α2).�
When we are not worried about precise values of constants it is often

convenient to choose α = 1/2 and expand the range of integration slightly,
keaving a bound 2

∫ δ

0 h(x) dx . Of course, if the integral is divergent we should
not be so cavalier about a contribution from (0, δk+1).

Remark. A similar trick works if we partition the vertical axis in such
a way that h(δi ) increases geometrically fast. Some of the early papers in
the empirical process literature used this variation of the method to bound
sums by integrals.

To summarize, let me choose α = 2 in Lemma <11> and also disguise the
evidence of the chaining construction from Lemma <2> to get a neater result.

<12> Theorem. Let {Zt : t ∈ T } be a process indexed by a finite metric space T ,
with covering numbers N (·). Suppose ρ(·) is a norm on random variables
for which ρ(X) ≤ ρ(Y ) whenever |X | ≤ |Y |. Suppose H(·) is an increasing
function for which inequality <9> holds. Let Tδ be a δ-net for T . Then there
is a map γ : T → Tδ for which

(i) d(t, γ (t)) ≤ 2δ for every t in T

(ii) ρ
(

maxt∈T |Z(t) − Z(γ (t))|) ≤ 4
∫ δ/2
δ/2k+1 H(N (x)) dx , where k is the

smallest integer for which min{d(s, t) : s �= t} ≥ δ/2k .
Is this the right k?

Proof. Invoke <10> for δi -nets Ti with δi = δ/2i . Write γ instead of γk . Let
the πi ’s map to the nearest point of Ti . For a given t in T , let t = tk → tk−1 →
. . . → t1 → t0 be the chain from t to γ (t). Then

d(t, γ (t) ≤ d(tk, tk−1)+d(tk−1, tk−2)+. . .+d(t1, t0) ≤ δk−1+δk−2+. . .+δ0 ≤ 2δ.

Invoke Lemma <11> to bound the sum from <10>.�
<13> Example. Suppose the process {Z(t) : t ∈ T } satisfies the bound

‖Z(s) − Z(t)‖ψ ≤ d(s, t) for all s, t ∈ T,

with T a finite metric space, where the convex function ψ has the moderate
growth property <7>.

Let T0 = {t0} and δ := maxt∈T d(t, t0).
Apply Theorem <12> with ρ as the conditional L1 norm for PA and

H(N ) = ψ−1(N/PA) to get

<14> PA X ≤ 4
∫ δ

0
ψ−1

(
N (x)

PA

)
dx where X := sup

t
|Z(t) − Z(t0)|.
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9.2 Chaining inequalities for norms 5

The N (x) can be disentangled from the PA using the moderate growth
property for ψ . Invoke <7> with x = ψ(α) and y = ψ(β) to deduce that

<15> ψ−1(xy) ≤ C0ψ
−1(x)ψ−1(y) for x ∧ y ≥ 1.

In particular,

ψ−1

(
N (x)

PA

)
≤ C0ψ

−1(N (x))ψ−1

(
1

PA

)
,

which, together with inequality <14>, implies

PA X ≤ 4C0ψ
−1

(
1

PA

) ∫ δ

0
ψ−1(N (x)) dx .

Define J := 4C0
∫ δ

0 ψ−1(N (x)) dx . If we choose A = {X ≥ ε}, for a positive ε,
then

ε ≤ PA X ≤ ψ−1

(
1

PA

)
J,

from which it follows that

PA ≤ 1/ψ(ε/J ).

Compare with the tail bound we would get via a bound such as ‖X‖ψ ≤ J0.
You might find it enlightening to consult the book of Ledoux & Tala-

grand (1991), who have shown that the conditional L1 norm is ideally suited to
another, more powerful, method for deriving maximal inequalities.�

3. Covering and packing numbers

Section not yet edited.

Suppose T is a set equipped with a pseudometric d. That is, d has all
the properties of a metric except that distinct points might lie at zero distance.
The slight increase in generality will allow us to equip function spaces with
various Lp norms (seminorms really) without too much fussing over almost
sure equivalences.

For a subset A of T write NT (δ, A, d) for the δ-covering number, the
smallest number of closed δ-balls needed to cover A. That is, the covering
number is the smallest N for which there exist points t1, . . . , tN in T with

min
i≤N

d(t, ti ) ≤ δ for each t in A.

The set of centers {ti } is called a δ-net for A. Finiteness of all covering
numbers is equivalent to total boundedness of A. Covering numbers are also
called metric entropies.

Notice a small subtlety related to the subscript T in the definition. If we
regard A as a pseudometric space in its own right, not just as a subset of T ,
then the covering numbers might be larger because the centers ti would be
forced to lie in A. It is an easy exercise (select a point of A from each covering
ball that actually intersects A) to show that

NA(2δ, A, d) ≤ NT (δ, A, d).

The extra factor of 2 will be of little consequence for the bounds derived in this
Chapter. When in doubt, you should interpret covering numbers to refer to NA.
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6 Chapter 9: Chaining methods

On occasion it will prove slightly more convenient to work with the
packing number D(δ, A, d), defined as the largest N for which there exist
points t1, . . . , tN in A for which d(ti , tj ) > δ if i �= j . Notice the lack of a
subscript T ; the packing numbers are an intrinsic property of A, and do not
depend on T except through the pseudometric it defines on A. The δ/2-balls
with centers at the ti are disjoint; the balls are packed into A like oranges in a
bag (perhaps protruding out into the larger space T ).

<16> Lemma. For each δ > 0,

NA(δ, A, d) ≤ D(δ, A, d) ≤ NT (δ/2, A, d) ≤ NA(δ/2, A, d).

Proof. For the middle inequality, observe that no closed ball of radius δ/2
can contain points more than δ apart. Each of the centers for D(δ, A, d) must
lie in a distinct δ/2 covering ball. The other inequalities have similarly simple
proofs.�

I will refer to any calculation based on covering numbers or packing
numbers as an entropy method, to avoid unfruitful distinctions.

<17> Example. Let T be the real line equipped with its usual metric d, and
let A = [0, 1]. For δ < 1/2, the N + 1 intervals of length 2δ and centers
δ, 3δ, . . . , (2N −1)δ, 1 cover A if N is the largest integer such that (2N −1)δ <

1−δ. Thus NA(δ, A, d) ≤ �(2δ)−1
. For a lower bound, note that the Lebesgue
measure of the union of covering intervals of length 2δ must be no smaller than
the Lebesgue measure of A. Thus 2δNT (δ, A, d) ≥ 1. The covering numbers
increase like δ−1 as δ → 0. Actually, only the O(δ−1) upper bound will matter;
the lower bound merely assures us that we have found the best rate.�

<18> Example. Let ‖ · ‖ denote any norm on R
k . For example, it might be

ordinary Euclidean distance (the 
2 norm), or the 
1 norm, ‖x‖1 = ∑
i≤k |xi |.

The covering numbers for any such norm share a common geometric bound.
Write BR for the ball of radius R centered at the origin. For a fixed ε,

with 0 < ε ≤ 1, how many balls of radius εR does it take to cover BR?
Equivalently, what are the packing numbers for BR?

Let x1, . . . , xN be a maximal set of points in BR with ‖xi − xj‖ > εR
for i �= j . The closed balls of radius εR/2 centered at the xi are disjoint, and
their union lies within BR+εR/2. If we write � for the Lebesgue measure of the
unit ball B1 then

N (εR/2)k� ≤ (R + εR/2)k�,

from which we deduce N ≤ ((2 + ε)/ε)k ≤ (3/ε)k , for 0 < ε ≤ 1.�

4. Infinite index sets

Suppose the norm ρ from Theorem <12> also has the property

<19> if 0 ≤ X1 ≤ X2 ≤ . . . ↑ X then ρ(Xn) ↑ ρ(X).

Then we can pass to the limit in the inequality asserted by that Theorem to
get bounds involving points from a countable dense subset of T . There are a
few small subtleties in the construction, which I will illustrate by establishing
a very useful equicontinuity bound.
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9.4 Infinite index sets 7

<20> Theorem. Let {Zt : t ∈ T } be a process indexed by a metric space T , with
covering numbers N (·). Suppose ρ(·) is a norm on random variables for which
ρ(X) ≤ ρ(Y ) whenever |X | ≤ |Y | and for which properties <9> and <19>

hold. Suppose H(·) is an increasing function for which inequality <9> holds
and for which

<21>

∫ 1

0
H(N (x)) dx < ∞

Then:
(i) There exists a countable dense subset T∞ of T for which: to each ε > 0

there exists an η > 0 such that

ρ
(

sup |Zs − Zt | : s, t ∈ T∞ and d(s, t) < η
) ≤ ε

(ii) Almost all sample paths of {Zt : t ∈ T∞} are uniformly continuous.
(iii) There exists a process {Z̃t : t ∈ T } with uniformly continuous sample

paths such that P{Z̃t = Zt } = 1 for each t in T and for which

ρ
(

sup |Z̃s − Z̃t | : s, t ∈ T and d(s, t) < η
) ≤ ε

Proof. It will be easier to work with packing numbers D(·) rather than
covering numbers. The finiteness condition <21> still holds if we replace N (x)

by D(x) because (Lemma <16>) D(x) ≤ N (x/2). Choose a δ > 0 for which∫ δ

0
H(D(x)) dx ≤ ε

Define δi := δ/2i for i = 0, 1, 2, . . .. Construct sets T0 ⊆ T1 ⊆ T2 ⊆ . . . by
choosing T0 as a maximal set of points for which d(s, t) > δ0 if s �= t , for
s, t ∈ T0. Then add extra points to T0 to create a maximal set of points T1 ⊇ T0

for which d(s, t) > δ1 if s �= t , for s, t ∈ T1. And so on. Thus #Tk ≤ D(δk)

for each k and Tk is a δk-net for T . Moreover,

Tk ↑ T∞ := ∪i Ti as k ↑ ∞.

Construct chains and maps γk : Tk → T0 as in Section 1.
Temporarily hold k fixed. Invoke Theorem <12> to show that

ρ
(
Gk

) ≤ 4
∫ δ

0
H(N (x)) dx ≤ 4ε where Gk := max

t∈Tk

|Z(t) − Z(γk(t))|.
Now we come to a subtle part of the argument, making use of a clever

construction from Ledoux & Talagrand (1991, Section 11.1).
The map γk partitions Tk into N ≤ #T0 ≤ D(δ) equivalence classes

E1, . . . , EN , by means of the relation s ∼ t if γks = γk t . If s ∼ t then

<22> |Z(s) − Z(t)| ≤ |Z(s) − Z(γks)| + |Z(γk t) − Z(t)| ≤ 2Gk .

For an as yet unspecified η > 0, write Ei ≈ Ej if there exist points ti j ∈ Ei

and tji ∈ Ej such that d(ti j , tji ) < η. Define

G := max
Ei ≈Ej

|Z(ti j ) − Z(tji )|.

The maximum runs over at most N 2 pairs (ti j , tji ). By inequality <9>

ρ(G) ≤ H(N 2)η ≤ H(D(δ)2)η,

which is less than ε if η is chosen small enough.
If S ⊆ T define

M(S, η) := sup{|Zs − Zt | : d(s, t) < η and s, t ∈ S}.
Of course, if S is finite then the sup could be replaced by a max.
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8 Chapter 9: Chaining methods

A multi-step approximation will let us reduce comparison of pairs in Tk

to comparison between pairs in T0. Suppose s and t are points of Tk such that
d(s, t) < η. If s ∈ Ei and t ∈ Ej then Ei ≈ Ej , and s ∼ ti j and t ∼ tji . It
follows thatAny difficulty if i = j?

|Z(s) − Z(t)| ≤ |Z(s) − Z(ti j )| + |Z(ti j ) − Z(tji )| + |Z(tji ) − Z(t)|
≤ 2Gk + G + 2Gk .

Take the maximum over all such (s, t) pairs then take norms of both sides.

<23> ρ
(
M(Tk, η)

) ≤ 4ρ(Gk) + ρ(G) ≤ 5ε.

You should repeat the argument with ε replaced by ε/5 if you want the final
inequality to exactly as stated.

Now let k tend to infinity. Each pair (s, t) that contributes to the supremum
in M(T∞, η) must appear in some Tk . It follows that

M(Tk, η) ↑ M(T∞, η)

Invoke property <19> of the norm ρ to deduce assertion (i) of the Theorem.
To show that almost all sample paths of {Zt : t ∈ T∞} are uniformly

continuous, invoke (i) to find a sequence {ηm} for which M(T∞, ηm) ≤ 2−m .
Then, by the continuity property <19>,

ρ

( ∑
m∈N

M(T∞, ηk)

)
≤

∑
m∈N

ρ
(
M(T∞, ηk)

)
< ∞.

The sum
∑

m∈N
M(T∞, ηk) is finitely almost surely and, consequently there

exists a negligible set N such that

M(T∞, ηk) → 0 for ω ∈ Nc.

The sample paths for ω ∈ Nc are uniformly continuous (as a function on T∞).
For those ω, the path extends to a unique uniformly continuous function Z̃t (ω)

on T . Define Z̃t (ω) ≡ 0 for ω ∈ N.

Finish the argument

For pairs s, t in T for which d(s, t) < η, find sequences {tk} and {sk}
in T∞ for which d(sk, s) → 0 and d(tk, t) → 0. Then what?

�

5. Chaining with random distances

Section not yet edited. Please ignore.

<24> Theorem. Let {�(s, t) : (s, t) ∈ T × T } be a random distance with
�(s, t) ∈ M+

ρ for all (s, t). Suppose there exists an an increasing function H
for which

ρ
(

maxN
i=1 �(si , ti )

) ≤ H(N ) maxN
i=1 d(si , ti )

for all finite sets of pairs (s1, t1), . . . , (sN , tN ). Then for each δ-net Tδ and each
finite subset S of T . . .

ρ
(

max
t∈S

�(t, γt )
) ≤ 4

∫ δ

0
H(N (x)) dx .
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9.5 Chaining with random distances 9

Proof.

ρ
(

max
t∈S

�(t, γt )
) ≤ ρ

(
max
t∈S

(
�(t, tk)

) +
∑k

j=1
ρ
(
Mj

)
≤ H(#S)

(
2

∑
j≥k

δj

)
+

∑k

j=1
H(N (δj ))δj−1

�
<25> Example. Suppose {Z(t) : t ∈ [0, 1]} is a process for which there exists a

finite measure µ on [0, 1] and constants γ > 0 and α > 1 for which

(P|Z(s) − Z(t)|γ )
1/α ≤ µ(s, t],

for all 0 ≤ s < t ≤ 1. Show that Z has a version with cts paths. Argue first
with γ ≥ α, then the other case, for 0 < γ < α, as in L&T. [Comment on the
usefulness of the two-parameter process in the chaining argument.cf. Ledoux & Talagrand (1991,

page 308)
�

6. Maximal inequalities for tail probabilities

Section not yet edited. Please ignore.

Let {�(s, t) : (s, t) ∈ T × T } be a random distance indexed by a
pseudometric space (T, d) for which we have a bound N (·) on the covering
numbers. Suppose the tail probabilities for �(s, s ′) are controlled by the
pseudometric by means of a nonnegative function β(·, ·), which is decreasing
in its first argument and increasing in its second argument, such that

<26> P{�(s, s ′) ≥ η} ≤ β(η, d(s, s ′)) for s, s ′ ∈ T and η ≥ 0.

For N pairs (si , s ′
i ) each with d(si , s ′

i ) ≤ δ we then have a bound,

<27> P{maxi≤N �(si , s ′
i ) ≥ η} ≤ Nβ(η, δ).

For nonnegative numbers η, η1, η2, . . ., Lemma <general.chain>

gives, for each finite subset S of T , a maximal inequality:

P{maxt∈S �(t, γt ) ≥ η + η1 + . . . + ηk}
≤ P{maxt∈S �(t, tk) ≥ η} +

∑k

i=1
P{Mi ≥ ηi }

≤ (
#S

)
β(η, δk +

∑
i≥k

δi ) +
∑k

i=1
N (δi )β(ηi , δi−1).<28>

Provided β(η, δ) → 0 as δ → 0 for each fixed η, we also have a limiting form
of the maximal inequality:

<29> P{maxt∈S �(t, γt ) >
∑∞

i=1
ηi } ≤

∑∞
i=1

N (δi )β(ηi , δi−1).

Notice the strict inequality on the left-hand side, to accommodate a small
positive η.

If the covering bound N (x) increases slowly enough as x tends to zero, and
if β(η, δ) tends to zero rapidly enough when η → ∞ and δ → 0 at appropriate
rates, the maximal inequalities can be expressed in slightly more explicit forms.
It is traditional to bound sums by integrals to make the inequalities look even
simpler.
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10 Chapter 9: Chaining methods

<30> Example. Let {Zt : t ∈ T } be a stochastic process whose increments satisfy
a subgaussian inequality controlled by the pseudometric on T :

<31> P{|Zs − Zt | ≥ ηd(s, t)} ≤ c0 exp
( − c2

1η
2
)
,

for some positive constants c0 and c1. That is, the tail bound <26> holds
with β(η, δ) = c0 exp(−c2

1η
2/δ2). Once again write �(s, t) for |Zs − Zt |.

Inequality <29> becomes

P{maxt∈S �(t, γt ) >
∑∞

i=1
ηi } ≤ c0

∑∞
i=1

N (δi ) exp(−c2
1η

2
i /δ

2
i−1).

We need to choose the {ηi } to make the sum on the right-hand side converge.
A geoemtric rate of decrease woulld ensure that the sum behaves like its first
term. For a fixed, positive x define ηi so that

exp(−c2
1η

2
i /δ

2
i−1) = e−x 2−i/N (δi ),

that is,

ηi := c−1
1 δi−1

√
log N (δi ) + i log 2 + x

≤ c−1
1 2δi

(
h(δi ) +

√
i log 2 + √

x
)

where h(y) :=
√

log N (y).

With the help of Lemma <11> we then get∑∞
i=1

ηi ≤ c2

∫ δ/2

0
h(y) dy + c3δ + c4δ

√
x,

where c2 := 4c−1
1 and c3 := 2c−1

1

√
log 2

∑∞
i=1

√
i/2i and c4 := 2c−1

1 . Assume
that the covering bounds increase slowly enough that the integral

Jz :=
∫ z

0

√
log N (y) dy

is convergent for each z > 0. Then, for each finite subset S of T ,

<32> P{maxt∈S |Zt − Zγt | > c2 Jδ + c3δ + c4δ
√

x} ≤ c0e−x ,

where the constants c3, c4, and c5 depend only on the c1 from <31>.
Now suppose that T has radius at most R, in the sense that there is

some point τ in T for which supt∈T d(t, τ ) = R < ∞, and that we wish
to determine how large a value w is needed to make the tail probability
P{maxt∈S |Zt − Zτ | > w} smaller than a prescribed quantity, which for
convenience I write as 2c0e−x .

As t ranges over S, the value γt ranges over a subset of the δ-net Tδ , a set
with at most N (δ) points each at a distance at most R from τ . The inequality

maxt∈S |Zt − Zτ | ≤ maxt∈Tδ
|Zt − Zτ | + maxt∈S |Zt − Zγt |

then leads us to a bound

P{max
t∈S

|Zt − Zτ | > w+c2 Jδ +c3δ+c4δ
√

x} ≤ N (δ)c0 exp(−c2
1w

2/R2)+c0e−x .

Remark. Notice that I have built in the assumption that a reasonable
way to make a sum of two terms small is to put each of them equal to half
the desired sum. Perhaps a significantly better bound could be obtained by
discarding the assumption and trying to optimize over the alocation of how
much of the final tail bound comes from each term.

For a given x we are left with the task of choosing δ and w to make

w + c2 Jδ + c3δ + c4δ
√

x small subject to N (δ) exp(−c2
1w

2/R2) ≤ e−x .

Of course there is no point in making δ larger than R, because we may assume
N (y) = 1 for y > R. Also, we may suppose x is bounded away from zero
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9.6 Maximal inequalities for tail probabilities 11

(say x > c5), because there is no point in trying to optimize when c0e−x is not
a lot smaller than 1.

The smallest w satisfying the constraint is (R/c1)
√

x + h(δ)2, where once
again h(y) = √

log N (y). We have the formidable task of finding δ ∈ (0, R] to
minimize

R

c1

√
x + h(δ)2 + c2

∫ δ

0
h(y) dy + δ

(
c3 + c4

√
x
)
.

�

7. Chaining via majorizing measures

Talagrand (1996)

8. Problems

More problems to come

[1] Show that the convex function ψ(x) = (1 + x) log(1 + x) − x does not satisfy
the growth condition <7>. Hint: Consider the limit of ψ(C0x2)/ψ(x)2 as
x → ∞.

9. Notes (inaccurate and incomplete)

Acknowledge Ledoux & Talagrand (1991) for several of the ideas used in this
Chapter: Example <condit.mean>; the introduction of the two-parameter
process in the proof of Theorem <finite.maximal> (and its usefulness in
the analog of Example <25> for 0 < γ < α); Example <Orlicz2>, or maybe
cite Pisier; the subtle equivalence class idea in Example <Orlicz2>; and the
method used in Example <13>.

Give some history of earlier work: Dudley, Pisier?
van der Vaart & Wellner (1996)

References

Ledoux, M. & Talagrand, M. (1991), Probability in Banach Spaces: Isoperime-
try and Processes, Springer, New York.

Talagrand, M. (1996), ‘Majorizing measures: The generic chaining (in special
invited paper)’, Annals of Probability 24, 1049–1103.

van der Vaart, A. W. & Wellner, J. A. (1996), Weak Convergence and Empirical
Process: With Applications to Statistics, Springer-Verlag.

26 January 2005 Asymptopia, version: 25jan05 c©David Pollard 11


