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FKG and beyond

[§motivate] 1. Motivating, one-dimensional example

If f and g are increasing functions on R and µ is a probabilty measure on B(R)

for for µ( f 2) < ∞ and µg2 < ∞ then

µ( f )µ(g) ≤ µ( f g)

Proof. Expand the left-hand side of

µxµy
(

f (x) − f (y)
) (

g(x) − g(y)
) ≥ 0

�

[§AD] 2. Generalized FKG

For x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n define

x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn) and x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn)

Write x ≤ y to mean x ∨ y = x . Say that a function f on R
n is increasing if it

is an increasing function in each of its arguments (for fixed values of the other
arguments). Equivalently, f is increasing if f (x) ≤ f (y) whenever x ≤ y.

AD <1> Theorem. Suppose f1, . . . , f4 are nonnegative, Borel-measurable functions
on Xn , where X ⊆ R, for which

AD-ineq <2> f1(x) f2(y) ≤ f3(x ∨ y) f4(x ∧ y) for all x, y ∈ Xn .

Let µ = µ1 ⊗ . . . ⊗ µn be a sigma-finite product measure on B(Xn). Then

µ( f1)µ( f2) ≤ µ( f3)µ( f4)

Proof. Integrate out one coordinate at a time, showing that the key inequality
is preserved. Write x = (X, u) and y = (Y, v), where X = (x1, . . . , xn−1)

and Y = (y1, . . . , yn−1). Define f̃ (X) := µu
n fi (X, u). We need to show that

tf <3> f̃1(X) f̃2(Y ) ≤ f̃3(X ∧ Y ) f̃4(X ∨ Y )

The left-hand side of <3> equals

µu
nµ

v
n f1(X, u) f2(Y, v)

= µu
nµ

v
n

({u = v} f1(X, u) f2(Y, v)
)

+ µu
nµ

v
n

({u < v} f1(X, u) f2(Y, v) + f1(X, v) f2(Y, u)
)

The right-hand side of <3> equals

µu
nµ

v
n f3(X ∧ Y, u) f4(X ∨ Y, v)

= µu
nµ

v
n

({u = v} f3(X ∧ Y, u) f4(X ∧ Y, v)
)

+ µu
nµ

v
n

({u < v} f3(X ∧ Y, u) f4(X ∨ Y, v) + f3(X ∧ Y, v) f4(X ∨ Y, u)
)

On the set {u = v}, inequality <2> gives

f1(X, u) f2(Y, v) ≤ f3(X ∧ Y, u) f4(X ∨ Y, v)
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On the set {u < v},
A := f1(X, u) f2(Y, v) ≤ C := f3(X ∧ Y, u) f4(X ∨ Y, v)

B := f1(X, v) f2(Y, u) ≤ C

AB = f1(X, u) f2(Y, u) f1(X, v) f2(Y, v)

≤ f3(X ∧ Y, u) f4(X ∨ Y, u) f3(X ∧ Y, v) f4(X ∨ Y, v)

= C D where D := f3(X ∧ Y, v) f4(X ∨ Y, u)

If we can show that

ABCD <4> A + B ≤ C + D

then the inequality <3> will follow by pointwise inequalities on the integrands.
Inequality <4> is just a rearrangement of the inequality

0 ≤ (1 − A/C)(1 − B/C) = 1 − (A + B)/C + (AB)/C2

≤ (C + D − A − B)/C

And so on.�
PQ <5> Corollary. Suppose P and Q are probability measures on B(Xn) with

densities p = d P/dµ and q = d Q/dµ with respect to a product measure µ.
Suppose

p(x)q(y) ≤ p(x ∧ y)q(x ∨ y) for all x, y ∈ Xn

Then
P f ≤ Q f

for each increasing function f that is both P- and Q-integrable.

Proof. Without loss of generality f is bounded and nonnegative. [Truncate;
recenter; Dominated Convergence.] Define

f1(x) = p(x) f (x)

f2(x) = q(x)

f3(x) = p(x)

f4(x) = q(x) f (x)

Check that

f1(x) f2(y) = f (x)p(x)q(y)

≤ f (x ∨ y)p(x ∧ y)q(x ∨ y) = f3(x ∧ y) f4(x ∨ y)

Invoke Theorem <1>.�
P <6> Corollary. Suppose P is a probability measure with a density p = d P/dµ

with respect to a product measure µ, for which

p(x)p(y) ≤ p(x ∧ y)p(x ∨ y) for all x, y ∈ Xn

If f and g are increasing, P-square integrable functions on Xn then

P f (x)g(x) ≥ (P f )(Pg)

That is, f and g are positively correlated as random variables under P .

Proof. Once again reduce to the case where f is nonnegative. Define

f1(x) = p(x) f (x)

f2(x) = p(x)g(x)

f3(x) = p(x)

f4(x) = p(x) f (x)g(x)
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Check that

f1(x) f2(y) = f (x)g(y)p(x)p(y)

≤ f (x ∨ y)g(x ∨ y)p(x ∧ y)p(x ∨ y) = f3(x ∧ y) f4(x ∨ y)

Invoke Theorem <1>.�

[§Ising] 3. Application to Ising measures on Z
2

The Ising model gives a joint distribution for an infinite collection of random
variables {Xi : i ∈ Z

2}, indexed by the (sites) (lattice points) in the lattice Z
2,

with each Xi taking values in {−1, +1}. In fact, the construction of the whole
joint distibution is quite subtle. One starts by defining joint (conditional)
distributions for {Xi : i ∈ A} for various finite subsets A of Z

2. These
distributions satisfy a consistency condition (described in Lemma <14> below)
tt enables them to be pasted together to form a joint distribution over all sites
in Z

2.
The lattice Z

2 is thought of as the set of vertices in an infinite graph whose
edge set E consists of all all pairs e = {i, j} of sites separated by a Eucliden
distance 1. For example, the set of neighbors of a site i = (i1, i2) is

∂{i} := {(i1, i2 + 1), (i1, i2 − 1), (i1 + 1, i2), (i1 − 1, i2)}.
There are four edge with site i as one vertex.

More generally, the boundary ∂ A of a set A ⊂ Z
2 is defined as

∂ A := { j ∈ Ac : {i, j} ∈ E for some i in A }
We could also define ∂ A as ∪{e : e ∈ EA}\A, where EA denotes the set of all
edges e = {i, j} for which at least one vertex (i , or j , or maybe both) is in A.

Remark. The terminology seems a little strange to me, because the
boundary of a set in the topological sense is not required to be disjoint
from A.

neighbors <7> Example. Suppose A consists of 9 sites in the form of a 3 × 3 grid, the
vertices represented by the circles inside the shaded region in the following
picture.

∂A

A

The boundary ∂ A consists of the 12 sites indicated by the circles filled with
black. There are 24 edges in EA: 12 are between pairs of sites in A and 12 are
between a site in A and a site in ∂ A.�

For each β > 0 and each b ∈ {−1, +1}∂ A and xA ∈ {−1, +1}A, define the
(conditional) probability that X A equals xA by

PA{X A = xA | X∂ A = b} := pA(xA | b) := 1

Z A(b)

∏
{i, j}∈EA

exp(βxi xj )
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where the standardizing constant,

Z A(b) :=
∑

xA∈{−1,+1}A

∏
{i, j}∈EA

exp(βxi xj ),

ensures that
∑

xA
pA(xA | b) = 1 for each choice of b.

Notice that pA(· | b) could be thought of as a density with respect to
counting measure µ on {−1, +1}A and that µ is a product of the counting
measures µi on each of the coordinate subspaces {−1, +1}.

9prob <8> Example. Consider the following configuration, where a plus sign (+) at
site i indicates Xi = +1 and a minus sign (−) indicates Xi = −1. The xA

pattern consists of all −1’s.

+

-

+

-

-

-

-

+

-

-

-

+

+

-

-

-

-

-

+

+

-∂A

A

To calculate Z A(b), even for the particular b shown, we would have to sum
over the 29 values that X A could take. Too much work. Let me instead
calculate pA(xA | b) up to a constant of proportionality, for the configurations
shown.

Each of the 12 edges between sites in A contributes β(−1)(−1) = β to
the exponent. The 12 edges between sites in A and sites in ∂ A contribute

5β(−1)(−1) + 7β(−1)(+1) = −2β.

Thus
pA(xA | b) = e10β/Z A(b)

Now suppose that the value −1 at the south-west corner of A (the site that
is circled) were changed to a +1, giving a new x A consisting of eight −1’s
and one +1. What is the value of pA(x A | b)? Only contributions for edges
with the south-west site as one vertex can change. For xA the contribution
to pA(xA, b) was

β(−1)
(
(−1) + (−1) + (−1) + (+1)

) = 2β

For x A the contribution changes to

β(+1)
(
(−1) + (−1) + (−1) + (+1)

) = −2β

Thus
pA(x A | b) = e6β/Z A(b)

Notice that the ratio pA(x A | b)/pA(xA | b) depends only on the values
{xj : j ∈ ∂{i}} at the neighboring sites.�

In general, if a configuration xA has xi = −1 then the edges in E{i}
contribute

Npm <9> βxi Ni = βxi (N+
i − N−

i ) where

{
N+

i = ∑
j∈∂{i}{xj = +1}

N−
i = ∑

j∈∂{i}{xj = −1} .

That is, we have only to count the number N+
i of neighbors of site i where

xj = +1 and the number N−
i of neighbors of site i where xj = −1. Of course,
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N+
i + N−

i = 4, the total number of neighbors of {i} in Z
2. If we define a new

configuration x A by changing the value only at the site i , then that site will
contribute β(xi )Ni to the exponent defining pA(x A | b), a change of 2βNi .
That is,

flip <10>
pA(x A | b)

pA(xA | b)
= exp(2βNi ) if

{
xi = +1 = −xi

x j = xj for j ∈ A\{i}
Repeated appeals to this simple formula will allow us to verify the conditions of
Corollary <5> for two distributions defined by different boundary conditions.

fixedA <11> Lemma. For a fixed finite subset A of Z
2, let b and b∗ be two possible

boundary conditions for which b ≤ b∗, that is, bj ≤ b∗
j for all j ∈ ∂ A. Let f

be an increasing function on {−1, +1}A. Then

PA
(

f (X A) | X∂ A = b
) ≤ PA

(
f (X A) | X∂ A = b∗)

Proof. For simplicity of notation, write p(x) for pA(xA | b) and p∗(x)

for pA(xA | b∗). From Corollary <5> it enough if we show that

p(x)p∗(y) ≤ p(x ∧ y)p∗(x ∨ y) for all x, y ∈ {−1, +1}A.

Equivalently, we need to show

ppstar <12>
p(x)

p(x ∧ y)
≤ p∗(x ∨ y)

p∗(y)

Notice that x ∧ y ≤ x and y ≤ x ∨ y. Moreover,

{i : (x ∧ y)i < xi } = D := {i ∈ A : xi = +1, yi = −1} = {i : yi < (x ∨ y)i }
For convenience, label the sites in D as 1, 2, . . . , k. Let y(i) be the configuration
obtained from y by changing the values y1, y2, . . . , yi to +1 and let y(0) = y.
Note that

x ∧ y(k) = x and y(k) = x ∨ y

xi = −1 xi = +1

yi = −1
xi ∧ yi = −1
xi ∨ yi = −1

xi ∧ yi = −1
xi ∨ yi = +1
yi = −1, y(k)

i = +1

yi = +1
xi ∧ yi = −1
xi ∨ yi = +1

xi ∧ yi = +1
xi ∨ yi = +1

It will suffice if we can show that

i.flip <13>
p(x ∧ y(i))

p(x ∧ y(i−1))
≤ p∗(x ∨ y(i))

p∗(y(i−1))
for i = 1, 2, . . . , k,

for then inequality <12> will follow by taking products.
Consider a fixed i . Let Ni be calculated as in <9> for site i using

boundary b and values x ∧ y(i−1) in A. Let N ∗
i be calculated similarly using b∗

and y(i−1). The ratio on the left-hand side of <13> equals exp(2βNi ); the ratio
on the right-hand side equals exp(2βN ∗

i ). As b ≤ b∗ and x ∧ y(i−1) ≤ y(i−1),
we must have Ni ≤ N ∗

i , from which <13> follows.�
The Lemma shows that P

(
f (X A) | X∂ A = b

)
is maximized by the b+

consisting of all +1’s and maximized by the b− consisting of all −1’s. In
particular, this assertion holds when f�(xA) := {xi = +1 : i ∈ �} for some
subset � of sites in A.

Now consider a similar calculation with the same f� but with a PB

constructed from a larger finite region B ⊃ A under boundary condition X∂ B =
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ρ+, with ρ+ consisting of all +1’s. The following Lemma will show that the
conditional probability of X A = xA given X∂ A = b is the same under PB(· |
X∂ B = π) is the same as PA(· | X∂ A = b). It will then follow that

PB
(

f�(X�) | X∂ B = ρ+)
=

∑
b∈{−1,+1}∂ A

PB
(
X∂ A = b | X∂ B = ρ+)

PA
(

f�(X�) | X∂ A = b
)

≤ PA
(

f�(X�) | X∂ A = b+) ∑
b∈{−1,+1}∂ A

PB
(
X∂ A = b | X∂ B = ρ+)

= PA
(

f�(X�) | X∂ A = b+)
That is, under boundary values set to +1’s, the conditional expectation
of f�(X�) decreases as region A expands up to the whole of Z

+. See
Kindermann & Snell (1980, Appendix 1) for the arguments leading from here
to the conclusion that the conditional distributions for each X� converge under
such a limit.

DLR <14> Lemma. Suppose A ⊂ B are two finite subsets of Z
2. Then for every xA, b

and ρ,

PB
(
X A = xA | X∂ A = b, X∂ B = ρ

) = PA
(
X A = xA | X∂ A = b

)
Proof. The left-hand side of the assserted equality equals the ratio

ratio <15>
Z B(ρ)PB

(
X A = xA, X∂ A = b | X∂ B = ρ

)
Z B(ρ)PB

(
X∂ A = b | X∂ B = ρ

)
To simplify notation, if e = {i, j} ∈ E write �e(xe) for exp(βxi xj ) and let
xB = (xA, b). Then the numerator in <15> equals∏

e∈EB

�e(xe) =
∏

e∈EB\EA

�e(xe)
∏
e∈EA

�e(xe)

The denominator in <15> equals∑
xA

∏
e∈EB

�e(xe) =
∏

e∈EB\EA

�e(xe)
∑
xA

∏
e∈EA

�e(xe)

because no xe for e ∈ EB\EA depends on the coordinates for sites in A. The
final sum equals Z A(b). The leading product cancels from the ratio, leaving
the ratio that defines PA

(
X A = xA | X∂ A = b

)
.�

[§notes] 4. Notes

Theorem <1> is due to Ahlswede & Daykin (1978), but the proof comes from
Karlin & Rinott (1980). Eaton (1986, Chapter 5) contains a nice exposition.

The original paper of Fortuin, Kasteleyn & Ginibre (1971) stated the result
of Corollary <6> for increasing functions defined on a finite distributive lattice.
It also contained applications to Physics, including the Ising model.

Preston (1974a) noted that finite distributive lattices can always be
represented as a collection ofsubsets of some finite set. Equivalently, the points
of such a lattice can be represented as n-tuples of 0’s and 1’s, or as n-tuples
of ±1’s. Preston (1974b, Chapter 3) reproduced a proof Holley (1974), which
was expressed as a coupling of two probability measures satisfying the setwise
analog of the condition in Corollary <5>. In fact, a general coupling result of
Strassen (1965) shows that the Holley result is equivalent to the result asserted
by the Corollary.
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.4 Notes 7

See the survey by Den Hollander & Keane (1986) for more about the
history of the FKG inequality and its variants.I need to get the history of

FKG straight. See Georgii (1988, Chapter 6) for a detailed, rigorous analysis of the Ising
model.
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