
Chapter 6

Hellinger differentiability

SECTION 1 relates Hellinger differentiability to the classical regularity conditions for
maximum likelihood theory.

SECTION 2 discusses connections between Hellinger differentiability and pointwise
differentiability of densities, leading to a sufficient condition for Hellinger
differentiability.

SECTION 3 derives the information inequality, as an illustration of the elegance
brought into statistical theory by Hellinger differentiability.

SECTION 4 explains why Hellinger differentiability almost implies contiguity for
product measures.

SECTION 5 explains how one can dispense with the domination assumption when
defining Hellinger differentiability, at the cost of a natural extra assumption
regarding non-dominated components. The slightly strengthened concept is called
Differentiability in Quadratic Mean (DQM) to avoid confusion.

SECTION 6 shows that DQM is preserved under measurable maps.

Final two sections not yet edited.

SECTION 7 derives some subtle consequences of norm differentiability for unit vectors.
SECTION 8 shows that Hellinger differentiability of marginal densities implies existence

of a local quadratic approximation to the likelihood ratio for product measures.

1. Heuristics

Modern statistical theory makes clever use of the fact that square roots of
probability density functions correspond to unit vectors in spaces of square
integrable functions. The Hellinger distance between densities corresponds to
the L2 norm of the difference between the unit vectors. This Chapter explains
some of the statistical consequences of differentiability in norm of the square
root of the density, a property known as Hellinger differentiability.

Throughout the Chapter, P := {Pθ : θ ∈ �} will denote a family of
probability measures, on a fixed (X, A), indexed by a subset � of Rk . In many
cases there will exist a dominating sigma-finite measure λ with respect to which
each Pθ has a density fθ (x) = d Pθ /dλ. I will then refer to P as a dominated
family and write ‖ · ‖2 for the L2(λ) norm and ξθ (x) for the positive square
root of fθ (x).

Most results in the Chapter will concern behavior near some arbitrarily
chosen point θ0 of �. For simplicity of notation, I will usually assume θ0 = 0,
except in a few basic definitions. Thus an expression such as (θ − θ0)

′ξ̇θ0 will
simplify to θ ′ξ̇0, a form that is easier to read and occupies less space on the
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2 Chapter 6: Hellinger differentiability

page. The simplification involves no loss of theoretical generality, because the
same effect could always be achieved by a reparametrization, θ := t + θ0.

The traditional regularity conditions for asymptotic statistical theory
involve existence of two or three derivatives of density functions, together
with domination assumptions to justify differentiation under integral signs.
Le Cam (1970) noted that such conditions are unnecessarily stringent. He
commented:

Even if one is not interested in the maximum economy of assumptions
one cannot escape practical statistical problems in which apparently
“slight” violations of the assumptions occur. For instance the derivatives
fail to exist at one point x which may depend on θ , or the distributions
may not be mutually absolutely continuous or a variety of other
difficulties may occur. The existing literature is rather unclear about
what may happen in these circumstances. Note also that since the
conditions are imposed upon probability densities they may be satisfied
for one choice of such densities but not for certain other choices.

Probably Le Cam had in mind examples such as the double exponential density,
1/2 exp(−|x − θ |), for which differentiability fails at the point θ = x . He
showed that the traditional conditions can, for some purposes, be replaced by a
simpler assumption of Hellinger differentiability: differentiability in norm of
the square root of the density as an element of an L2 space. The derivation of
the information inequality in Section 3 will provide a simple illustration of this
point.

<1> Definition. Write L1
+(λ) for the set of nonnegative functions that are

integrable with respect to a sigma-finite measure λ.
Say that a set F = { fθ : θ ∈ �} ⊆ L1

+(λ), indexed by a subset � of Rk ,
is Hellinger differentiable at a point θ0 of � if the map θ �→ ξθ (x) := √

fθ (x)

is differentiable in L2(λ) norm at θ0, that is, if there exists a vector ξ̇θ0(x) of
functions in L2(λ) such that

<2> ξθ(x) = ξθ0(x)+ (θ −θ0)
′ξ̇θ0(x)+rθ (x) with ‖rθ‖2 = o(|θ − θ0|) near θ0.

Call ξ̇θ0(x) the Hellinger derivative at θ0.
In particular, if fθ = d Pθ /dλ for a family of probability measures P =

{Pθ : θ ∈ �}, say that P is Hellinger differentiable at θ0 if F is Hellinger
differentiable at θ0.

Some authors (for example, Bickel, Klaassen, Ritov & Wellner (1993,
page 202)) adopt a slightly different definition,

<3> ξθ(x) = ξθ0(x) + 1/2(θ − θ0)
′�(x)ξθ0(x) + rθ (x),

replacing the Hellinger derivative ξ̇θ0 by 1/2�(x)ξθ0(x). As explained in
Section 5, the modification very cleverly adds an extra regularity assumption to
the definition. The two definitions are not completely equivalent.

Classical statistical theory, especially when dealing with independent
observations from a Pθ , makes heavy use of the function �θ (x) := log fθ (x),
where fθ = d Pθ /dλ. The vector �̇θ (x) of partial derivatives with respect to θ

is called the score function. The variance matrix Iθ of the score function is
called the Fisher information matrix for the model. The classical regularity
conditions justify differentiation under the integral sign to get

<4> Pθ �̇θ (x) = λ ḟθ (x) = ∂

∂θ
λ fθ (x) = 0,

whence Iθ := varθ
(
�̇θ

) = Pθ

(
�̇θ �̇

′
θ

)
.
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6.1 Heuristics 3

Under assumptions of Hellinger differentiability, the derivative ξ̇θ takes
over the role of the score vector. Ignoring problems related to division by zero
and distinctions between pointwise and L2(λ) differentiability, we would have

2ξ̇θ (x)

ξθ (x)

?= 2√
fθ (x)

∂

∂θ

√
fθ (x) = 1

fθ (x)

∂ fθ (x)

∂θ
= �̇θ (x).

Thus the � in the modified definition <3> corresponds to the score function.
The equality <4> corresponds to the assertion Pθ

(
ξ̇θ /ξθ

) = λ
(
ξθ ξ̇

) = 0,
which Section 7 will show to be a consequence of Hellinger differentiability
and the fact that ‖ξθ‖2 = for all θ . The Fisher information Iθ at θ corresponds
to the matrix

Pθ0

(
�̇θ �̇

′
θ

) ?= 4Pθ0

(
ξ̇θ ξ̇

′
θ /ξ

2
θ

) ?= 4λ
(
ξ̇θ ξ̇

′
θ

)
.

Here I flag both equalities as slightly suspect, not just for the unsupported
assumption of equivalence between pointwise and Hellinger differentiabilities,
but also because of a possible 0/0 cancellation. For the moment it is better
to insert an explicit indicator function, {ξθ > 0}, to protect against 0/0. To
avoid possible ambiguity or confusion, I will write Iθ for 4λ(ξ̇θ ξ̇

′
θ ) and I◦

θ for
4λ(ξ̇θ ξ̇

′
θ {ξθ > 0}), to hint at equivalent forms for Iθ without yet giving precise

conditions under which all three exist and are equal. See Section 4 for an
explanation of when the distinction is necessary.

The classical assumptions also justify further interchanges of integrals
and derivatives, to derive an alternative representation Iθ = −Pθ �̈θ for the
information matrix. It might seem obvious that there can be no analog of this
representation for Hellinger differentiability. Indeed, how could an assumption
of one-times differentiability, in norm, imply anything about a second derivative?
Surprisingly, there is a way, if we think of second derivatives as coefficients
of quadratic terms in local approximations. As will be shown in Section 8,
the fact that ‖ξθ‖2 = 1 for all θ leads to a quadratic approximation for a
log-likelihood ratio—a sort of Taylor expansion to quadratic terms without the
usual assumption of twice continuous differentiability. Remarkable.

2. A sufficient condition for Hellinger differentiability

How does Hellinger differentiability relate to the classical assumption of
pointwise differentiability?

Roughly speaking, the difference between the two concepts is like the
difference between convergence in L2 and convergence almost surely. In fact, it
is easy (Problem [1]) to adapt a standard counterexample to show that Hellinger
differentiability does not imply pointwise differentiability.

Consider the case where � is one-dimensional, and fθ is both Hellinger
differentiable and differentiable a.e. [λ] at θ = 0. Choose a sequence {θn}
tending to zero so fast that

∑
n ‖rθn ‖2/|θn| < ∞, which implies rθn (x) = o(|θn|)

a.e. [λ]. For almost all x ,

ξθn (x) = ξ0(x) + θn ξ̇0(x) + o(|θn|)
ξθn (x)2 = ξ0(x)2 + θn f ′

0(x) + o(|θn|).
If f0(x) �= 0, the second equation can be rewritten as

ξθn (x) = ξ0(x)

(
1 + θn

f ′
0(x)

ξ0(x)2
+ o(|θn|)

)1/2

= ξ0(x) + 1
2θn

f ′
0(x)

ξ0(x)
+ o(|θn|).
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4 Chapter 6: Hellinger differentiability

It follows (cf. differentiation of
√

fθ (x) by first principles) that f ′
0(x) =

2ξ0(x)ξ̇0(x). At an x where f0(x) = 0, this argument fails. Instead we would
have

ξθn (x)2 = θ2
n ξ̇0(x)2 + o(|θn|2)

ξθn (x)2 = θn f ′
0(x) + o(|θn|).

We then deduce that f ′
0(x) = 0 but apparently we no longer have any control

over ξ̇0(x). However, if 0 is an interior point of the parameter space � we
could repeat the argument with {θn} replaced by {−θn}, obtaining for almost
all x for which ξ0(x) = 0 that

ξ±θn (x) = ±θn ξ̇0(x) + o(|θn|).
Nonnegativity of ξθ would then force ξ̇0(x) = 0.

In summary: If the fθ (x) are pointwise differentiable at θ = 0 for almost
all x and if 0 is an interior point of � then the only possible candidate (up to
an almost sure equivalence) for the Hellinger derivative at 0 is

ξ̇0(x) = 1
2

f ′
0(x)

ξ0(x)

What more do we need in order to show that this ξ̇0 is, in fact, an L2(λ)

derivative of θθ at θ = 0? The answer requires careful attention to the problem
of when functions of a real variable can be recovered as integrals of their
derivatives.

<5> Definition. A real valued function H defined on an interval [a, b] of the
real line is said to be absolutely continuous if to each ε > 0 there exists a δ > 0
such that

∑
i |H(bi ) − H(ai )| < ε for all finite collections of nonoverlapping

subintervals [ai , bi ] of [a, b] for which
∑

i (bi − ai ) < δ.
Absolute continuity of a function defined on the whole real line is taken

to mean absolute continuity on each finite subinterval.

The following connection between absolute continuity and integration
of derivatives is one of the most celebrated results of classical analysis
(UGMTP §3.4).

<6> Theorem. A real valued function H defined on an interval [a, b] is
absolutely continuous if and only if the following three conditions hold.

(i) The derivative H ′(t) exists at Lebesgue almost all points of [a, b].
(ii) The derivative H ′ is Lebesgue integrable

(iii) H(t) − H(a) = ∫ t
a H ′(s) ds for each t in [a, b]

Put another way, a function H is absolutely continuous on an interval [a, b]
if and only if there exists an integrable function h for which

<7> H(t) =
∫ t

a
h(s) ds for all t in [a, b]

The function H must then have derivative h(t) at almost all t . As a systematic
convention we could take h equal to the measurable function

Ḣ(t) =
{

H ′(t) at points t where the derivative exists,
0 elsewhere.

I will refer to Ḣ as the density of H . Of course it is actually immaterial how
Ḣ is defined on the Lebesgue negligible set of points at which the derivative
does not exist, but the convention helps to avoid ambiguity.

Now consider a nonnegative function H that is differentiable at a point t .
If H(t) > 0 then the chain rule of elementary calculus implies that the function
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6.2 A sufficient condition for Hellinger differentiability 5

2
√

H is also differentiable at t , with derivative H ′(t)/
√

H(t). At points where
H(t) = 0, the question of differentiability becomes more delicate, because the
map y �→ √

y is not differentiable at the origin. If t is an internal point of the
interval and H(t) = 0 then we must have H ′(t) = 0. Thus H(y) = o(|y − t |)
near t . If

√
H had a derivative at t then

√
H(y) = o(|y − t |) near t , and hence

H(y) = o(|y − t |2). Clearly we need to take some care with the question of
differentiability at points where H equals zero.

Even more delicate is the fact that absolute continuity of a nonnegative
function H need not imply absolute continuity of the function

√
H , without

further assumptions—even if H is everywhere differentiable (Problem [2]).

<8> Lemma. Suppose a nonnegative function H is absolutely continuous on an
interval [a, b], with density Ḣ . Let �(t) := 1/2Ḣ(t){H(t) > 0}/√H(t). If∫ b

a |�(t)| dx < ∞ then
√

H is absolutely continuous, with density �, that is,

√
H(t) −

√
H(a) =

∫ t

a
�(s) ds for all t in [a, b]

Proof. Fix an η > 0. The function Hη := η + H is bounded away from zero,
and hence

√
Hη has derivative H ′

η = H ′/(2
√

H + η) at each point where the
derivative H ′ exists. Moreover, absolute continuity of

√
Hη follows directly

from the Definition <5>, because

|√Hη(bi ) − √
Hη(ai )| = |Hη(bi ) − Hη(ai )|√

Hη(bi ) + √
Hη(ai )

≤ |H(bi ) − H(ai )|
2
√

η

for each interval [ai , bi ]. From Theorem <6>, for each t in [a, b],√
H(t) + η −

√
H(a) + η =

∫ t

a

Ḣ(s)

2
√

H(s) + η
ds.

As η decreases to zero, the left-hand side converges to
√

H(t) − √
H(a). The

integrand on the right-hand side converges to �(s) at points where H(s) > 0.
For almost all s in {H = 0} the derivative H ′(s) exists and equals zero; the
integrand converges to 0 = �(s) at those points. By Dominated Convergence,
the right-hand side converges to

∫ t
a �(s) ds.�

The integral representation for the square root of an absolutely continuous
function is often the key to proofs of Hellinger differentiability. For simplicity of
notation, the following sufficient condition is stated only for a one-dimensional �

with 0 as an interior point.

<9> Theorem. Suppose F = { fθ (x) : |θ | < δ} ⊆ L1
+(λ) for some δ > 0.

Suppose also that
(i) the map (x, θ) �→ fθ (x) is product measurable;

(ii) for λ almost all x , the function θ �→ fθ (x) is absolutely continuous on
[−δ, δ], with almost sure derivative ḟθ (x);

(iii) for λ almost all x , the function θ �→ fθ (x) is differentiable at θ = 0;
(iv) for each θ the function ξ̇θ (x) := 1

2 ḟθ (x){ fθ (x) > 0}/√ fθ (x) belongs
to L2(λ) and λξ̇ 2

θ → λξ̇ 2
0 as θ → 0.

Then F has Hellinger derivative ξ̇0(x) at θ = 0.

Remark. Assumption (iii) might appear redundant, because (ii) implies
differentiability of θ �→ fθ (x) at Lebesgue almost all θ , for λ-almost all x .
A mathematical optimist (or Bayesian) might be prepared to gamble that 0
does not belong to the bad negligible set; a mathematical pessimist might
prefer Assumption (iii).
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6 Chapter 6: Hellinger differentiability

Proof. As before, write ξθ (x) for
√

fθ (x) and define rθ (x) := ξθ (x) − ξ0(x) −
θ ξ̇0(x). We need to prove that λr2

θ = o(|θ |2) as θ → 0.
Assumption (i) and the convention about densities imply joint measurability

of (x, θ) �→ ḟθ (x).
For simplicity of notation, consider only positive θ . The arguments for

negative θ are analogous. Write m for Lebesgue measure on [−δ, δ].
With no loss of generality (or by a suitable decrease in δ) we may assume

that λξ̇ 2
θ is bounded, so that, by Tonelli, ∞ > mθλx ξ̇θ (x)2 = λxmθ ξ̇θ (x)2,

implying mθ ξ̇θ (x)2 < ∞ a.e. [λ]. From Lemma <8> it then follows that

ξθ (x) − ξ0(x)

θ
= 1

θ

∫ θ

0
ξ̇s(x) ds a.e. [λ].

By Jensen’s inequality for the uniform distribution on [0, θ ], and (iv),

<10> λ

∣∣∣∣ξθ (x) − ξ0(x)

θ

∣∣∣∣
2

≤ 1

θ

∫ θ

0
λξ̇s(x)2 ds → λξ̇ 2

0 as θ → 0.

Define nonnegative, measurable functions

gθ (x) := 2 |ξθ (x) − ξ0(x)|2 /θ2 + 2ξ̇0(x)2 − |rθ (x)/θ |2 .

By (iii), rθ (x)/θ → 0 at almost all x where ξ0(x) > 0, and hence gθ (x) →
4ξ̇0(x)2. At almost all points where ξ0(x) = 0 we have ξ̇0(x) = 0, so that
ξθ (x) = rθ (x) and gθ (x) ≥ 0. Thus lim inf gθ (x) ≥ 4ξ̇0(x)2 a.e. [λ]. By Fatou’s
Lemma (applied along subsequences), followed by an appeal to <10>,

4λξ̇ 2
0 ≤ lim inf

θ→0
λgθ ≤ 4λξ̇ 2

0 − lim sup
θ→0

λ |rθ (x)/θ |2 .

That is, λr2
θ = o(θ2), as required for Hellinger differentiability.�

<11> Example. Let q be a probability density with respect to Lebesgue measure m

on the real line. Suppose q is absolutely continuous, with density q̇ for which
Iq := m

({q > 0}q̇2/q
)

< ∞. Define Qθ to have density fθ (x) := q(x −θ) with
respect to λ, for each θ in R. The conditions of Theorem <9> are satisfied,
with

ξ̇θ (x) = − 1
2

q̇(x − θ)√
q(x − θ)

{q(x − θ) > 0} and 4mξ̇ 2
θ ≡ Iq .

The family Q := {Qθ : θ ∈ R} is Hellinger differentiable at θ = 0. In fact,
the same argument works at every θ ; the family is everywhere Hellinger
differentiable, with Hellinger derivative ξ̇θ at θ .

It is traditional to call Iq the Fisher information for q, even though it
would be more more precise to call it the Fisher information for the shift family
generated by q .�

3. Information inequality

The information inequality for the model P := {Pθ : θ ∈ �} bounds the variance
of a statistic T (x) from below by an expression involving the expected value
of the statistic and the Fisher information: under suitable regularity conditions,

varθ (T ) ≥ γ̇ ′
θ I

−1
θ γ̇θ where γθ := Pθ T (x) and γ̇θ := d

dθ
γθ .

The classical proof of the inequality imposes assumptions that derivatives can
be passed inside integral signs, typically justified by more primitive assumptions
involving pointwise differentiability of densities and domination assumptions
about their derivatives.
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By contrast, the proof of the information inequality based on an assumption
of Hellinger differentiability replaces the classical requirements by simple
properties of L2(λ) norms and inner products. The gain in elegance and
economy of assumptions illustrates the typical benefits of working with
Hellinger differentiability. The main technical ideas are captured by the
following Lemma. Once again, with no loss of generality I consider only
behavior at θ = 0.

Remark. The measure Pθ might itself be a product measure, repre-
senting the joint distribution of a sample of independent observations from
some distribution µθ . As shown by Problem [5], Hellinger differentiability
of θ �→ µθ at θ = 0 would then imply Hellinger differentiability of θ �→ Pθ

at θ = 0. We could substitute an explicit product measure for Pθ in the next
Lemma, but there would be no advantage to doing so.

<12> Lemma. Suppose a dominated family P has Hellinger derivative ξ̇0 at 0 and
that supθ∈U Pθ T (x)2 < ∞, for some neighborhood U of 0. Then the function
θ �→ γθ := Px

θ T (x) has derivative γ̇0 = 2λ(ξ0ξ̇0T ) at 0.

Remark. Notice that Pθ T is well defined throughout U , because of the

bound on the second moment. Also
(
λ|ξ0ξ̇0T |)2 ≤ (

λξ 2
0 T 2

) (
λ|ξ̇0|2

)
< ∞.

Proof. Write C2 for supθ∈U Pθ T (x)2, so that ‖ξθ T ‖2 ≤ C for each θ in U .
For simplicity, I consider only the one-dimensional case. The proof for Rk

differs only notationally.
The proof is easy if T is bounded by a finite constant K . By expanding ξ 2

θ

using <2> then invoking the Cauchy-Schwarz inequality, we get

|γθ − γ0 − 2θλ(ξ0ξ̇0T )|
= |λ(Rθ T )| where Rθ (x) := ξ 2

θ − ξ 2
0 − 2θξ0ξ̇0

= λ
∣∣θ2ξ̇ 2

0 + r2
θ + 2ξ0rθ + 2θ ξ̇0rθ

∣∣ |T |<13>

≤ K
(
θ2‖ξ̇0‖2

2 + ‖rθ‖2
2 + 2|θ |‖ξ̇0‖2 ‖rθ‖2

) + 2‖rθ‖2 ‖ξ0T ‖2

= o(|θ |).
The result for bounded T suggests that we break the general T into two

pieces, T {|T | ≤ K } + T {|T | > K }. We could then argue as above for the
contribution from {|T | ≤ K }. For the other contribution we would need to
invoke the integrability of ξ̇ 2

0 to show that

<14> ‖ξ̇0{|T | > K }‖2
2 = λ

(
ξ̇ 2

0 {|T | > K }) → as K → ∞.

The argument would require some delicacy to ensure that whenever we invoked
Cauchy-Schwarz we split into a product of two terms terms that are controlled
by <14>, the Hellinger differentiability, or the boundedness of the second
moment.

It is slightly more elegant to dispose of some contributions from rθ before
splitting T . Note that

Rθ (x) = (ξθ − ξ0)(ξθ + ξ0) − 2θξ0ξ̇0

= θ ξ̇0(ξθ − ξ0) + rθ (ξθ + ξ0).

For the rθ contribution to |λ(Rθ T )| we have

|λ (
rθ (ξθ + ξ0)T

) | ≤ ‖rθ‖2
(‖ξθ T ‖2 + ‖ξ0T ‖2

) = o(|θ |).
For the other contribution we already have a |θ |. We only need another
o(1) factor. Split according to whether |T | ≤ K or not then bound by

λ|ξ̇0{|T | > K }T (ξθ − ξ0)| + λ|ξ̇0{|T | ≤ K }T (ξθ − ξ0)|
≤ ‖ξ̇0{|T | > K }‖2

(‖ξθ T ‖2 + ‖ξ0T ‖2
) + K‖ξ̇0‖2‖ξθ − ξ0‖2

18 March 2005 Asymptopia, version: 18mar05 c©David Pollard 7



8 Chapter 6: Hellinger differentiability

Choose K to make the first term suitably small then let θ tend to 0.�
<15> Corollary. In addition to the conditions of the Lemma, suppose I0 :=

4λ(ξ̇0ξ̇
′
0) is nonsingular. Then var0T ≥ γ̇0I

−1
0 γ̇0.

Proof. The special case of the Lemma where T ≡ 1 gives λ(ξ0ξ̇0) = 0. Let α

be a fixed vector in Rk . Deduce that

(α′γ̇0)
2 = 4

(
λ

(
α′ξ̇0

)
(T − γ0)ξ0

)2

≤ 4α′λ(ξ̇0ξ̇
′
0)α λ

(
ξ 2

0 (T − γ0)
2
)

by Cauchy-Schwarz

= (
α′I0α

)
P0 (T − γ0)

2

Choose α := I−1
0 γ̇0 to complete the proof.�

Variations on the information inequality lead to other useful lower bounds
for variances and mean squared errors of statistics.

<16> Example. [The Van Trees inequality] Let � be an open subset of R.
Suppose P = {Pθ : θ ∈ �} is dominated by λ, with Hellinger derivative ξ̇θ

existing at each θ and information function I(θ) = 4λ(ξ̇ 2
θ ). Suppose also

that q is an absolutely continuous probability density (with respect to Lebesgue
measure m on B(R)), which satisfies the assumptions of Example <11> and
vanishes outside an interval [a, b] ⊆ �.

Let T (x) be an estimator for the unknown parameter θ , with expected
value γ (θ) = Pθ T = λ fθ (x)T (x). Suppose supθ∈K Pθ T (x)2 < ∞ for each
compact subset K of �.

Let Q be the shift family generated by q, with densities ηα(θ)2 := q(θ −α)

with respect to m. Remember that Q has Hellinger derivative

η̇α(θ) = − 1
2

q̇(θ − α)√
q(θ − α)

{q(θ − α) > 0} and 4mη̇2
α ≡ Iq .

Consider the one-parameter family of probabilities G := {Gα : |α| < δ},
for some small, positive δ, defined by densities

gα(x, θ) := q(θ − α) fθ−α(x) with respect to λ ⊗ m.

Under slightly awkward assumptions, the family G has Hellinger derivative

�(x, θ) = η̇0(θ)ξθ (x) − η0(θ)ξ̇θ (x) at α = 0.

Lemma <12> shows that the function g(α) := Gα

(
T (x) − θ

)
has derivative

<17> 2λ ⊗ m
(
η0(θ)ξθ (x)�(x, θ)

(
T (x) − θ

))
with corresponding information inequality

mθq(θ)Pθ (T (x) − θ)2 ≥ 1

Iq + mθq(θ)I(θ)
,

This result is also known as the van Trees inequality. It has many statistical
applications. See Gill & Levit (1995) for details.

In fact, because of the separation of variables in the function T (x) − θ , it
is not essential that G be Hellinger differentiable We can establish the value of
the expression in <17> by two separate calculations. By Fubini,

2λ ⊗ m
(
η0(θ)ξθ (x)�(x, θ)T (x)

)
= mθλx

(
2η0(θ)η̇0(θ) fθ (x)T (x) − q(θ)2ξθ (x)ξ̇θ (x)T (x)

)
= −mθ

(
q̇0(θ){q(θ) > 0}γ (θ)

) − mθ
(
q(θ)γ̇ (θ)

)
Remember that q̇ = 0 almost everywhere on {q = 0} because q ≥ 0. we can
discard the indicator function from the first expression, leaving

−m
(
q̇(θ)γ (θ) + q(θ)γ̇ (θ)

)
8 18 March 2005 Asymptopia, version: 18mar05 c©David Pollard



6.3 Information inequality 9

The expression to be integrated is the almost sure derivative of the absolutely
continuous function q(θ)γ (θ), which vanishes outside the interval [a, b]. The
contribution from T (x) to <17> is zero.

Similarly

2λ ⊗ m
(
η0(θ)ξθ (x)�(x, θ)θ

)
= mθ

(
q̇(θ)θ

) − 0 because λξθ (x)ξ̇θ (x) = 0

= −mθ (q(θ)1) by absolute continuity of q(θ)θ on [a, b]

= −1

Thus
2λ ⊗ m

(
η0(θ)ξθ (x)�(x, θ)

(
T (x) − θ

)) = 1.

By the Cauchy-Schwarz inequality,

4λ ⊗ m

(
q(θ) fθ (x)

(
T (x) − θ

)2
)

λ ⊗ m
(
�(x, θ)2

) ≥ 1.

Finally, note that

4λ ⊗ m
(
�(x, θ)2

)
= 4λ ⊗ m

(
η̇0(θ)2 fθ (x) − 2η̇0(θ)η0(θ)ξ̇θ (x)ξθ (x) + q(θ)ξ̇θ (x)2

)
= Iq − 0 + mθq(θ)I(θ),

which completes the direct proof of the van Trees inequality.�

4. Possible trouble at the boundary

At the end of Section 1, in order to postpone a postone difficulty with division
by zero, I introduced temporary notation to distinguish between between two
candidates for the title of information function under a Hellinger differentiability
assumption. For simplicity of notation, consider the case of θ equal to zero.
The two candidates are then I0 := 4λ(ξ̇0ξ̇

′
0) and I◦

0 := 4λ(ξ̇0ξ̇
′
0{ξ0 > 0}). Their

difference is a nonnegative definite matrix,

B0 := I0 − I◦
0 = 4λ

(
ξ̇0ξ̇

′
0{ξ0 = 0}) .

If 0 is an interior point of �, nonnegativity of ξθ in a neighborhood of 0
forces ξ̇0(x) = 0 for λ-almost all x in {ξ0 = 0}. (The argument from the start
of Section 2 generalizes easily to higher dimensions.) Only if 0 is a boundary
point of � might B0 be nonzero.

For x in the set {ξ0 = 0} we have

ξθ (x) = 0 + θ ′ξ̇0(x) + rθ (x),

which implies

Pθ {ξ0 = 0} = λ
(
θ ′ξ̇0 + rθ

)2 {ξ0 = 0} = θ ′ B0θ + o(|θ |2)
The quantity on the left-hand side equals P⊥

θ (X), the total mass of the part
of Pθ that is singular with respect to P0.

18 March 2005 Asymptopia, version: 18mar05 c©David Pollard 9



10 Chapter 6: Hellinger differentiability

<18> Example. Define P := {Pθ : 0 ≤ θ ≤ 1} via the densities

fθ (x) = ξθ (x)2 := (1 − θ2) (1 − |x |)+ + θ2 (1 − |x − 2|)+
with respect to Lebesgue measure λ on [−1, 3]. The densities f0 and f1 have
disjoint support, and ξθ = (

1 − θ2
)1/2

ξ0 + θξ1. By direct calculation

λ |ξθ (x) − ξ0(x) − θξ1(x)|2 =
(√

1 − θ2 − 1
)2

= O(θ4).

Thus P is Hellinger differentiable at θ = 0 with L2(λ) derivative ξ̇0 := √
f1,

but Pθ { f0 = 0} = θ2. The random variable Zn is equal to zero a.e. [Pn
0 ], and

I0 = 1, and I0 = 0.�
In general, if B0 is nonzero there might be sequences {θn} in � approach-

ing 0 at a 1/
√

n rate for which θn/|θn| → δ with c := δ′ B0δ �= 0. For such θn

we would have n P⊥
θn

(X) = n Pθn {ξ0 = 0} → c. As you will see in Section 8, this
possibility will cause awkward behavior for the the likelihood ratio d Pn

θn
/d Pn

0 ,
an awkwardness essentially due to a failure of contiguity—see Problem [11].

5. An intrinsic characterization of Hellinger differentiability

For the definition of Hellinger differentiability, the choice of dominating
measure λ for the family of probability measures P = {Pθ : θ ∈ �} is somewhat
arbitrary. In fact, there is really no need for a single dominating λ, provided we
guard against bad behavior by P⊥

θ , the part of Pθ that is singular with respect
to P0. As you saw in Section 4, the assumption P⊥

θ X = o(|θ |2) is needed to
ensure some asymptotic difficulties related to failure of contiguity. We lose
little by building the assumption into the definition. Following Le Cam (1986,
Section 17.3) and Le Cam & Yang (2000, Section 7.2), I will call the slightly
stronger property differentiability in quadratic mean (DQM), to stress that the
definition requires a little more than Hellinger differentiability.

The definition makes no assumption that the family of probability measures
P := {Pθ : θ ∈ �} is dominated. Instead it is expressed directly in terms of
the Lebesgue decomposition of Pθ with respect to Pθ0 , for a fixed θ0 in �. As
before, I will assume θ0 = 0 to simplify notation. Remember that Pθ = P̃θ +P⊥

θ ,
where the absolutely continuous part P̃θ has a density pθ with respect to P0

and the singular part P⊥
θ concentrates on a P0-negligible set Nθ ,

Pθ g = P̃θ

(
g(x)pθ (x){x ∈ Nc

θ }
) + P⊥

θ

(
g(x){x ∈ Nθ }

)
,

at least for nonnegative measurable functions g on X.

<19> Definition. Say that P is differentiable in quadratic mean (DQM) with score
function � at 0 if

(i) P⊥
θ (X) = o(|θ |2) as |θ | → 0,

(ii) � is a vector of L2(P0) functions for which√
pθ (x) = 1 + 1

2θ ′�(x) + rθ (x) with P0
(
r2
θ

) = o(|θ |2) near 0.

Remark. Some authors (for example, Bickel et al. 1993, page 457) use
the term DQM as a synonym for differentiability in L2 norm. The factor of
1/2 simplifies some calculations, by making the vector � correspond to the
score function at 0.

When P is dominated by a sigma-finite measure, the definition agrees with
the definition of Hellinger differentiability under the assumption (i), which is
needed for contiguity of product measures.
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6.5 An intrinsic characterization of Hellinger differentiability 11

<20> Theorem. Suppose P is dominated by a sigma-finite measure λ, with
corresponding densities fθ (x).

(i) Suppose Pθ { f0 = 0} = o(|θ |2) and, for some vector ξ̇ of functions in
L2(λ),√

fθ (x) =
√

f0+θ ′ξ̇ (x)+Rθ (x) where λ
(
R2

θ

) = o(|θ |2) with θ = 0.

Then P satisfies the DQM condition at 0, with � := 2{ f0 > 0}ξ̇ /
√

f0

and rθ := { f0 > 0}Rθ /
√

f0.
(ii) If P satisfies the DQM condition at 0 then it is also Hellinger differen-

tiable at 0, with L2(λ) derivative ξ̇ := 1
2�

√
f0.

Proof. For the Lebesgue decomposition we can take pθ := { f0 > 0} fθ / f0 and
Nθ := { f0 = 0}. Thus P⊥

θ X = λ fθ { f0 = 0}.
If P is Hellinger differentiability, as in (i), then

P0

∣∣√pθ − 1 − 1
2θ ′�

∣∣2 = λ f0

∣∣∣{ f0 > 0}
√

fθ / f0 − 1 − 1
2θ ′ξ̇{ f0 > 0}/

√
f0

∣∣∣2

= λ

(
{ f0 > 0}

∣∣∣√ fθ −
√

f0 − θ ′ξ̇
∣∣∣2

)
= o(|θ |2).

Conversely, if P satisfies DQM then

λ

∣∣∣√ fθ −
√

f0 − θ ′ξ̇
∣∣∣2

= λ{ f0 = 0}
(√

fθ − 0
)2

+ λ{ f0 > 0}
∣∣∣√ f0 pθ −

√
f0 − 1

2θ ′�
√

f0

∣∣∣2

= o(|θ |2) + P0

∣∣√pθ − 1 − 1
2θ ′�

∣∣2 = o(|θ |2).
�

The definition of DQM has some advantages over the definition of Hellinger
differentiability, even beyond the elimination of the dominating measure λ. For
θ near zero, pθ ≈ 1, a simplification that has subtle consequences, as illustrated
by the next Section.

6. Preservation of DQM under measurable maps

Suppose T is a measurable map from (X, A) to (T, B)). The distribution of T
under Pθ is a probability measure on B, the image measure Qθ := T Pθ on B,
defined by Qθ g := Px

θ g(T x) for each g in M+(T, B).
For each h in L1(P0) we can define a (signed) measure νh on B by

νh(g) := Px
0 (h(x)g(T x)) for each g in M+(T, B).

The measure νh is absolutely continuous with respect to Q0. The Kolmogorov
conditional expectation P0(h | T = t) is just the density dνh/d Q0. (See
UGMTP §5.6.) I will also denote it by πt (h). Thus, at least for each bounded,
B-measurable real function g on T,

<21> Px
0

(
h(x)g(T x)

) = Qt
0 (g(t)πt (h))

Now suppose P = {Pθ : θ ∈ �} is DQM at θ = 0 with score function �.
For the moment, suppose each Pθ is dominated by P0 with density pθ (x).
Then each member of Q := {Qθ : θ ∈ �} is dominated by Q0, with
density d Qθ /d Q0 = P0(pθ | T = t) = πt (pθ ). Under DQM,√

πt (pθ ) =
(
πt

(
1 + 1

2θ ′� + rθ

)2
)1/2

= (
1 + θ ′πt� + . . .

)1/2 = 1 + 1
2θ ′πt� + . . .

18 March 2005 Asymptopia, version: 18mar05 c©David Pollard 11



12 Chapter 6: Hellinger differentiability

If all the omitted terms can be ignored, in an L2(Q0) sense, then Q would be
Hellinger differentiable at 0, with L2(Q0)-derivative πt (�). The next Theorem
makes this heuristic argument rigorous, even without a domination assumption
on P.

<22> Theorem. Suppose P = {Pθ : θ ∈ �} is DQM with score function � at 0.
Suppose T is a measurable map from (X, A) into (T, B). Then {T Pθ : θ ∈ �}
is DQM at 0, with score function P0(� | T = t).

Proof. To simplify notation, I will assume � is one-dimensional. No extra
conceptual difficulties arise in higher dimensions.

Define Qθ := T Pθ and Q̃θ := T P̃θ . In fact Q̃θ might not be the part of Qθ

that is singular with respect to Q0, because T P⊥
θ might contain a component

dominated by Q0. As you will see at the end of the proof, there is little harm
in ignoring the possible contribution from T P⊥

θ for the moment.
Write ξθ for

√
pθ , where pθ = d P̃θ /d P0. By definition of DQM,

ξθ (x) = 1 + 1
2θ�(x) + rθ (x) with P0r2

θ = o(θ2).

Use a bar to denote “averaging” with respect to πt :

�̄(t) := πt (�), r̄θ (t) := πt (rθ ), ξ̄θ (t) := πt (ξθ ) = 1 + 1
2θ�̄(t)+ r̄θ (t).

Notice that ξ̄θ converges in Q0 probability to 1 as θ → 0 because

Q0�̄
2 ≤ Q0πt�

2 = P0�
2 < ∞

Q0r̄2
θ ≤ Q0πt r

2
θ = P0r2

θ = o(θ2).

Also, the function ξθ has a small conditional variance:

σ 2
θ (t) := πt

(
ξθ − ξ̄θ

)2

= πt
(

1
2θ(� − �̄) + rθ − r̄θ

)2

≤ 2( 1
2θ)2πt (� − �̄)2 + 2πt (rθ − r̄θ )

2

≤ θ2 J (t) + εθ (t) where J (t) := 1
2πt�

2 and εθ (t) = 2πt rθ (t)2<23>

so that

Q0σ
2
θ (t) ≤ θ2 Q0 J + Q0εθ = 1

2θ2 P0�
2 + 2P0r2

θ = O(θ2) + o(θ2).

Remark. The cancellation of the leading constants when ξ̄θ is subtracted
from ξθ seems to be vital to the proof. For general Hellinger differentiability,
the cancellation does not occur.

The density of Q̃θ with respect to Q0 equals

η2
θ (t) := πt (ξ

2
θ ) = σ 2

θ (t) + ξ̄θ (t)
2.

Consequently, ηθ (t) ≥ ξ̄θ (t) or, equivalently,

ηθ (t) = ξ̄θ (t) + δθ (t) for some δθ ≥ 0

= 1 + 1
2θ�̄(t) + r̄θ (t) + δθ (t)

To establish DQM for Q we need to show that

Q0
(
ηθ − 1 − 1

2θ�̄
)2 = o(θ2).

It is enough, therefore, to show that both Q0r̄2
θ and Q0δ

2
θ are of order o(θ2).

The r̄θ is easily handled via a conditional Jensen inequality:

Q0r̄2
θ = Q0 (πt rθ )

2 ≤ Q0πt r
2
θ = P0r2

θ = o(θ2).

The argument for δθ is a little more delicate. From the bound <23> and
the equality

(
ξ̄θ + δθ

)2 = η2
θ = σ 2

θ + ξ̄ 2
θ we have

<24> 2ξ̄θ (t)δθ (t) + δ2
θ (t) = σ 2

θ ≤ θ2 J (t) + εθ (t).
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6.6 Preservation of DQM under measurable maps 13

For a fixed small β > 0, define

Aθ = {t : ξ̄θ (t) ≥ 1/2, σ 2
θ (t) ≤ β}.

Notice that Q0 Ac
θ → 0 as θ → 0. For t in Aθ we have δθ (t)2 ≤ σ 4

θ (t) ≤ βσ 2
θ (t);

and for t in Ac
θ we have δ2

θ (t) ≤ σ 2
θ . Thus

Q0δ
2
θ ≤ βQ0σ

2
θ Aθ + Q0σ

2
θ Ac

θ

≤ β
(
θ2 Q0 J + Q0εθ

) + θ2 Q0(J Ac
θ ) + Q0εθ

≤ βθ2 Q0 J + o(θ2) + θ2o(1) + o(θ2)

As β could be chosen arbitrarily small, it follows that Q0δ
2
θ = o(θ2).

Finally, let me take care of any part of T P⊥
θ that might have been

dominated by Q0. The density for the part of Qθ with respect to Q0 might
actually equal η2

θ + sθ , where sθ ≥ 0 and Q0sθ ≤ (T P⊥
θ )(T) = P⊥

θ (X) = o(θ2).
That is, we need to replace σ 2

θ by σ 2
θ + sθ , which adds only another o(θ2) terms

to the bounds in the previous paragraph. The modification has an asymptotically
negligible effect on the argument. The family {Qθ : θ ∈ �} inherits DQM from
the family {Q̃θ : θ ∈ �}.�

Discuss consequences for loss of information under measurable maps.
Sufficiency. cf. Kagan & Shepp (2005)

7. Differentiability of unit vectors

Suppose τ is a map from Rk into some inner product space H (such as L2(λ)).
Suppose also that τ is differentiable (in norm) at θ0,

τθ = τθ0 + (θ − θ0)
′τ̇θ0 + rθ with ‖rθ‖ = o(|θ − θ0|) near θ0.

For simplicity of notation, suppose θ0 = 0.
The Cauchy-Schwarz inequality gives |〈τ0, rθ 〉| ≤ ‖τ0‖ ‖rθ‖ = o(|θ |). It

would usually be a blunder to assume naively that the bound must therefore be
of order O(|θ |2); typically, higher-order differentiability assumptions are needed
to derive approximations with smaller errors. However, if ‖τθ‖ is constant—that
is, if τθ is constrained to take values lying on the surface of a sphere—then
the naive assumption turns out to be no blunder. Indeed, in that case, it is
easy to show that in general 〈τ0, rθ 〉 equals a quadratic in θ plus an error of
order o(|θ |2). The sequential form of the assertion will be more convenient for
the calculations in Section 8.

<25> Lemma. Let {αn} be a sequence of constants tending to zero. Let τ0, τ1, . . . be
elements of norm one for which τn = τ0 + αn W + ρn , with W a fixed element
of H and ‖ρn‖ = o(αn). Then 〈τ0, W 〉 = 0 and 2〈τ0, ρn〉 = −α2

n‖W‖2 + o(α2
n).

Proof. Because both τn and τ0 have unit length,

0 = ‖τn‖2 − ‖τ0‖2 = 2αn〈τ0, W 〉 order O(αn)

+ 2〈τ0, ρn〉 order o(αn)

+ α2
n‖W‖2 order O(α2

n)

+ 2αn〈W, ρn〉 + ‖ρn‖2 order o(α2
n).

The o(αn) and o(α2
n) rates of convergence in the second and fourth lines come

from the Cauchy-Schwarz inequality. The exact zero on the left-hand side of
the equality exposes the leading 2αn〈τ0, W 〉 as the only O(αn) term on the
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14 Chapter 6: Hellinger differentiability

right-hand side. It must be of smaller order, o(αn) like the other terms, which
can happen only if 〈τ0, W 〉 = 0, leaving

0 = 2〈τ0, ρn〉 + α2
n‖W‖2 + o(α2

n),

as asserted.�
Remark. Without the fixed length property, the difference ‖τn‖2 −‖τ0‖2

might contain terms of order αn . The inner product 〈τ0, ρn〉, which inherits
o(αn) behaviour from ‖ρn‖, might then not decrease at the O(α2

n) rate.

<26> Corollary. If P has a Hellinger derivative ξ̇θ0 at 0, and if 0 is an interior
point of �, then λ

(
ξ0ξ̇0

) = 0 and 8λ
(
ξ0rθ

) = −θ ′I0θ + o(|θ |2) near 0.

Proof. Start with the second assertion, in its equivalent form for sequences
θn → 0. Write θn as |θn|un , with un a unit vector in Rk . By a subsequencing
argument, we may assume that un → u, in which case,

ξθn = ξ0 + |θn|u′
n ξ̇0 + rθn = ξ0 + |θn|u′ξ̇0 + (

rθn + |θn|(un − u)′ξ̇0
)
.

Invoke the Lemma (with W = u′ξ̇0) to deduce that u′λ
(
ξ0ξ̇0

) = 0 and

−4|θn|2λ
(
u′ξ̇0

)2 + o(|θn|2) = 8λ
(
ξ0

(
rθn + |θn|(un − u)′ξ̇0

))
= 8λ

(
ξ0rθn

) + 8|θn|(un − u)′λ
(
ξ0ξ̇0

)
.

Because 0 is an interior point, for every unit vector u there are sequences
θn → 0 through � for which u = θn/|θn|. Thus u′λ

(
ξ0ξ̇0

) = 0 for every unit
vector u, implying that λ

(
ξ0ξ̇0

) = 0. The last displayed equation reduces the
sequential analog of the asserted approximation.�

Remark. If 0 were not an interior point of the parameter space, there
might not be enough directions u along which θn → 0 through �, and
it might not follow that λ(ξ0ξ̇0) = 0. Roughly speaking, the set of such
directions is called the contingent of � at θ0. If the contingent is ‘rich
enough’, we do not need to assume that 0 is an interior point. See Le Cam
& Yang (2000, Section 7.2) and Le Cam (1986, page 575) for further details.

8. Quadratic approximation for log likelihood ratios

Suppose observations {xi } are drawn independently from the distribution
P0. Under the classical regularity conditions, the log of the likelihood ratio
d Pn

θ /d Pn
0 = ∏

i≤n fθ (xi )/ f0(xi ) has a local quadratic approximation in 1/
√

n
neighborhoods of 0, under Pn

0 . (Remember that, in general, dQ/dP denotes
the density with respect to P of the part of Q that is absolutely continuous
with respect to P.) For example, the following result (for one dimension) was
proved in Chapter 7.

<27> Theorem. Let Pn := Pn
0 and Qn := Pn

θn
, for θn := δn/

√
n with {δn} bounded.

Suppose the map θ �→ fθ is twice differentiable in a neighborhood U of 0 with:
(i) θ �→ f̈θ (x) is continuous at 0;

(ii) there exists a λ-integrable function M(x) with supθ∈U | f̈θ (x)| ≤ M(x)

a.e. [P0];

(iii) Px
0

(
ḟθ (x)/ f0(x)

)2 → Px
0

(
ḟ0(x)/ f0(x)

)2 =: I0 < ∞ as θ → 0;
(iv) Pθ { f0 = 0} = o(θ2) as θ → 0.

Then P0�̇0(x) = 0 = P0
(

f̈ (x)/ f0(x)
)

and, under {Pn},
dQn

dPn
= (

1 + op(1)
)

exp
(
δn Zn − 1

2δ2
nI0

)
,
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6.8 Quadratic approximation for log likelihood ratios 15

where Zn := ∑
i≤n �̇0(xi )/

√
n � N (0, I0). Consequently, Qn � Pn .

The method of proof consisted of writing the likelihood ratio as∏
i≤n

(
1 + εn(xi )

)
where εn(x) := { f0(x) > 0}( fθn (x) − f0(x)

)
/ f0(x) ,

then showing that, under Pn ,

(a) maxi≤n |εn(xi )| = op(1),

(b)
∑

i≤n εn(xi ) = δn Zn + op(1),

(c)
∑

i≤n εn(xi )
2 = δ2

nI0 + op(1).

Result (a) plus the fact that
∑

i≤n εn(xi )
2 = Op(1) implied that

<28>
∏

i≤n

(
1 + εn(xi )

) = (
1 + op(1)

)
exp

(∑
i≤n

εn(xi ) − 1
2εn(xi )

2

)
,

from which the final assertion followed.
Le Cam (1970) established a similar quadratic approximation under an

assumption of Hellinger differentiability. The method of proof is very similar
to the method just outlined, but with a few very subtle differences. Remember
that I0 := 4λ

(
ξ̇θ ξ̇

′
θ

)
and I◦

0 := 4λ
(
ξ̇0ξ̇

′
0{ξθ > 0}).

<29> Theorem. Suppose P is Hellinger differentiable at 0, with L2(λ) deriva-
tive ξ̇0. Let Pn := Pn

0 and Qn := Pn
θn

, with θn := δn/
√

n for a bounded
sequence {δn}. Then, under {Pn},

dQn

dPn
= (

1 + op(1)
)

exp
(
δ′

n Zn − 1
4δ′

n(I0 + I◦
0)δn

)
,

where
Zn := 2n−1/2

∑
i≤n

{ξ0(xi ) > 0}ξ̇0(xi )/ξ0(xi ) � N (0, I◦
0).

Remark. It is traditional to absorb the 1+op(1) factor for the likelihood
ratio into the exponent. One then has some awkwardness with the right-hand
side of the approximation at samples for which the left-hand side is zero.
The awkwardness occurs with positive Pn probability if Pθ0 { fθn = 0} > 0.

Proof. I will give the proof only for the one-dimensional case. The proof for
the multi-dimensional case is analogous.

Write τn for ξθn , and ρn for rθn , and Ln for dQn/dPn . By Hellinger
differentiability,

τn(x) = ξ0(x) + n−1/2δn ξ̇0(x) + ρn(x) with λρ2
n = o(θ2

n ).

Define

<30> ηn(x) := {ξ0(x) > 0}τn(x) − ξ0(x)

ξ0(x)
= δn√

n
D(x) + Rn(x),

where

D(x) := {ξ0(x) > 0}ξ̇0(x)/ξ0(x) and Rn(x) := {ξ0(x) > 0}ρn(x)/ξ0(x).

The indicator functions have no effect within the set An := ∩i≤n{ξ0(xi ) > 0},
which has Pn-probability one, but they will protect against 0/0

?= 1 when
converting from P0- to λ-integrals. On the set An ,√

Ln =
∏

i≤n
τn(xi )/ξ0(xi ) =

∏
i≤n

(
1 + ηn(xi )

)
.

For almost the same reason as in the proof of Theorem <27>, we need to show
that

(i) maxi≤n |ηn(xi )| = op(1),
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16 Chapter 6: Hellinger differentiability

(ii)
∑

i≤n ηn(xi ) = 1
2δn Zn − 1

8δ2
nI0 + op(1),

(iii)
∑

i≤n ηn(xi )
2 = 1

4δ2
nI◦

0 + op(1).

The analog of <28>, with ηn replacing εn , will then give

√
Ln = (

1 + op(1)
)

exp

(∑
i≤n

ηn(xi ) − 1
2

∑
i≤n

ηn(xi )
2

)
,

from which the assertion of the Theorem follows by squaring both sides.

Remark. Notice that (ii) differs significantly from its analog (b) for the
proof of Theorem <27>, through the addition of a constant term. However,
the difference is compensated by a halving of the corresponding constant
in (iii), as compared with (c). The differences occur because, on the set
{ f0(x) > 0},

εn(x) = τn(x)2 − ξ0(x)2

ξ0(x)2
= τn(x) − ξ0(x)

ξ0(x)

2ξ0(x) + τn(x) − ξ0(x)

ξ0(x)
= 2ηn(x) + ηn(x)2.

Thus∑
i≤n

εn(xi ) = 2
∑
i≤n

ηn(xi ) +
∑
i≤n

ηn(xi )
2 = δn Zn − 1

4 δ2
nI0 + 1

4 I◦
0 + op(1).

As you will see in Section 4, the conditions of Theorem <27> actually
imply I0 = I◦

0, a condition equivalent to the contiguity Qn � Pn .

Assertions (i), (ii), and (iii) will follow from <30>, via simple probability
facts, including: if Y1, Y2, . . . are independent, identically distributed random
variables with P|Y1|r < ∞ for some constant r ≥ 1 then maxi≤n |Yi | = op(n1/r ).
(The proof appeared as a Problem to Chapter 7.)

First note that

P0 D(x) = λ

(
ξ0(x)2 ξ̇0(x)

ξ0(x)
{ξ0(x) > 0}

)
= λ

(
ξ0ξ̇0

) = 0 by Corollary <26>,

P0 D(x)2 = λ

(
ξ0(x)2 ξ̇0(x)2

ξ0(x)2
{ξ0(x) > 0}

)
= λ

(
ξ̇ 2

0 {ξ0(x) > 0}) = 1
4 I◦

0,

8P0 R(x) = 8λ (ξ0(x)ρn(x)) = −δ2
nI0/n + o(1/n),

P0 R(x)2 ≤ λρn(x)2 = o(1/n).

From the expressions involving D we get

Zn = 2
∑
i≤n

D(xi )/
√

n � N (0, 1
4 I◦),

n−1
∑
i≤n

D(xi )
2 = 1

4 I◦ + op(1),

max
i≤n

|D(xi )| = op(n
1/2).

From the expressions involving Rn we get

Pn

(∑
i≤n

Rn(xi )

)
= −δ2

nI0 + o(1),

var

(∑
i≤n

Rn(xi )

)
≤

∑
i≤n

Pn Rn(xi )
2 → 0,

which together imply that ∑
i≤n

R(xi ) = − 1
8δ2

nI0 + op(1),

(
maxi≤n |Rn(xi )|

)2 ≤
∑
i≤n

Rn(xi )
2 = op(1).
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6.8 Quadratic approximation for log likelihood ratios 17

Assertions (i), (ii), and (iii) now follow easily.
For (i):

maxi≤n |ηn(xi )| ≤ |δn| maxi≤n
|D(xi )|√

n
+ maxi≤n |Rn(xi )| = op(1).

For (ii):∑
i≤n

ηn(xi ) = 1
2δn

∑
i≤n

D(xi )√
n

+
∑
i≤n

Rn(xi ) = 1
2δn Zn − 1

8δ2
nI0 + op(1).

For (iii):

∣∣∣
(∑

i≤n

ηn(xi )
2

)1/2

−
(

δ2
n

∑
i≤n

D(xi )
2

n

)1/2∣∣∣ ≤
(∑

i≤n

Rn(xi )
2

)1/2

= op(1),

implying that∑
i≤n

ηn(xi )
2 = δ2

n

∑
i≤n

D(xi )
2

n
+ op(1) = 1

4δ2
nI◦

0 + op(1).

The asserted quadratic approximation follows.�

9. Problems

Problems not yet checked.

[1] Let λ denote Lebesgue measure on B[0, 1]. Let {Bk : k ∈ N} be a sequence of
sets with λB2k = 1/k = λB2k+1 and

λ{x : x ∈ B2k ∪ B2k+1 for infinitely many k } = 1.

Define f0(x) = 1 for all x . Define ak := k−1/3. For ak+1 ≤ θ < ak define

f (x, θ) := 1 + 1
2 {x ∈ B2k} − 1

2 {x ∈ B2k+1}

(i) Show that λ
(√

fθ − √
f0

)2 = O(θ3).

(ii) Deduce that { fθ : 0 ≤ θ < 1} has Hellinger derivative 0 at θ = 0.

(iii) Show that the function θ �→ f (x, θ) is discontinuous at θ = 0, for every x .
Deduce that none of the functions is differentiable at θ = 0.

(iv) Modify the construction to give a family with a nonzero Hellinger derivative
at θ = 0 for which none of the f (x, ·) are differentiable at θ = 0.

[2] (Construction of an absolutely continuous density whose square root is not
absolutely continuous.) For i ≥ 3 define

αi = 1

i(log i)2
and βi = 1

i(log i)5
,

Define Bi = 2
∑

j≥i βj . Define functions

Hi (t) = αi (1 − |t − Bi − βi |/βi )
+ and H(t) = (1 ∧ t)+ +

∑
i≥3

Hi (t).
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18 Chapter 6: Hellinger differentiability

(i) Show that Bi decreases like (log i)−4.

(ii) Use the fact that
∑

i αi < ∞ to prove that H is absolutely continuous.

(iii) Show that αi/Bi → 0, then deduce that H has derivative 1 at 0.

(iv) Show that√
H(Bi−1 − βi ) −

√
H(Bi−1) = αi − βi√

H(Bi−1 + βi ) + √
H(Bi−1)

,

which decreases like 1/ i , then deduce that
k+m∑
i=k

|
√

H(Bi−1 − βi ) −
√

H(Bi−1)|

can be made arbitrarily large while keeping
∑k+m

i=k |βi | arbitrarily small.
Deduce that

√
H is not absolutely continuous.

(v) Show, by an appropriate “rounding off of the corners” at each point
where H has different left and right derivatives followed by some smooth
truncation and rescaling, that there exists an absolutely continuous,
everywhere differentiable probability density function f for which

√
f is

not absolutely continuous.

[3] Let fθ (x) = 1/2 exp(−|x − θ |), for θ ∈ R (the double-exponential location
family of densities with respect to Lebesgue measure).

(i) Show that
∫ √

fθ (x) fθ+δ(x) dx = (1 + δ/2) exp(−δ/2).

(ii) Deduce that the density fθ is Hellinger differentiable at every θ .

(iii) Show that θ �→ fθ (x) is not differentiable, for each fixed x , at θ = x .

(iv) Prove Hellinger differentiability by a direct Dominated Convergence
argument, without the explicit calculation from (i).

(v) Prove Hellinger differentiability by an appeal to Example <11>, without
the explicit calculation from (i).

[4] Suppose F = { fθ : θ ∈ �} is a familiy of densities indexed by a subset � of Rk .
Suppose 0 is an interior point of � and that F is Hellinger differentiable at
θ = 0, with derivative �. Show that �(x) = 0 almost everywhere on { f0 = 0}.
Hint: Approach 0 from each direction in Rk . Deduce that both P0�{ f0 = 0}
and P0�

2{ f0 = 0} equal zero.

[5] Suppose F = { ft (x) : t ∈ T } is a family of probability densities with respect
to a measure λ, G = {gs(x) : s ∈ S} is a family of probability densities
with respect to a measure µ. Suppose F is Hellinger differentiable at t = 0
and G is Hellinger differentiable at s = 0. Show that the family of densities
{ fs(x)gt (y) : (s, t) ∈ S ⊗ T } with respect to λ ⊗ µ is Hellinger differentiable at
(s, t) = (0, 0). Hint: Use Cauchy-Schwarz to bound contributions from most
of the cross-product terms in the expansion of

√
ft (x)gs(y).

[6] Suppose F = { fθ : θ ∈ Rk} has Hellinger derivative � at θ0. Show that F is
also differentiable in L1 norm with derivative �1 = 2

√
fθ0�, that is, show

λ| fθ − fθ0 − (θ − θ0)
′�1| = o(|θ − θ0|) near θ0
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6.9 Problems 19

[7] If F is L1 differentiable and λ ḟ 2/ f0 < ∞ is F also Hellinger differentiable?
[Expand.]

[8] Let Pθ be the probability measure defined by the density fθ (·). A simple
application of the Cauchy-Schwarz inequality shows that

H(Pθ , Pθ0)
2 = (θ − θ0)

′λ
(
ξ̇ (x)ξ̇ (x)′

)
(θ − θ0) + o(|θ − θ0|2).

Provided the matrix � = λ
(
�(x)�(x)′

)
is nonsingular, it then follows that

there exist nonzero constants C1 and C2 for which

C1|θ − θ0| ≤ H(Pθ , Pθ0) ≤ C2|θ − θ0| near θ0.

If such a pair of inequalities holds, with fixed strictly positive constants C1

and C2, throughout some subset of �, then Hellinger distance plays the same
role as ordinary Euclidean distance on that set.

[9] Suppose F = { fθ : θ ∈ �} is a family of probability densities with respect to
a measure λ, with index set � a subset of the real line. As in Theorem <9>,
suppose√

fθ+β(x) −
√

fθ (x) =
∫ θ+β

θ

�t (x) dt mod[λ], for |β| ≤ δ, a ≤ θ ≤ b,

with supt λ�2
t = C < ∞, where [a−δ, b+δ] ⊆ �. Let Q = {qα : −δ < α < δ}

be a family of probability densities with respect to Lebesgue measure µ on [a, b],
each bounded by a fixed constant K , and with Hellinger derivative η̇ at α = 0.
Create a new family P = {pα,β(x, θ) : max(|α|, |β|) < δ} of probability
densities pα,β(x, θ) = qα(θ) fθ+β(x) with respect to λ ⊗ µ.

(i) Show that P is Hellinger differentiable at α = 0, β = 0 with derivative
having components η̇

√
fθ and

√
f0�θ .

(ii) Try to relax the assumptions on Q.

[10] Suppose P = {Pθ : θ ∈ �}, with 0 ∈ � ⊆ Rk , is a dominated family of
probability measures on a space X, having densities fθ (x) with respect to a
sigma-finite measure λ. Define U as the set of unit vectors

U = {u : there exists a sequence {θi } in � such that θi/|θi | → u as i → ∞}
Write P̃θ for the part of Pθ that is absolutely continuous with respect to P0

and P⊥
θ = Pθ − P̃θ for the part that is singular with respect to P0. Write p̃θ for

the density d P̃θ /d P0.
The following are equivalent.

(i) For some vector ξ̇ of functions in L2(λ),√
fθ =

√
f0 + θ ′ξ̇ + rθ where λ

(
r2
θ

) = o(|θ |2) near θ = 0,

and u′ξ̇ = 0 a.e. [λ] on { f0 = 0}, for each u in U.

(ii) For some vector � of functions in L2(P0),√
fθ =

√
f0 + 2θ ′�

√
f0 + Rθ where λ

(
R2

θ

) = o(|θ |2) near θ = 0,

and P⊥
θ X = o(|θ |2).

(iii) For some vector �̃ of functions in L2(P0),√
p̃θ = 1 + 2θ ′�̃ + r̃θ where P0

(
r̃2
θ

) = o(|θ |2) near θ = 0,

and P⊥
θ X = o(|θ |2).

[11] Suppose P is Hellinger differentiable at 0 and that θn = δn/
√

n is a sequence
in � with {δn} bounded. Let P⊥

θn
be the part of Pθn that is singular with respect

to P0.

(i) Show that Pn
θn

� Pn
0 if and only if n P⊥

θn
(X) → 0.
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20 Chapter 6: Hellinger differentiability

(ii) If Pn
θn

� Pn
0 , show that

d Pn
θn

/d Pn
0 = (

1 + op(1; Pn)
)

exp
(
δ′

n Zn − 1
2δ′

nI0δn
)
.

[12] Generalize the van Trees inequality to the case where q has support that is
a closed subset of �. Approximate q by elements of L1

+(m) with compact
support then pass to the llimit.

10. Notes

Incomplete

I borrowed the exposition Section 7 from Pollard (1997). The essential
argument is fairly standard, but the interpretation of some of the details is
novel. Compare with the treatments of Le Cam (1970, and 1986 Section 17.3),
Ibragimov & Has’minskii (1981, page 114), Millar (1983, page 105), Le Cam
& Yang (1990, page 101), or Strasser (1985, Chapter 12).

Hájek (1962) used Hellinger differentiability to establish limit behaviour
of rank tests for shift families of densities. Most of results in Section 2 are
adapted from the Appendix to Hájek (1972), which in turn drew on Hájek
& Šidák (1967, page 211) and earlier work of Hájek. For a proof of the
multivariate version of Theorem <9> see Bickel et al. (1993, page 13). A
reader who is puzzled about all the fuss over negligible sets, and behaviour at
points where the densities vanish, might consult Le Cam (1986, pages 585–590)
for a deeper discussion of the subtleties.

The proof of the information inequality (Lemma <12>) is adapted from
Ibragimov & Has’minskii (1981, Section 1.7), who apparently gave credit to
Blyth & Roberts (1972), but I could find no mention of Hellinger differentiability
in that paper.

Gilles Stoltz explained to me how the van Trees inequality could be derived
without the full Hellinger differentiability of the family G.

Reference?
Cite van der Vaart (1988, Appendix A3) and Bickel et al. (1993, page 461)

for Theorem <22>. Ibragimov & Has’minskii (1981, page 70) asserted that
the result follows by “direct calculations”. Indeed my proof uses the same
truncation trick as in the proof of Lemma <12>, which is based on the
argument of Ibragimov & Has’minskii (1981, page 65). Le Cam & Yang (1988,
Section 7) deduced an analogous result (preservation of DQM under restriction
to sub-sigma-fields) by an indirect argument using equivalence of DQM with the
existence of a quadratic approximation to likelihood ratios of product measures
(an LAN condition).
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Hájek, J. & Šidák, Z. (1967), Theory of Rank Tests, Academic Press. Also
published by Academia, the Publishing House of the Czechoslavak
Academy of Sciences, Prague.

Ibragimov, I. A. & Has’minskii, R. Z. (1981), Statistical Estimation: Asymptotic
Theory, Springer, New York.

Kagan, A. & Shepp, L. A. (2005), ‘A sufficiency paradox: an insufficient
statistic preserving the Fisher information’, The American Statistician
59, 54–56.

Le Cam, L. (1970), ‘On the assumptions used to prove asymptotic normality
of maximum likelihood estimators’, Annals of Mathematical Statistics
41, 802–828.

Le Cam, L. (1986), Asymptotic Methods in Statistical Decision Theory,
Springer-Verlag, New York.

Le Cam, L. & Yang, G. L. (1988), ‘On the preservation of local asymptotic
normality under information loss’, Annals of Statistics 16, 483–520.

Le Cam, L. & Yang, G. L. (1990), Asymptotics in Statistics: Some Basic
Concepts, Springer-Verlag.

Le Cam, L. & Yang, G. L. (2000), Asymptotics in Statistics: Some Basic
Concepts, 2nd edn, Springer-Verlag.

Millar, P. W. (1983), ‘The minimax principle in asymptotic statistical theory’,
Springer Lecture Notes in Mathematics 976, 75–265.

Pollard, D. (1997), Another look at differentiability in quadratic mean, in
D. Pollard, E. Torgersen & G. L. Yang, eds, ‘A Festschrift for Lucien
Le Cam’, Springer-Verlag, New York, pp. 305–314.

Strasser, H. (1985), Mathematical Theory of Statistics: Statistical Experiments
and Asymptotic Decision Theory, De Gruyter, Berlin.

van der Vaart, A. (1988), Statistical estimation in large parameter spaces,
Center for Mathematics and Computer Science. CWI Tract 44.

18 March 2005 Asymptopia, version: 18mar05 c©David Pollard 21


