
Chapter 12

Combinatorics

SECTION 1 presents a simple concrete example to illustrate the use of the combinatorial
method for deriving bounds on packing numbers.

SECTION 2 defines the concept of shatter dimension, for both classes of sets and
binary matrices, and the VC dimension for a class of sets.

SECTION 3 derives the general combinatorial bound (the VC lemma) relating the
shatter dimension to the number of distinct patterns picked out. The proof of the
main theorem introduces the important technique known as downshifting.

SECTION 4 describes ways to create VC classes of sets, including methods based on

o-minimality. incomplete

SECTION 5 establishes a connection between VC dimension and packing numbers for
VC subgraph classes of functions under an L1 metric.

Unedited fragments from here on

SECTION 6 fat shattering
SECTION 7 Mendelson & V
SECTION 8 Haussler & Long
SECTION 9 presents a refinement of the calculation from Section 5, leading to a

sharper bound for packing numbers. The result is included mainly for its aesthetic
appeal and for the sake of those who like to see best constants in inequalities.

1. An introductory example

Suppose F := {x1, . . . , xn} is a finite subset of some X and D is some collection
of subsets of X. A set D from D is said to pick out the points {xi : i ∈ J},
where J ⊆ {1, 2, . . . , n}, if {

xi ∈ D for i ∈ J

xi ∈ Dc for i ∈ Jc

The class D is said to shatter F if it can pick out all 2n possible subsets of F .
The combinatorial argument often referred to as the VC method (in honor

of the important contributions of Vapnik & Červonenkis) provides a bound on
the number of different subsets that can be picked out from a given F in terms
of the size of the largest subset F0 of F that D can shatter. The combinatorial
bound also leads to uniform bounds on the covering numbers of D as a subset
of L1(P), as P ranges over probability measures carried by X. The methods
can also be applied to collections of real-valued functions on X, leading to
bounds on Lα(P) covering numbers for a wide range of α values, including
α = 1 and α = 2. These bounds can then be fed into chaining arguments
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2 Chapter 12: Combinatorics

to obtain maximal inequalities for some processes indexed by collections of
functions on X.

The VC method is elegant and leads to results not easily obtained in other
ways. The basic calculations occupy only a few pages. Nevertheless, the ideas
are subtle enough to appear beyond the comfortable reach of many would-be
users. With that fact in mind, I offer a preliminary more concrete example, in
the hope that the idea might seem less mysterious.

Remark. You will notice that I make no effort to find the best upper
bound. In fact, as will become clear later, any bound that grows like a
polynomial in the size of the subset leads to the same sort of bound on the
covering numbers.

Consider the class H2 of all closed half-spaces in R2. Let F be a set of n
points in R2. How many distinct subsets are there of the form H ∩ F , with H
in H2? Certainly there can be no more than 2n , because F has only that many
subsets.

Define FH2 = {F ∩ H : H ∈ H2}, and let #FH2 be its cardinality. A simple
argument will show that #FH2 ≤ 4n2. Indeed, consider a particular nonempty
subset F0 of F picked out by a particular half-space H0. There is no loss of
generality in assuming that at least one point x0 of F0 lies on L0, the boundary
of H0: otherwise we could replace H0 by a smaller H1 whose boundary runs
parallel to L0 through the point of F0 closest to L0.

As seen from x0, the other n − 1 points of F all lie on a set L(x0) of at
most n − 1 lines through x0. Augment L(x0) by another set L′(x0) of at most

n − 1 lines through x0, one in each angle between two lines
from L(x0). The lines in L(x0) ∪ L′(x0) define a collection
of at most 4(n − 1) closed half-spaces, each with x0 on its
boundary. The collection ∪x0∈FH2(x) accounts for all possible
nonempty subsets of F picked out by closed half-spaces. Thus
there are at most

1 + 4n(n − 1) ≤ 4n2

subsets that can be picked out from F by H2. The extra 1 takes care of the
empty set.

The slow increase in #FH2 , at an O(n2) rate rather than a rapid 2n rate,
has an unexpected consequence for the packing numbers of H2 when equipped
with an L1(P) (pseudo)metric for some probability measure P on the Borel
sigma-field.

Remark. In fact, we will only need the bound when P concentrates
on a finite number of points, in which case all measurability difficulties
disappear.

The result is surprising because it makes no regularity assumptions about the
probability measure P . The argument is due to Dudley (1978), who created the
general theory for abstract empirical processes.

The L1(P) distance between two (measurable) sets B and B ′ is defined as

P|B − B ′| = P(B�B ′),

the probability measure of the symmetric difference. Say that the two sets are
ε-separated if P(B�B ′) > ε. The packing number π1(ε) := D(ε, H2, L

1(P))

is defined as the largest N for which there exists a collection of N closed
half-spaces, each pair ε-separated. We can use the polynomial bound for #FH2

to derive an upper bound for the packing numbers, by means of a cunningly
chosen F .
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12.1 An introductory example 3

Suppose there exist half-spaces H1, H2, . . . , HN for which P(Hi�Hj ) > ε

for i �= j . The trick is to find a set F of m = 2 log N/ε points from which each
Hi picks out a different subset. (For simplicity, I am ignoring the possibility
that this m might not be an integer. A more precise calculation will be given
in Section 5.) Then H2 will pick out at least N subsets from the m points, and
thus

N ≤ 4

(
2 log N

ε

)2

If we bound log N by a constant multiple of N 1/4, then solve the inequality
for N , we get an upper bound N ≤ O(1/ε)4. With a smaller power in the
bound for log N we would bring the power of 1/ε arbitrarily close to 2.

With a little more work, the bound can even be brought to the form
C2(ε

−1 log(1/ε))2, at least for ε bounded away from 1. At this stage there is
little point in struggling to get the best bound in ε. The qualitative consequences
of the polynomial bound in 1/ε are the same, no matter what the degree of the
polynomial.

How do we find a set F0 = {x1, . . . , xm} of points in R2 from which each
Hi picks out a different subset? We need to place at least one point of F0 in
each of the

(N
2

)
symmetric differences Hi�Hj . It might seem we are faced

with a delicate task involving consideration of all possible configurations of the
symmetric differences, but here probability theory comes to the rescue.

Generate F0 as a random sample of size m from P . If m ≥ 2 log N/ε, then
there is a strictly positive probability that the sample has the desired property.
Indeed, for fixed i �= j ,

P{Hi and Hj pick out same points from F0}
= P{no points of sample in Hi�Hj }
= (1 − P(Hi�Hj ))

m

≤ (1 − ε)m

≤ exp(−mε).

Add up
(N

2

)
such probability bounds to get a conservative estimate,

P{no pair Hi , Hj pick same subset from F0} ≤ (N
2

)
exp(−mε).

When m = 2 log N/ε the last bound is strictly less than 1, as desired.
Probability theory has been used to prove an existence result, which gives

a bound for a packing number, which will be used to derive probabilistic
consequences—all based ultimately on the existence of the polynomial bound
for #FH2 .

The class H2 might shatter some small F sets. For example, if F consists
of 3 points, not all on the same straight line, then it can be shattered by H2.
However no set of 9 points can be shattered, because there are 29 = 512
possible subsets—the empty set included—whereas the half-spaces can pick
out at most 4 × 92 = 324 subsets. More generally, 2n > 4n2 for all n ≥ 9, so
that, of course, no set of more than 9 points can be shattered by H2.

Remark. You should find it is easy to improve on the 9, by arguing
directly that no set of 4 points can be shattered by H2. Indeed, if H2 picks
out both F1 and F2 = Fc

1 , then the convex hulls of F1 and F2 must be
disjoint. You have only to demonstrate that from every F with at least 4
points, you can find such F1 and F2 whose convex hulls overlap.

In summary: The size of the largest set shattered by H2 is 3. Note well
that the assertion is not that all sets of 3 points can be shattered, but merely
that there is some set of 3 points that is shattered, while no set of 4 points can
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4 Chapter 12: Combinatorics

be shattered. In the terminology of Section 2, the class H2 would be said to
have VC dimension equal to 3.

The argument had little to do with the choice of H2 as a class of half-spaces
in a particular Euclidean space. It would apply to any class D for which #FD

is bounded by a fixed polynomial in #F . And therein lies the challenge. In
general, for more complicated classes of subsets D of arbitrary spaces, it can be
quite difficult to bound #FD by a polynomial in #F , but it is often less difficult
to prove existence of a finite VC-dim such that no set of more than VC-dim
points can be shattered by D. The miracle is that a polynomial bound then
follows automatically, as will be shown in Section 2.

I need to check the assertions in the following Remark. See Dudley (1978,
Section 7).

Remark. For the set Hk of all closed halfspaces in Rk , the VC method
will deliver a bound

N ≤ p(n) =
∑

j≤k+1

(
n

j

)
for the largest number of subsets that can be picked out from a set with n
points. For k = 2, the bound is a cubic in n, which is inferior (for large n)
to the 4n2 obtained above. In fact, there is an even better bound,

N ≤ p(n) = 2
∑

j≤k

(
n − 1

j

)
which is achieved when no k + 1 of the points lie in any hyperplane. For
k = 2, the bound becomes n2 − n + 2.

The upper bound, p(n), for the number of subsets picked out from a
set of n points, should not be confused with∑

j≤k

(
N

j

)
,

the largest number of regions into which Rk can be partitioned by N
hyperplanes.

2. Shattered subsets, shattered columns of a matrix

There are various ways to express the counting arguments that lead the bounds
on the number of subsets picked out by a given D from a finite subset. Actually,
when the subset is generated as a random sample from some distribution, it is
better to allow for possible duplicates by counting patterns picked out from
an x = (x1, . . . , xn) in Xn . A pattern is specified by a subset J of {1, 2, . . . , n}
and a set DJ from D for which

<1>

{
xi ∈ DJ for i ∈ J

xi ∈ Dc
J

for i ∈ Jc

Of course, the DJ need not be unique. In general, there will be many different D

sets that pick out the same pattern from x. For counting purposes, we can
identify a D that picks out N distinct patterns from x with an N × n binary
matrix V = Vx,D, that is a matrix with distinct rows with {0, 1} entries. The
subset J from <1> would correspond to row of the matrix with a 1 in the
columns picked out by J and 0 elsewhere. We could also identify each row of
the matrix with a different vertex of {0, 1}n .
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12.2 Shattered subsets, shattered columns of a matrix 5

<2> Example. Consider the case where F = {x1, x2, x3} is a subset of R2 and Q

is the collection of all closed quadrants with a north-east vertex.

Q111

Q110

Q100

Q010

Q000

x1

x2

x3

V =

⎡
⎢⎢⎢⎣

0 0 0
0 1 0
1 0 0
1 1 0
1 1 1

⎤
⎥⎥⎥⎦

(0,0,0) (1,0,0)

(0,1,0)
(1,1,0)

(1,1,1)

For the configuration shown, FQ consists of five subsets. The labelling of
quadrants that pick out these subsets corresponds to the rows of the matrix V
and to a set of five vertices of the cube {0, 1}3. Notice that the ordering of
the rows and columns of the matrix is somewhat arbitrary. The subset {x1, x2},
which corresponds to the submatrix matrix V0 consisting of the first two columns
of V , is shattered by Q. All four vectors (0, 0), (0, 1), (1, 0), and (1, 1) appear
as rows of V0.�

To identify various submatrices of a given N × n matrix V it is convenient
to borrow notation from the S language.

(a) For positive integers p and q with p ≤ q, write p : q for the set
{i ∈ Z : p ≤ i ≤ q}.

(b) For subsets I of 1:N and J of 1:n define V [I, J] as the #I×#J submatrix
with rows from I and columns from J.

(c) Write V [I, −J] for the #I × (n − #J) submatrix with rows from I and
columns from 1:n\J, and so on. Interpret a missing index set or a single
dot, as in V [I, ] or V [I, ·], to mean that no constraint is placed on that
coordinate.

<3> Example. Suppose V is the N × n matrix, for N = 6 and n = 4, with
(i, j)th element vi, j . Then

V [2 : 5, 2 : 4] =

⎡
⎢⎣

v2,2 v2,3 v2,4

v3,2 v3,3 v3,4

v4,2 v4,3 v4,4

v5,2 v5,3 v5,4

⎤
⎥⎦

= V [2 : 5, −1] = V [−{1, 6}, 2 : 4] = V [−{1, 6}, −1]

�
<4> Definition. Let V be an N × n binary matrix.

(i) Say that a nonempty subset J of 1 : n, with k = #J, is shattered if each
possible 2k possible k-tuples of 0’s and 1’s appears at least once as a
row of V [, J]. Equivalently, there is an I ⊆ 1 : N with #I = 2k such
that the submatrix V [I, J] has distinct rows.

(iii) Define the shatter dimension s-dim(V ) of V as the largest k for which
there is a shattered J with #J = k.

(ii) If V equals Vx,D, the matrix indicating which patterns a collection D of
subsets picks out from x = (x1, . . . , xn), say that D shatters (xi : i ∈ J)

if V shatters J. Write s-dim(x, D) for the shatter dimension of Vx,D.
(iv) Define the VC dimension, VC-dim(D), of D as the supremum

of s-dim(x, D) over all x ∈ Xn , all n ∈ N. Call D a VC class of
sets if VC-dim(D) < ∞.
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6 Chapter 12: Combinatorics

<5> Example. The matrix

V =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1
1 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

does not shatter {1, 2} because the vector (1, 1) does not appear as a row
of the 6 × 2 submatrix V [, {1, 2}], the first two columns of V . Each of
the other five subsets of {1, 2, 3, 4} of size two is shattered. For example,
V [{1, 2, 4, 5}, {2, 3}] has distinct rows. No subset of three (or four) columns
is shattered. Each singleton {1}, {2}, {3}, and {4} is shattered, because each
column contains at least one 0 and one 1. (Easier: every nonempty subset of a
shattered J is also shattered.)

The matrix V has shatter dimension s-dim(V ) equal to 2. For future
reference, note that the number of rows is strictly greater than

(4
0

) + (4
1

)
.�

<6> Example. For the class Hk of all closed half-spaces in Rk , show that
VC-dim(Hk) ≤ k + 1.

It is easy to verify that Hk shatters the k +1 points consisting of the origin
and the k unit vectors that make up the usual basis: consider sets of the form
{x : α · x ≤ c} for various α with components 0 or ±1.

It remains to show that Hk can shatter no set F = {x0, . . . , xk+1} of k + 2
points in Rk . Linear dependence of the vectors x1 − x0, . . . , xk+1 − x0 ensures
existence of coefficients αi , not all zero, such that∑k+1

i=1
αi (xi − x0) = 0.

Put α0 = − ∑k+1
i=1 αi . Then

∑k+1
i=0 αi = 0 and

∑k+1
i=0 αi xi = 0, or∑k+1

i=0
α+

i xi =
∑k+1

i=0
α−

i xi .

Divide through by the nonzero quantity
∑k+1

i=0 α+
i = ∑k+1

i=0 α−
i to recognize that

we have found disjoint subsets F0 and F1 of F whose convex hulls overlap.
There can be no closed half-space that picks out F0 from F , for the existence
of such a half-space would imply that the convex hull of F0 is disjoint from the
convex hull of F\F0: a contradiction.�

<7> Example. Suppose F is a k-dimensional vector space of functions on X.
Write D for the class of all sets of the form { f ≥ 0}, with f in F. Show that
VC-dim(D) ≤ k.

Consider a set of k + 1 points x0, . . . , xk in X. The set F of points of the
form

( f (x0), . . . , f (xk)) for f in F

is a vector subspace of Rk+1 of dimension at most k. There must exist some
nonzero vector α orthogonal to F. Express the orthogonality as

k∑
i=0

α+
i f (xi ) =

k∑
i=0

α−
i f (xi ) for each f in F.

Without loss of generality suppose α0 > 0. No member of D can pick out the
subset {xi : αi < 0}: if f (xi ) ≥ 0 when αi < 0 and f (xi ) < 0 when αi ≥ 0
then the left-hand side of the equality would be strictly negative, while the
right-hand side would be nonnegative. The class D has shatter dimension at
most k; it shatters no set of k + 1 or more points.�
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12.3 The VC lemma for binary matrices 7

3. The VC lemma for binary matrices

The key result in the area is often called the VC lemma, although credit should
be spread more widely. (See the Notes in Section 11.)

<8> Theorem. Let V be an N × n binary matrix. If s-dim(V ) ≤ d then

N ≤
(

n

0

)
+

(
n

1

)
+ . . . +

(
n

d

)
.

If n ≥ d , the upper bound is less than (en/d)d .

Proof. I will establish the contrapositive, by showing that if

<9> N >

(
n

0

)
+

(
n

1

)
+ . . . +

(
n

d

)
then s-dim(V ) > d.

Define the downshift for the j th column of the matrix as the operation:

for i = 1, . . . , N
if V [i, j] = 1 change it to a 0 unless the resulting
matrix V (1) would no longer have distinct rows

For example, the downshift for the 1st column of the matrix V from Exam-
ple <5> generates a matrix V (1) with first and third rows different fro the
corresponding rows of V :

V =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1
1 0 1 1

⎤
⎥⎥⎥⎥⎥⎦ downshifts to V (1) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
0 1 1 0
0 0 0 1
0 1 0 1
0 0 1 1
1 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

The 1 in the last row was blocked (prevented from changing to a 0) by the fifth
row; if it had been changed to a 0 the row (0 0 1 1) would have appeared twice
in V1.

Remark. The order in which we consider the 1’s in column j makes
no difference to the V (1) created from V by the downshift of column j . If
it were possible to create by a downshift of a 1 in V [i1, j] a row V (1)[i1, ]
that would block the downshift for some V [i2, j], then we would have
V [i1, ] = V [i2, ·]. We need only examine the rows of V with V [i, j] = 0 to
determine whether a downshift is blocked.

Starting from V (1), select any other column for which downshifting
generates a new matrix V (2). And so on. It is possible that the downshift of a
particular 1 in column j that is initially blocked by some row might succeed at a
later stage, because the blocking row might itself be changed by some downshift
carried out between two downshift operations on column j . Stop when no more
changes can be made by downshifting, leaving a binary matrix V (m).

For example, a downshift on the 2nd column of the V (1) shown above
generates

V (2) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 1
0 0 1 1
1 0 1 1

⎤
⎥⎥⎥⎥⎥⎦ ,
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8 Chapter 12: Combinatorics

the fourth row being blocked from changing by the third row. Then, just for a
change in the routine, downshift on the 4th column then the 3rd column:

V (3) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 1
1 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ , V (4) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 1
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

No more changes can be generated by downshifts; every possible change of a 1
to a 0 is blocked by some row already present. Notice that columns {3, 4} are
shattered by V (4).

The downshifting operation has two important properties:

(i) No new shattered sets of columns can be created by a downshift.

(ii) When no more downshifting is posssible, there is a very simple way to
choose a set of d + 1 columns that are shattered by the final matrix, and
hence must have been shattered by the original V .

Let me establish (i) and then (ii).
For simplicity of notation, consider a downshift for the 1st column of the

matrix V . Suppose V (1) shatters J. We need to show that V also shatters J. If
1 /∈ J the submatrix V (1)[, J] is the same as V [, J], which makes the assertion
about V trivially true. So suppose, for notational simplicity, that J = 1:k.

For every (k − 1)-tuple x of 0’s and 1’s, the row (1, x) appears somewhere
in V (1)[·, J]; that is, for some (n − k)-tuple w, the row v := (1, x, w) appears
in V (1). As the downshift creates no new 1’s, the row v must already have
been present in V . Moreover, the row (0, x, w) must also have appeared in V
to block the downshift of the leading 1 in v. Thus both (0, x) and (1, x) are
rows of V [·, J].

For (ii), note that the final matrix, V (m), has more rows than the
(n

0

)+ (n
1

)+
. . . + (n

d

)
that could be created by allowing d or fewer 1’s per row. There must

be a row v0 of V (m) with 1’s in columns J for a J with #J > d. Each possible
downshift of a 1 in v0 must be blocked some other row v1 of V (m). And each
possible downshift of a 1 in v1 must be blocked by some row v2 of V (m). And
so on. In fact, every row vector obtainable from v0 by changing some subset
of its 1’s to 0’s must appear amongst the rows of V (m). The matrix V (m) must
shatter J.

The weaker upper bound for N when n ≥ d will follow from a simple
calculation with a random variable Z distributed Bin(n, 1/2). The sum of
binomial coefficients equals

2n
P{Z ≤ d} ≤ 2n

P(d/n)Z−d = (d/n)−d

(
1 + d

n

)n

≤ (n/d)ded ,

the asserted upper bound.�

4. How to generate VC classes of set

Incomplete

<10> Theorem. If a class D has finite shatter dimension D, then, for each finite F ,

#FD ≤
(

n

0

)
+

(
n

1

)
+ . . . +

(
n

D

)
, where n = #F .
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12.4 How to generate VC classes of set 9

If n ≥ D, the sum of binomial coefficients is bounded above by (en/D)D.

<11> Example. If D is a class of sets with shatter dimension at most D then the
class U = {D1 ∪ D2 : Di ∈ D} has shatter dimension at most 10D. (The bound
is crude, but adequate for our purposes.) From a set F of n = 10D points,
there are at most (10De/D)D distinct sets F D, with D ∈ D. The trace class FU

consists of at most (10e)n/5 subsets. The class U does not shatter F , because
(10e)1/5 < 2.

A similar argument applies to other classes formed from D, such as the
pairwise intersections, or complements. The idea can be iterated to generate
very fancy classes with finite shatter dimension (Problem [2]).�

Think of all regions of Rk that can be represented as unions of at most
ten million sets of the form { f ≥ 0}, with f a polynomial of degree less than
a million, if you want to get some idea of how complicated a class with finite
shatter dimension can be.

Describe cross sections from o-minimal structure.
Stengle & Yukich (1989)
van den Dries (1998, Chapter 5)

5. Packing numbers for function classes

The connection between shatter dimension and covering numbers introduced
in Section 1 extends to more general classes D of measurable subsets of a
space X on which a probability measure P is defined. I will derive an upper
bound slightly more precise than before, for the sake of comparison with the
results that will be derived in Section 9. Remember that the packing number
D(ε, D, L1(P)) is defined as the largest number of sets in D separated by at
least ε in L1(P) distance: P(Di�Dj ) > ε for i �= j .

<12> Lemma. Let D be a class of sets with VC-dim(D) ≤ d . Then for each
probability measure P ,

D(ε, D, L1(P)) ≤
(

5

ε
log

3e

ε

)d

for 0 < ε ≤ 1.

Remark. If P is concentrated on a finite number of points we need
not worry about measurability.

Proof. Suppose D1, . . . , DN are sets in D with P(Di�Dj ) > ε for i �= j .
The asserted bound holds trivially when N ≤ (5 log(3e))d . It is more than
enough to treat the case where log N > d.

Let x = (x1, . . . , xm) be an independent sample of size m = �2(log N )/ε�
from P . Notice that 3(log N )/ε > m ≥ d. As in Section 1, for fixed i and j ,

P{Di and Dj pick out same pattern from x} ≤ exp(−mε).

The sum of
(N

2

)
such probability bounds is strictly less than 1. For some

realization x, the class D picks out N distinct patterns from x, which gives the
inequality

N ≤
(

m

0

)
+

(
m

1

)
+ . . . +

(
m

d

)
≤

(em

d

)d
because m ≥ d.

Tus

N 1/d ≤ 3e log N

dε
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10 Chapter 12: Combinatorics

From Problem [1], the function g(x) = x/ log x is increasing on the range
e ≤ x < ∞, and if y ≥ g(x) then x ≤ (1 − e−1)−1 y log y. Put x = N 1/d and
y = 3e/ε to deduce that

N 1/d ≤ (1 − e−1)−1(3e/ε) log(3e/ε).

The stated bound merely tidies up some constants.�
The Lemma has a most useful analog for classes of functions equipped

with various L1(µ) pseudometrics. Let F be a class of real-valued functions
on X. Let F be a measurable envelope for F, that is, a measurable function
for which sup f ∈F | f (x)| ≤ F(x) for every x . Suppose µ is a measure on X

for which µF < ∞. The packing number D(ε, F, L1(µ)) is defined as the
largest N for which there exist functions f1, . . . , fN in F with

µ| fi − f j | > ε for i �= j.

If we replace ε by εµF , the definition becomes invariant to rescalings of µ and
the functions in F. More importantly, in one very common case there will exist
a bound on the corresponding packing numbers that does not depend on µ, a
property of great significance in empirical process theory.

<13> Definition. Say that F is a VC-subgraph class if the collection S(F) of
subgraphs S( f ) := {(x, r) ∈ X ⊗ R : f (x) ≥ r} is a VC class.

<14> Lemma. Let F be a VC-subgraph class with envelope F in L1(µ). Then

D(2εµF, F, L1(µ)) ≤
(

5

ε
log

3e

ε

)d

for 0 < ε ≤ 1,

if VC-dim
(
S(F)

) ≤ d .

Proof. Suppose { f1, . . . , fN } ⊆ F with µ| fi − f j | > 2εµF for i �= j . Notice
that each S( fi )�S( f j ) is a subset of

B := {(x, t) ∈ X × R : |t | ≤ F(x)}
Let m denote Lebesgue measure on B(R). Write P for the probability measure
defined by P A = µ ⊗ m(AB)/µ ⊗ m(B). By Fubini, µ ⊗ mB = 2µF . For
i �= j it follows that

P
(
S( fi )�S( f j )

) = µ ⊗ m|{ fi (x) ≥ t} − { f j (x) ≥ t}|
2µF

> ε.

Conclude that N ≤ D(ε, S(F), L1(P)), which gives the asserted upper bound.�
For many applications it is enough that the covering numbers are uniformly

of order O(ε−W ) for some W .

<15> Definition. A collection of (measurable) functions is said to be Euclidean
for an envelope F if there exist constants A and W for which

D(εµF, F, L1(µ)) ≤ A(1/ε)W for 0 < ε ≤ 1

for every measure µ with F ∈ L1(µ).

In particular, every VC subgraph class is Euclidean, with constants A
and W that depend only on the VC dimension of the set of subgraphs.

For many purposes, an empirical process indexed by a Euclidean class of
functions behaves like a process smoothly indexed by a compact subset of some
(finite dimensional) Euclidean space.
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12.5 Packing numbers for function classes 11

The existence of packing bounds that work for many different measures µ

allows us to calculate bounds for Lα(µ) packing numbers, for values of α

greater than 1, if F ∈ Lα(µ). For suppose { f1, . . . , fN } ⊆ F with(
µ| fi − f j |α

)1/α
> ε

(
µ(Fα)

)1/α
for i �= j .

Define a new measure λ by dλ/dµ = Fα−1. Then, for i �= j ,

2α−1λ| fi − f j | = µ(2F)α−1| fi − f j |
≥ µ(| fi | + | f j |)α−1| fi − f j |
≥ µ| fi − f j |α
> εαλF

Thus

D(ε
(
µ(Fα)

)1/α
, F, Lα(µ)) ≤ D(εα21−αλ(F), F, L1(λ)) if F ∈ Lα(µ)

≤ Aα(1/ε)Wα if F is Euclidean,

where Aα and Wα are functions of α and of the Euclidean constants, A and W .
In particular, if F ∈ L2(µ) then

D(ε
(
µ(F2)

)1/2
, F, L2(µ)) ≤ D

(
1
2ε2λ(F), F, L1(λ)

) ≤ 4A(1/ε)2W .

When specialized to the measure that puts mass 1/n at each of x1, . . . , xn , the
last inequality gives bounds for covering numbers under ordinary Euclidean
distance.

6. Fat shattering

The VC-subgraph property of Definition <13> imposes a subtle micro-constraint
of the functions in a class F. The property can be destroyed by arbitrarily small
perturbations in the values of the functions, even by perturbations that have a
negligible effect on the packing numbers. The concept of fat shattering makes
the shattering property of the functions more robust by requiring a small margin
of error for the property that F can shatter a finite set of points.

<16> Definition. Say that a class F of functions ε-surrounds a point x =
(x1, . . . , xn) at levels (ξ1, . . . , ξn) if for each subset K of J := {1, . . . , n} there
exists a function fK ∈ F for which

fK(xj )

{ ≥ ξj + ε/2 if j ∈ K

≤ ξj − ε/2 if j ∈ J\K

Define ε-shattering dimension D(F, ε) of F as the largest n for which there
exists an x that is ε-surrounded (at some level) by F.

If F consists of indicator functions of sets, the ε-surround property is the
same for all ε in (0, 1] if ξj ≡ 1/2.

An approximation argument will let us study the consequences of fat
shattering as a combinatorial problem. Suppose 0 < ε ≤ 1. Define p := �1/ε�,
the largest positive integer for which ε ≤ 1/p. Suppose also that the functions
in F take values in the interval [0, 1]. For each function f in F define v(ε, x, f )

to be the n-tuple of integers with j th element

v(ε, x, f )j := � f (xj )/ε� for j = 1, . . . , n.

That is, v(ε, x, f )j is the unique integer vj in the set Sp := {0, 1, . . . , p} for
which

f (xj ) = εvj + εj with 0 ≤ εj < ε

27 March 2005 Asymptopia, version: 27mar05 c©David Pollard 11



12 Chapter 12: Combinatorics

Distinct functions f and g might correspond to the same n-tuple. We can
identify the set of all distinct v(ε, x, f ) with the rows of an N ×n matrix Vε,x,F

with elements from Sp. Necessarily, 1 ≤ N ≤ (p + 1)n .
If the point x is 2ε-surrounded by F at levels ξ then the integers

kj := �ξj/ε� have the property: for each subset K of J := {1, . . . , n} there
exists a function fK ∈ F for which

<17> v(ε, x, fK)j

{ ≥ kj + 1 if j ∈ K

≤ kj − 1 if j ∈ J\K
.

Conversely, if <17> holds then

fK(xj ) = εv(ε, x, fK)j + εj

{ ≥ εkj + ε if j ∈ K

≤ εkj − (ε − εj ) < εkj if j ∈ J\K
,

which implies that x is ε/2-surrounded by F at levels ε(kj + 1
2 ).

In reducing the possibly infinite set of functions F to the finite matrix Vε,x,F

we sacrifice only a factor of 2 is our study of fat shattering.

<18> Definition. Let Ln := ∪JZ
J, the union running over all nonempty subsets

of {1, . . . , n}, and say that a lattice point ζ ∈ ZJ has degree #J.
Write M(n, p) for the set of all matrices with n columns and distinct rows

with elements from Sp := 0: p. Let J be a nonempty subset of {1, . . . , n}. Say
that a lattice point ζ ∈ ZJ is 2-surrounded by a V in M(n, p) if for each of
the 2#J subsets K of J there is a row iK of V for which

V [iK, j]

{ ≥ ζj + 1 if j ∈ K

≤ ζj − 1 if j ∈ J\K
.

Define the 2-shatter dimension D2(V ) to be the largest degree of a lattice point
2-surrounded by V . Define the 2-surround number S2(V ) as the number of
distinct lattice points from Ln that are 2-surrounded by V .

FALSE: The set M1 is the set of binary matrices. The definitions for p = 1
are just slight reformulation of properties of binary matrices.

For a given J with #J = k and ζ ∈ ZJ, there are at most p − 1
choices for each ζj if the lattice point is to be surrounded. There are at most(n

k

)
(p − 1)k lattice points of degree k that could possibly be 2-surrounded by a

matrix V ∈ M(n, p). If

S2(V ) >
∑d

k=1

(
n

k

)
(p − 1)k,

the pigeon-hole principle shows that there must be at least one lattice point of
degree at least (d + 1) that is 2-surrounded by V ; and if D2(V ) ≤ d then

S2(V ) ≤
∑d

k=1

(
n

k

)
(p − 1)k .

In particular, if x is 2ε-surrounded by F then D2
(
Vε,x,F

) ≥ d
has 2-shatter dimension d For a matrix
????

7. Mendelson and Vershynin

Based on Mendelson & Vershynin (2003).
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12.7 Mendelson and Vershynin 13

<19> Theorem. Suppose V is an N × n matrix in Mp. For α ∈ [1, ∞) define

Kα := ( ∑
k≥2 kα2−k

)1/α
and Cα := 2(1+α)/α3Kα . Suppose the rows of V are

Cα-separated, in the sense that(
n−1

∑
j≤n

|V [i1, j] − V [i2, j]|α
)1/α

≥ Cα for all 1 ≤ i1 < i2 ≤ n.

Then
(i) S2(V ) ≥ √

N − 1.
(ii) if D2(V ) ≤ d then

√
N ≤ ∑d

k=0

(n
k

)
pk ≤ (epn/d)d .

<20> Lemma. Let X be a random variable with zero median for which ∞ >

P|X |α ≥ τα . Then there exists a β ∈ (0, 1/2] and an interval [a, b] of length
at least τ/Kα such that either

P{X ≤ a} ≥ β/2 and P{X ≥ b} ≥ 1 − β

or

P{X ≤ a} ≥ 1 − β and P{X ≥ b} ≥ β/2

Proof. Represent X as q(U ) where q is an increasing function with q(1/2) = 0
and U has a Uniform(0, 1) distribution. With no loss of generality, suppose
σα := 2P|q(U )|α{U > 1/2} ≥ τα . Suppose a constant c has the property that

<21> q(1 − β) + cσ > q(1 − β/2) for 0 < β ≤ 1/2.

Repeated appeals to this inequality for β = 2−k for k = 1, 2, . . . followed by a
telescoping summation give kcσ > q

(
1 − 2−k−1

)
, and hence

σα = 2
∑∞

k=1

∫ 1−2−k−1

1−2−k

q(u)αdu ≤
∑∞

k=1
2−kq

(
1 − 2−k−1

)α
<

(
cσ Kα

)α
.

Inequality <21> must therefore fail if we choose c = 1/Kα: there must exist
some β in (0, 1/2] for which q(1 − β) + σ/Kα ≤ q(1 − β/2). For that β we
have

P{X ≥ q(1 − β/2)} ≥ P{U ≥ 1 − β/2} = β/2

P{X ≤ q(1 − β)} ≥ P{U ≤ 1 − β} = 1 − β.

Analogous inequalities hold if we shrink the interval to have length τ/Kα .�
<22> Corollary. For the matrix V from Theorem <19> there exists a constant

β ∈ (0, 1/2], a column j0, and an integer η such that both subsets

<23> I1 := {i : V [i, j0] ≥ η + 1} and I2 := {i : V [i, j0] ≤ η − 1}
are nonempty, with

max
(
#I1, #I2

) ≥ (1 − β)N and min
(
#I1, #I2

) ≥ βN/2.

Proof. Independently select I1 and I2 from the uniform distribution
on {1, 2, . . . , N }. We have P{I1 = I2} = 1/N . When I1 �= I2 the corre-
sponding rows of V are Cα separated. Thus

P
∑

j≤n
|V [I1, j] − V [I2, j]|α ≥ nCα

α

(
1 − N−1

) ≥ 1
2 nCα

α ,

which implies existence of at least one j0 for which

P|V [I1, j0] − V [I2, j0]|α ≥ 1
2 Cα

α .

Let m0 be a median for the distribution of the random variable V [I1, j0]. Via
the inequality |x + y|α ≤ 2α−1

(|x |α + |y|α)
for real numbers x and y deduce

that
2α

P|V [I1, j0] − m0|α ≥ 1
2 Cα

α
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14 Chapter 12: Combinatorics

The random variable X := V [I1, j0] − m0 has P|X |α ≥ 1
2 (Cα/2)α = (3Kα)α . A

gap of length 3Kα/Kα must contain at least one interval (η − 1, η + 1) with η

an integer.�
Proof of Theorem <19>. Assertion (ii) follows from assertion (i), as explained
in the previous Section.

Assertion (i) is trivial for N = 1. For the purposes of an inductive proof,
suppose that N ≥ 2 and that the assertion is true for matrices with smaller
numbers of rows.

For simplicity of notation, suppose the j0 from Corollary <22> equals 1.
Write Nr for #Ir and Vr for V [Ir , ], for r = 1, 2.

Consider a J with 1 ∈ J. If V1 2-surrounds a lattice point ζ ∈ ZJ we must
have ζ1 ≥ η + 1; and if V2 2-surrounds ζ we must have ζ1 ≤ η − 1. It is
therefore impossible for both V1 and V2 to 2-surround the same lattice point in
this ZJ. In particular, neither Vr can 2-surround η in its role as a lattice point
from Z{1}.

Define

L
(1) := {ζ ∈ L : only V1 2-surrounds ζ }

L
(2) := {ζ ∈ L : only V2 2-surrounds ζ }

L
(1,2) := {ζ ∈ L : both V1 and V2 2-surround ζ }

Clearly V surrounds every point in L(1) ∪ L(2) ∪ L(1,2). If ζ ∈ LJ ∩ L(1,2)

we must have 1 /∈ J. Neither Vr can surround the lattice point (η, ζ ) ∈ L{1}∪J

but V does: the submatrix V1 provides all those iK for which V [iK, 1] > η

and the submatrix V2 provides all those iK for which V [iK, 1] < η. In short,
for each ζ 2-surrounded by both V1 and V2 there are two centers, ζ ∈ L(1,2)

and (η, ζ ) /∈ S(V1) ∪ S(V2), 2-surrounded by V . It follows that

<24> S2(V ) ≥ 1 + #L
(1) + #L

(2) + 2 × #L
(1,2) = 1 + S2(V1) + S2(V2).

Invoke the inductive hypothesis for both submatrices V1 and V2 to conclude that

S2(V ) ≥ 1+ (
√

N 1 −1)+ (
√

N 2 −1) =
√

N
(√

β/2 +
√

1 − β
)
−1 ≥

√
N −1.

Assertion (i) follows by induction on N .�

8. Haussler and Long

Based on Haussler & Long (1995)
Define

ψ(i, j) =
{ 1 if i = j

0 if i < j
 if i > j

For u, v ∈ Zk define

ψ(u, v) = (
ψ(u1, v1), . . . , ψ(uk, vk)

) ∈ {0, 1, }k

Let V be an N × n matrix in M(n, p). For a nonempty subset J of
{1, . . . , n} say that V ψ-shatters J if there exists a ζ ∈ ZJ such that

{ψ (
V [i, J], ζ

)
: 1 ≤ i ≤ N } ⊇ {0, 1}J.

That is, for each subset K of J there exists an iK such that

<25> ψ
(
V [iK, j], ζj

) =
{

1 if j ∈ K

0 if j ∈ J\K
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12.8 Haussler and Long 15

Write Dψ(V ) for the largest d for which some set J of d columns of V is
ψ-shattered.

For 0 ≤ d ≤ n and n ≥ 1 define �(n, d, p) as the smallest integer for
which: if V is an N × n matrix in M(n, p) for which N > �(n, d, p) then
there is some subset J of at least d +1 columns that is ψ-shattered by V . Show

<26> �(n, d, p) =
{

1 for d = 0
(1 + p)n for d = n

for n = 1, 2, . . .

The second equality corresponds to the fact that no matrix in M(n, p) has more
than (1 + p)n rows.

<27> Theorem. For 0 ≤ d ≤ n,

�(n, d, p) =
d∑

k=0

(
n

k

)
pk

Proof. Notice that the asserted value for �(n, d, p) is exactly equal to

G(n, d, p) := #{x ∈ S
n
p : x has at most d nonzero entries}

By counting separately for those x that end with a zero and those that end with
one of the p integers 1, . . . , p, we get a recursive expression for G,

<28> G(n + 1, d, p) = G(n, d, p) + pG(n, d − 1, p),

which together with the equality

G(1, d, p) =
{

1 for d = 0
1 + p for d = 1

uniquely determines G.
Argue by induction on n. True for n = 1. Suppose true for values up to

n, for some n ≥ 1. Prove it for n + 1.
Suppose V ∈ M(n + 1, p). For each i , call V [i, 1:n] the prefix of the row

and V [i, n + 1] the suffix. Write W for set of all distinct prefixes in V . For
each w ∈ W, write Vw for the submatrix consisting of all rows with prefix w.
Write kw for the smallest suffix amongst the rows in Vw. All other rows in Vw

have suffix strictly greater than kw.
Suppose #W = N0. Let I0 denote the set of N0 rows of the form (w, kw)

for w ∈ W. The suffix for every remaining row must be at least 1. Write Is

for the set of rows in (1 : N )\I0 with suffix s, for s = 1, 2, . . . , p. Note that
N = ∑p

s=0 Ns . Now suppose that

N > �(n, d, p) + p�(n, d − 1, p) for some d with 1 ≤ d ≤ n.

Then either

(i) N0 > �(n, d, p)

or

(ii) Ns > �(n, d − 1, p) for some s ≥ 1
In the first case, the N0 × (n + 1) matrix V [I0, ], which has distinct

rows, must shatter some set of d + 1 columns, by the inductive hypothesis. In
the second case, the Ns × n matrix V [Is, 1 : n], which also has distinct rows
(otherwise two rows of V with suffix s would have the same prefix), must
shatter some set J of d columns from 1:n. That is, there exists some ζ ∈ ZJ

such that for each subset K of J there exists an iK ∈ Is with

ψ
(
V [iK, j], ζj

) =
{

1 if j ∈ K

0 if j ∈ J\K
.
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16 Chapter 12: Combinatorics

Let i ′
K

∈ I0 be such that V [iK, ] and V [i ′
K
, ] have the same prefix. Define

ξ := (ζ, s). Then V shatters J := J ∪ {n + 1}:

ψ
(
V [iK, j], ξj

) =
{

1 if j ∈ K

0 if j ∈ J\K
where K := K ∪ {n + 1}

and

ψ
(
V [i ′

K
, j], ξj

) =
{

1 if j ∈ K

0 if j ∈ J\K
.

In either case, we have a set of d + 1 columns shattered by V .
It follows that

<29> �(n + 1, d, p) ≤ �(n, d, p) + p�(n, d − 1, p).

Together with <26>, this inequality determines an upper bound for �(n, d, p).
Indeed, if we define �(n, d, p) = G(n, d, p)−�(n, d, p) then <30> and <28>

give the recursive inequality

<30> �(n + 1, d, p) ≥ �(n, d, p) + p�(n, d − 1, p)

with the initial condition �(1, d, p) = 0 for d = 0, 1. It follows that
�(n, d, p) ≤ G(n, d, p).

In fact, the last inequality must be an equality, because the G(n, d, p) × n
matrix V consisting of all rows from Sn

p with at most d nonzero elements
cannot shatter any set J of more than d columns: to get <25> with K = ∅ we
would need ζj > 0 for all j in J; but then at most d elements of ψ

(
V [i, J], ζ

)
could equal 1.�

9. An improvement of the packing bound

By means of a more subtle randomization argument, it is possible to eliminate
the log(6e/ε) factor from the bound in Theorem <14>, with a change in the
constant. The improvement is due to Haussler (1995).

<31> Theorem. Let V be an N × n binary matrix for which∑
j≤n

{V [i1, j] �= V [i2, j]} ≥ nε for all 1 ≤ i1 < i2 ≤ n.

for some 0 < ε ≤ 1. ThenNot what Haussler got.

N ≤ e(1 + VC-dim) (2e/ε)D

where D = D(V ), the shatter dimension of V .

For Haussler’s method, we generate random variables X j := V [I, j]
and random vectors XK := V [I, K] by means of an I that is uniformly
distributed on 1: N . The separation assumption of the Theorem provides (via
Lemma <32>) a lower bound for∑

#K=m

∑
j /∈K

Pvar(X j | XK),

where the first sum runs over all subsets K of size m − 1 from 1 : n, for
a strategically chosen value of m. An elegant extension of Theorem <8>

provides (via Lemma <35>) an upper bound for the same quantity. The pair
of bounds gives an inequality involving N , n, ε and D, which leads to the
inequality asserted by the Theorem.

Remark. My m corresponds to m − 1 in Haussler’s paper.

To keep the notation simple, I will prove unconditional forms of the
two Lemmas, then deduce the conditional forms by applying the Lemmas to
submatrices of V .
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12.9 An improvement of the packing bound 17

<32> Lemma. Let I be uniformly distributed on 1:N ,∑
j≤n

var(X j ) ≥ 1
2 nε

(
1 − N−1

)
.

Proof. Let I ′ be chosen independently of I , with the same uniform distribution.
Write X ′

j for V [I ′, j]. Note that the difference X j − X ′
j takes the values ±1

when V [I, j] �= V [I ′, j] and is otherwise zero. Then∑
j
var(X j ) =

∑
j

1
2 P|X j − X ′

j |2 by independence

= 1
2 P

∑
j
{V [I, j] �= V [I ′, j]}.

Whenever I �= I ′ which happens with probability 1 − N−1, the last sum is
greater than nε.�

For the second Lemma we need another inequality involving the shatter
dimension. Write Ej for the set of all pairs (i1, i2) for which the two rows
V [i1, ] and V [i2, ] differ only in the j th position. Define E = ∪j≤nEj . Call the
pairs in E edges: If we were to identify each row of V with a vertex of the
hypercube {0, 1}n , then E would correspond to a set of edges between pairs of
occupied vertices a distance 1 apart.

By means of a slight modification of the downshifting argument from
Theorem <8>, Problem [5] shows that

<33> #E ≤ ND.

Using the analogous property for subsets of E, Problem [6], then shows that it
is possible to provide an orientation for each edge, so that edge e points from
vertex ie

1 to vertex ie
2 , in such a way that no vertex has in-degree greater than D:

<34> #{e : ie
2 = i} ≤ D for 1 ≤ i ≤ N .

When we apply the Lemma to submatrices of V the distribution of I will
not be uniform. We will need the Lemma for more general distributions.

<35> Lemma. For X j := V [I, j] and X− j := V [I, − j],∑n

j=1
Pvar

(
X j | X− j

) ≤ D.

under every distribution P for I .

Proof. The random vector X− j takes values in V− j , the set of distinct rows
of V [, − j]. For each v ∈ V− j , the set {i : V [i, − j] = v} contains either one
or two values: either v uniquely determines the i for which V [i, − j] = v, or
there is an edge e = (ie

1 , ie
2) in Ej for which V [ie

1 , − j] = V [ie
2 , − j] = v. There

is a partition of V− j into two subsets, V1
− j and V2

− j , corresponding to these two
possibilities. There is a one-to-one correspondence between Ej and pairs of
rows from V2

− j ; and if v ∈ V2
j corresponds to the edge e then P{X− j = v} = Pe.

Once we know X− j = v, the value of I is either uniquely determined
(if v ∈ V1

− j ) or is one of the two vertices of an edge e in Ej with conditional
probabilities P{ie

1}/Pe and P{ie
2}/Pe. Thus

var(X j | X− j = v) =
{

0 if v ∈ V1
j

P{ie
1}P{ie

2}/(Pe)2 if v ∈ V2
j .

Averaging over the choice of edge corresponding to v we get
n∑

j=1

Pvar(X j | X− j ) =
n∑

j=1

∑
e∈Ej

Pe
(
P{ie

1}P{ie
2}/(Pe)2

) ≤
∑
e∈E

P{ie
2}.

As e ranges over all edges, ie
2 visits each vertex at most D times. The last sum

is at most D
∑

i≤N P{i} = D.�
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18 Chapter 12: Combinatorics

Proof of Theorem <31>. Let J be a subset of 1:n. The uniform distribution
on 1:N induces a distribution P on VJ, with Pv = Nv/N if v appears Nv times
as a row of V [, J]. A submatrix of V [, J] with only one copy of each v from
VJ cannot have a shatter dimension larger than D(V ). Applying Lemma <35>

to that matrix we get ∑
j∈J

Pvar
(
X j | XJ\{ j}

) ≤ D.

Remark. You should not be worried by the fact that the rows of the
new matrix might not be ε-separated. In fact, the proof of the Lemma made
no use of the separation assumption. It would have been more precise to
state the Lemma as an assertion about binary matrices with a given shatter
dimension.

Sum the last inequality over all possible subsets J of 1:n with #J = m + 1,
for a value of m that will be specified soon.∑

#J=m+1

∑
j∈J

Pvar(X j | XJ\{ j}) ≤
(

n

m + 1

)
D.

Write K for J\{ j}. Every ( j, K) pair with j /∈ K and #K = m appears exactly
once in the double sum. The inequality is equivalent to

<36>
∑

#K=m

∑
j /∈K

Pvar(X j | XK) ≤
(

n

m + 1

)
D.

As a check, note that the double sums involve (m + 1)
( n

m+1

) = (n − m)
(n

m

)
terms.

For a fixed K and a fixed v in VK, the distribution of I conditional
on X K = v is uniform over the rows of the N (v, K) × (n − m) submatrix Vv,K

of V [, −K] consisting of those rows for which V [i, K] = v. Moreover,∑
j /∈K

|V [i1, j] − V [i2, j]| =
∑

j≤n
|V [i1, j] − V [i2, j]| ≥ nε

for rows i1 < i2 of Vv,K. Apply Lemma <32> to that submatrix.∑
j /∈K

var(X j |XK = v) ≥ 1
2 nε

(
1 − N (v, K)−1

)
.

Remark. The proof of Lemma <32> is valid when N (v, K) = 1, even
though the ε-separation property is void for a matrix with only one row. In
any case, the lower bound becomes zero when N (v, K) = 1.

Average over the possible values for XK, using the fact that P{XK = v} =
N (v, K)/N for each v in VK.

<37>
∑
j /∈K

Pvar(X j |XK) ≥ 1
2 nε

∑
v∈VK

(
N (v, K)/N − N−1

) = 1
2 nε

(
1 − #VK/N

)
From Theorem <8>,

#VK ≤ p(m, D) :=
(

m

0

)
+ . . . +

(
m

D

)
≤ (em/D)D if m ≥ D.

Sum over all
(n

m

)
subsets K of size m to get the companion lower bound

to <36>. (
n

m

)
1
2 nε

(
1 − p(m, D)/N

) ≤
∑

#K=m

∑
j /∈K

Pvar(X j | XK)

Together the two bounds imply(
n

m

)
1
2 nε

(
1 − p(m, D)

N

)
≤

(
n

m + 1

)
D,
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12.9 An improvement of the packing bound 19

which rearranges to

N ≤ p(m, D)

/(
1 − 2(n − m)

nε(m + 1)
D

)
.

We could try to optimize over m immediately, as Haussler did, to bound N
by a function of ε, D, and n, then take a supremum over n. However, it is
simpler to note that all the conditions of the Theorem apply to the N × �n
matrix obtained by binding together � copies of V . Thus the last inequality
also holds if we replace n by �n, for an arbitrarily large �. Letting � tend to
infinity with m fixed, we then eliminate n from the bound.

N ≤ p(m, D)

/(
1 − 2D

ε(m + 1)

)
If we choose m = �2(D + 1)/ε� then m ≥ D and the upper bound for N is
smaller than(em

D

)D ε(m + 1)

ε(m + 1) − 2D
≤ (2e/ε)D

(
1 + D

−1
)D 2D + 2

2D + 2 − 2D
,

which is smaller than the bound stated in the Theorem.

10. Problems

[1] Define g(x) = x/(log x) for x > 1.

(i) Show that g achieves its minimum value of e at x = e and that g is an
increasing function on [e, ∞).

(ii) Suppose y ≥ g(x) for some x ≥ e. Show that log y ≥ (1 − e−1) log x .
Deduce that x ≤ (1 − e−1)−1 y log y.

[2] Let D1, . . . ,Dk be classes of sets each with VC dimension at most VC-dim.
Let Bk denote the class of all sets expressible by means of at most k union,
intersection, or complement symbols. Find an increasing, integer-valued
function β(k) such that the VC dimension of Bk is at most β(k)VC-dim.

[3] (generalized marriage lemma) Let S and T be finite sets and R be a nonempty
subset of S × T . Let µ be a finite, nonnegative measure on S and ν be a finite,
nonnegative measure on T . Say that a nonnegative measure λ on S × T is a
solution to the (µ, ν, R, S, T ) problem if

(a) λRc = 0

(b) λ
({i} × T

) ≤ µ{i} for all i ∈ S

(c) λ
(
S × { j}) ≤ ν{ j} for all j ∈ T .

Write Rj for {i ∈ T : (i, j) ∈ R} and RJ for ∪j∈J Rj for subsets J of S. By the
following steps, show that there exists a solution for which all the inequalities
in (c) are actually equalities if and only if

(∗) ν(J) ≤ µ
(
RJ

)
for all J ⊆ T .

(i) If λ is a solution with equalities in (c) for every j , then

ν(J) = λ(S × J) = λ
(
RJ × J

) ≤ µ(RJ) for each J ⊆ T .

(ii) Now suppose (∗) holds. Let λ be a maximal solution to the (µ, ν, R, S, T )

problem, that is, a solution for which λR is as large as possible. Show
that there cannot exist an (i, j) in R for which λ

({i} × T
)

< µ{i} and
λ

(
S × { j}) < ν{ j}, for otherwise λR could be increased by adding some

more mass at (i, j).
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20 Chapter 12: Combinatorics

(iii) Deduce that there must exist at least one j for which equality holds in (c),
for otherwise µRT = ∑

i λ
({i} × T

) = λR < νT , contradicting (∗).

(iv) Without loss of generality, suppose λ
(
S × {1}) = ν{1}. Define R :=

R\ (
T × {1}). Let λ be the restriction of λ to R and ν be the restriction

of ν to S\{1}. Define λ1 to be the measure on S for which λ1{i} =
λ{(i, 1)}. Define µ = µ − λ1. Show that λ is a maximal solution to the
(µ, ν, R, S\{1}, T ) problem. Hint: If there were another solution γ with
γ (R) > λ(R), then the measure obtained by pasting together γ and λ1

would give a solution to the original problem with total mass strictly
greater than λR.

(v) Repeat the argument from (iv), but starting from λ as a maximal solution
to the (µ, ν, R, S\{1}, T ) problem, to deduce equality in (c) for another
column. And so on.

[4] Show that assertion of Problem [3] is still valid if the measures λ, µ, and ν are
retricted to take nonnegative integer values.

[5] Suppose an N × n binary matrix V has shatter dimension VC-dim. Let E be
the corresponding edge set, as defined in Section 9. Show that #E ≤ NVC-dim
by following these steps.

First show that the downshift operation used for the proof of Theorem <8>

cannot decrease the number of edges. Suppose V is transformed to V ∗ by a
downshift of the first column. Suppose (i1, i2) is an edge of V but not of V ∗.

(i) Suppose V [i1, ] and V [i2, ] differ only in the j th position. Show that
j > 1, for otherwise V ∗[i1, ] and V ∗[i2, ] would differ only in the first
position.

(ii) Show that V [i1, 1] = V [i2, 1] = 1, for otherwise the downshift could not
change either row.

(iii) Suppose V [i1, ] = (1, w) and V ∗[i1, ] = (0, w) and V [i2, ] = V ∗[i2, ] =
(1, y), where w and y differ only in the j th position. Show that (0, y) =
V [i0, ] = V ∗[i0, ] for some i0.

(iv) Deduce that (i0, i1) is an edge of V ∗ but not an edge of V .

(v) Explain why every downshift that destroys an edge creates a new one.

Now suppose that V ∗ is the result of not just one downshift, but that it is the
matrix that remains when no more downshifting is possible. Let E∗ be its set
of edges.

(vi) Explain why #E∗ ≥ #E.

(vii) Argue as in the proof of Theorem <8> to show that no row of V ∗ can
contain more than D ones.

(viii) Define ψ : E∗ → 1 : N by taking ψ(e) as the row corresponding to the
vertex of e with the larger number of ones. Show that ψ−1(i) contains at
most D edges, for every i . Hint: How many different edges can be created
by discarding a 1 from V ∗[i, ]?

(ix) Deduce that #E∗ ≤ ND.

[6] Suppose V be an N ×n binary matrix with shatter dimension D and edge set E.
Show that there exists a map ψ : E → 1:N such that

(a) ψ(e) is one of the two vertices on the edge e,

(b) #ψ−1(i) ≤ VC-dim for every i ,

by following these steps.
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12.10 Problems 21

(i) Let E0 be a subset of E, with vertices all contained in I ⊆ 1:N . Apply the
result from Problem [5] to show that

#E0 ≤ number of edges of V [I, ] ≤ D #I.

(ii) Invoke the result from Problem [4] with

S = 1:N T = E Re = the pair of vertices of e

and ν{e} = 1 for each e and µ{i} = D for each i . Show that the measure
λ puts a single atom of mass 1 in each Re.

(iii) Let ψ(e) be the vertex in Re where λ puts its mass. Show that

#ψ−1(i) = λ
({i} × E

) ≤ µ{i} ≤ D.

11. Notes

Get the history on VC Lemma straight. VC? Sauer (1972) ? Frankl?
Section 3: Dudley for sets; Pollard (1982) via Le Cam for functions.
Section 4: Haussler. Explain why result is interesting.
Downshift technique: compare with original VC argument. Talagrand?

Haussler, and refs. Compare with Ledoux & Talagrand (1991, p. 420) and
different explanation in Talagrand (1987). Check the 1987 survey article of
Frankl, cited by Haussler.

Cover (1965) for exact bound for half-spaces. More comments on
suboptimality of VC bound? What does the cubic vs quadratic say about
attempts to squeeze the best results from the VC bound?

Vapnik & Červonenkis (1971) Cite other VC paper too.
Steele (1975) Cite Steele paper, and Sauer, and Frankl.
Talagrand (2003)
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