1

FKG AND BEYOND

[§motivate] 1. Motivating, one-dimensional example

If f and g are increasing functions on \mathbb{R} and μ is a probability measure on $\mathcal{B}(\mathbb{R})$ for for $\mu(f^2) < \infty$ and $\mu g^2 < \infty$ then

$$\mu(f)\mu(g) \le \mu(fg)$$

Proof. Expand the left-hand side of

$$\mu^{x}\mu^{y}\left(f(x) - f(y)\right)\left(g(x) - g(y)\right) \ge 0$$

[§AD] 2. Generalized FKG

For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$ define

$$x \lor y = (x_1 \lor y_1, \dots, x_n \lor y_n)$$
 and $x \land y = (x_1 \land y_1, \dots, x_n \land y_n)$

Write $x \le y$ to mean $x \lor y = x$. Say that a function f on \mathbb{R}^n is increasing if it is an increasing function in each of its arguments (for fixed values of the other arguments). Equivalently, f is increasing if $f(x) \le f(y)$ whenever $x \le y$.

AD <1> Theorem. Suppose f_1, \ldots, f_4 are nonnegative, Borel-measurable functions on \mathcal{X}^n , where $\mathcal{X} \subseteq \mathbb{R}$, for which

AD-ineq

$$f_1(x)f_2(y) \le f_3(x \lor y)f_4(x \land y)$$
 for all $x, y \in \mathfrak{X}^n$.

Let $\mu = \mu_1 \otimes \ldots \otimes \mu_n$ be a sigma-finite product measure on $\mathcal{B}(\mathfrak{X}^n)$. Then

$$\mu(f_1)\mu(f_2) \le \mu(f_3)\mu(f_4)$$

Proof. Integrate out one coordinate at a time, showing that the key inequality is preserved. Write x = (X, u) and y = (Y, v), where $X = (x_1, \ldots, x_{n-1})$ and $Y = (y_1, \ldots, y_{n-1})$. Define $\tilde{f}(X) := \mu_n^u f_i(X, u)$. We need to show that

tf <3>

<2>

$$f_1(X)f_2(Y) \le f_3(X \wedge Y)f_4(X \vee Y)$$

The left-hand side of <3> equals

$$\mu_n^u \mu_n^v f_1(X, u) f_2(Y, v) = \mu_n^u \mu_n^v (\{u = v\} f_1(X, u) f_2(Y, v)) + \mu_n^u \mu_n^v (\{u < v\} f_1(X, u) f_2(Y, v) + f_1(X, v) f_2(Y, u))$$

The right-hand side of <3> equals

$$\mu_n^u \mu_n^v f_3(X \land Y, u) f_4(X \lor Y, v) = \mu_n^u \mu_n^v \left(\{u = v\} f_3(X \land Y, u) f_4(X \land Y, v) \right) + \mu_n^u \mu_n^v \left(\{u < v\} f_3(X \land Y, u) f_4(X \lor Y, v) + f_3(X \land Y, v) f_4(X \lor Y, u) \right)$$

On the set $\{u = v\}$, inequality $\langle 2 \rangle$ gives

$$f_1(X, u) f_2(Y, v) \le f_3(X \land Y, u) f_4(X \lor Y, v)$$

On the set $\{u < v\}$,

$$\begin{aligned} A &:= f_1(X, u) f_2(Y, v) \le C := f_3(X \land Y, u) f_4(X \lor Y, v) \\ B &:= f_1(X, v) f_2(Y, u) \le C \\ AB &= f_1(X, u) f_2(Y, u) f_1(X, v) f_2(Y, v) \\ &\le f_3(X \land Y, u) f_4(X \lor Y, u) f_3(X \land Y, v) f_4(X \lor Y, v) \\ &= CD \qquad \text{where } D := f_3(X \land Y, v) f_4(X \lor Y, u) \end{aligned}$$

:

If we can show that

ABCD <4>

 $A + B \leq C + D$

then the inequality <3> will follow by pointwise inequalities on the integrands. Inequality <4> is just a rearrangement of the inequality

$$0 \le (1 - A/C)(1 - B/C) = 1 - (A + B)/C + (AB)/C^{2}$$
$$\le (C + D - A - B)/C$$

 \Box And so on.

PQ <5> Corollary. Suppose P and Q are probability measures on $\mathcal{B}(\mathcal{X}^n)$ with densities $p = dP/d\mu$ and $q = dQ/d\mu$ with respect to a product measure μ . Suppose

$$p(x)q(y) \le p(x \land y)q(x \lor y)$$
 for all $x, y \in \mathcal{X}'$

Then

$$Pf \leq Qf$$

for each increasing function f that is both P- and Q-integrable.

Proof. Without loss of generality f is bounded and nonnegative. [Truncate; recenter; Dominated Convergence.] Define

 $f_1(x) = p(x)f(x)$ $f_2(x) = q(x)$ $f_3(x) = p(x)$ $f_4(x) = q(x)f(x)$

Check that

$$f_1(x)f_2(y) = f(x)p(x)q(y)$$

$$\leq f(x \lor y)p(x \land y)q(x \lor y) = f_3(x \land y)f_4(x \lor y)$$

 \Box Invoke Theorem <1>.

<6> Corollary. Suppose P is a probability measure with a density $p = dP/d\mu$ with respect to a product measure μ , for which

 $p(x)p(y) \le p(x \land y)p(x \lor y)$ for all $x, y \in X^n$

If f and g are increasing, P-square integrable functions on X^n then

 $Pf(x)g(x) \ge (Pf)(Pg)$

That is, f and g are positively correlated as random variables under P.

Proof. Once again reduce to the case where f is nonnegative. Define

 $f_1(x) = p(x)f(x)$ $f_2(x) = p(x)g(x)$ $f_3(x) = p(x)$ $f_4(x) = p(x)f(x)g(x)$

10 April 2005 Asymptopia, version: 10apr05 © David Pollard

2

Р

.2 Generalized FKG

Check that

$$f_1(x)f_2(y) = f(x)g(y)p(x)p(y)$$

$$\leq f(x \lor y)g(x \lor y)p(x \land y)p(x \lor y) = f_3(x \land y)f_4(x \lor y)$$

 \Box Invoke Theorem <1>.

[§Ising] 3. Application to Ising measures on \mathbb{Z}^2

The Ising model gives a joint distribution for an infinite collection of random variables $\{X_i : i \in \mathbb{Z}^2\}$, indexed by the (*sites*) (lattice points) in the lattice \mathbb{Z}^2 , with each X_i taking values in $\{-1, +1\}$. In fact, the construction of the whole joint distibution is quite subtle. One starts by defining joint (conditional) distributions for $\{X_i : i \in A\}$ for various finite subsets A of \mathbb{Z}^2 . These distributions satisfy a consistency condition (described in Lemma <14> below) tt enables them to be pasted together to form a joint distribution over all sites in \mathbb{Z}^2 .

The lattice \mathbb{Z}^2 is thought of as the set of vertices in an infinite graph whose edge set \mathcal{E} consists of all all pairs $e = \{i, j\}$ of sites separated by a Eucliden distance 1. For example, the set of neighbors of a site $i = (i_1, i_2)$ is

$$\partial\{i\} := \{(i_1, i_2 + 1), (i_1, i_2 - 1), (i_1 + 1, i_2), (i_1 - 1, i_2)\}.$$

There are four edge with site i as one vertex.

More generally, the boundary ∂A of a set $A \subset \mathbb{Z}^2$ is defined as

 $\partial A := \{j \in A^c : \{i, j\} \in \mathcal{E} \text{ for some } i \text{ in } A \}$

We could also define ∂A as $\cup \{e : e \in \mathcal{E}_A\} \setminus A$, where \mathcal{E}_A denotes the set of all edges $e = \{i, j\}$ for which at least one vertex (i, or j, or maybe both) is in A.

REMARK. The terminology seems a little strange to me, because the boundary of a set in the topological sense is not required to be disjoint from A.

neighbors

<7>

Example. Suppose A consists of 9 sites in the form of a 3×3 grid, the vertices represented by the circles inside the shaded region in the following picture.

The boundary ∂A consists of the 12 sites indicated by the circles filled with black. There are 24 edges in \mathcal{E}_A : 12 are between pairs of sites in A and 12 are between a site in A and a site in ∂A .

For each $\beta > 0$ and each $b \in \{-1, +1\}^{\partial A}$ and $x_A \in \{-1, +1\}^A$, define the (conditional) probability that X_A equals x_A by

$$\mathbb{P}_A\{X_A = x_A \mid X_{\partial A} = b\} := p_A(x_A \mid b) := \frac{1}{Z_A(b)} \prod_{\{i,j\} \in \mathcal{E}_A} \exp(\beta x_i x_j)$$

3

where the standardizing constant,

$$Z_A(b) := \sum_{x_A \in \{-1,+1\}^A} \prod_{\{i,j\} \in \mathcal{E}_A} \exp(\beta x_i x_j).$$

ensures that $\sum_{x_A} p_A(x_A \mid b) = 1$ for each choice of b.

Notice that $p_A(\cdot | b)$ could be thought of as a density with respect to counting measure μ on $\{-1, +1\}^A$ and that μ is a product of the counting measures μ_i on each of the coordinate subspaces $\{-1, +1\}$.

9prob

 $<\!\!8\!\!>$

Example. Consider the following configuration, where a plus sign (+) at site *i* indicates $X_i = +1$ and a minus sign (-) indicates $X_i = -1$. The x_A pattern consists of all -1's.

To calculate $Z_A(b)$, even for the particular *b* shown, we would have to sum over the 2⁹ values that X_A could take. Too much work. Let me instead calculate $p_A(x_A | b)$ up to a constant of proportionality, for the configurations shown.

Each of the 12 edges between sites in A contributes $\beta(-1)(-1) = \beta$ to the exponent. The 12 edges between sites in A and sites in ∂A contribute

$$5\beta(-1)(-1) + 7\beta(-1)(+1) = -2\beta.$$

Thus

$$p_A(x_A \mid b) = e^{10\beta} / Z_A(b)$$

Now suppose that the value -1 at the south-west corner of A (the site that is circled) were changed to a +1, giving a new \overline{x}_A consisting of eight -1's and one +1. What is the value of $p_A(\overline{x}_A \mid b)$? Only contributions for edges with the south-west site as one vertex can change. For x_A the contribution to $p_A(x_A, b)$ was

$$\beta(-1)\left((-1) + (-1) + (-1) + (+1)\right) = 2\beta$$

For \overline{x}_A the contribution changes to

$$\beta(+1)\left((-1) + (-1) + (-1) + (+1)\right) = -2\beta$$

Thus

$$p_A(\overline{x}_A \mid b) = e^{6\beta} / Z_A(b)$$

Notice that the ratio $p_A(\overline{x}_A \mid b)/p_A(x_A \mid b)$ depends only on the values $[x_i : j \in \partial\{i\}]$ at the neighboring sites.

In general, if a configuration x_A has $x_i = -1$ then the edges in $\mathcal{E}_{\{i\}}$ contribute

Npm <9>

4

$$\beta x_i N_i = \beta x_i (N_i^+ - N_i^-) \quad \text{where } \begin{cases} N_i^+ = \sum_{j \in \partial\{i\}} \{x_j = +1\} \\ N_i^- = \sum_{j \in \partial\{i\}} \{x_j = -1\} \end{cases}$$

That is, we have only to count the number N_i^+ of neighbors of site *i* where $x_j = +1$ and the number N_i^- of neighbors of site *i* where $x_j = -1$. Of course,

 $N_i^+ + N_i^- = 4$, the total number of neighbors of $\{i\}$ in \mathbb{Z}^2 . If we define a new configuration \overline{x}_A by changing the value only at the site *i*, then that site will contribute $\beta(\overline{x}_i)N_i$ to the exponent defining $p_A(\overline{x}_A \mid b)$, a change of $2\beta N_i$. That is,

$$\frac{p_A(x_A \mid b)}{p_A(x_A \mid b)} = \exp(2\beta N_i) \quad \text{if } \begin{cases} x_i = +1 = -x_i \\ \overline{x_j} = x_j \end{cases} \quad \text{for } j \in A \setminus \{i\} \end{cases}$$

Repeated appeals to this simple formula will allow us to verify the conditions of Corollary <5> for two distributions defined by different boundary conditions.

fixedA <11> Lemma. For a fixed finite subset A of \mathbb{Z}^2 , let b and b* be two possible boundary conditions for which $b \le b^*$, that is, $b_j \le b_j^*$ for all $j \in \partial A$. Let f be an increasing function on $\{-1, +1\}^A$. Then

$$\mathbb{P}_A\left(f(X_A) \mid X_{\partial A} = b\right) \le \mathbb{P}_A\left(f(X_A) \mid X_{\partial A} = b^*\right)$$

Proof. For simplicity of notation, write p(x) for $p_A(x_A | b)$ and $p^*(x)$ for $p_A(x_A | b^*)$. From Corollary <5> it enough if we show that

 $p(x)p^*(y) \le p(x \land y)p^*(x \lor y)$ for all $x, y \in \{-1, +1\}^A$.

Equivalently, we need to show

ppstar <12>

$$\frac{p(x)}{p(x \land y)} \le \frac{p^*(x \lor y)}{p^*(y)}$$

Notice that $x \wedge y \leq x$ and $y \leq x \vee y$. Moreover,

$$\{i : (x \land y)_i < x_i\} = D := \{i \in A : x_i = +1, y_i = -1\} = \{i : y_i < (x \lor y)_i\}$$

For convenience, label the sites in *D* as 1, 2, ..., *k*. Let $y^{(i)}$ be the configuration obtained from *y* by changing the values y_1, y_2, \ldots, y_i to +1 and let $y^{(0)} = y$. Note that

$$x \wedge y^{(k)} = x$$
 and $y^{(k)} = x \lor y$

	$x_i = -1$	$x_i = +1$
		$x_i \wedge y_i = -1$
	$x_i \wedge y_i = -1$	$x_i \lor y_i = +1$
$y_i = -1$	$x_i \vee y_i = -1$	$y_i = -1, y_i^{(k)} = +1$
	$x_i \wedge y_i = -1$	$x_i \wedge y_i = +1$
$y_i = +1$	$x_i \vee y_i = +1$	$x_i \vee y_i = +1$

It will suffice if we can show that

$$\frac{p(x \land y^{(i)})}{p(x \land y^{(i-1)})} \le \frac{p^*(x \lor y^{(i)})}{p^*(y^{(i-1)})} \quad \text{for } i = 1, 2, \dots, k$$

for then inequality <12> will follow by taking products.

Consider a fixed *i*. Let N_i be calculated as in <9> for site *i* using boundary *b* and values $x \wedge y^{(i-1)}$ in *A*. Let N_i^* be calculated similarly using b^* and $y^{(i-1)}$. The ratio on the left-hand side of <13> equals $\exp(2\beta N_i)$; the ratio on the right-hand side equals $\exp(2\beta N_i^*)$. As $b \leq b^*$ and $x \wedge y^{(i-1)} \leq y^{(i-1)}$, we must have $N_i \leq N_i^*$, from which <13> follows.

The Lemma shows that $\mathbb{P}(f(X_A) | X_{\partial A} = b)$ is maximized by the b^+ consisting of all +1's and maximized by the b^- consisting of all -1's. In particular, this assertion holds when $f_{\Lambda}(x_A) := \{x_i = +1 : i \in \Lambda\}$ for some subset Λ of sites in A.

Now consider a similar calculation with the same f_{Λ} but with a \mathbb{P}_B constructed from a larger finite region $B \supset A$ under boundary condition $X_{\partial B} =$

10 April 2005 Asymptopia, version: 10apr05 © David Pollard

i.flip <13>

:

 ρ^+ , with ρ^+ consisting of all +1's. The following Lemma will show that the conditional probability of $X_A = x_A$ given $X_{\partial A} = b$ is the same under $\mathbb{P}_B(\cdot \mid X_{\partial B} = \pi)$ is the same as $\mathbb{P}_A(\cdot \mid X_{\partial A} = b)$. It will then follow that

$$\begin{split} \mathbb{P}_{B}\left(f_{\Lambda}(X_{\Lambda}) \mid X_{\partial B} = \rho^{+}\right) \\ &= \sum_{b \in \{-1,+1\}^{\partial A}} \mathbb{P}_{B}\left(X_{\partial A} = b \mid X_{\partial B} = \rho^{+}\right) \mathbb{P}_{A}\left(f_{\Lambda}(X_{\Lambda}) \mid X_{\partial A} = b\right) \\ &\leq \mathbb{P}_{A}\left(f_{\Lambda}(X_{\Lambda}) \mid X_{\partial A} = b^{+}\right) \sum_{b \in \{-1,+1\}^{\partial A}} \mathbb{P}_{B}\left(X_{\partial A} = b \mid X_{\partial B} = \rho^{+}\right) \\ &= \mathbb{P}_{A}\left(f_{\Lambda}(X_{\Lambda}) \mid X_{\partial A} = b^{+}\right) \end{split}$$

That is, under boundary values set to +1's, the conditional expectation of $f_{\Lambda}(X_{\Lambda})$ decreases as region *A* expands up to the whole of \mathbb{Z}^+ . See Kindermann & Snell (1980, Appendix 1) for the arguments leading from here to the conclusion that the conditional distributions for each X_{Λ} converge under such a limit.

DLR

Lemma. Suppose $A \subset B$ are two finite subsets of \mathbb{Z}^2 . Then for every x_A , b and ρ ,

$$\mathbb{P}_B\left(X_A = x_A \mid X_{\partial A} = b, X_{\partial B} = \rho\right) = \mathbb{P}_A\left(X_A = x_A \mid X_{\partial A} = b\right)$$

Proof. The left-hand side of the assserted equality equals the ratio

ratio <15>

<14>

6

$$\frac{Z_B(\rho)\mathbb{P}_B\left(X_A = x_A, X_{\partial A} = b \mid X_{\partial B} = \rho\right)}{Z_B(\rho)\mathbb{P}_B\left(X_{\partial A} = b \mid X_{\partial B} = \rho\right)}$$

To simplify notation, if $e = \{i, j\} \in \mathcal{E}$ write $\Psi_e(x_e)$ for $\exp(\beta x_i x_j)$ and let $x_B = (x_A, b)$. Then the numerator in <15> equals

$$\prod_{e \in \mathcal{E}_B} \Psi_e(x_e) = \prod_{e \in \mathcal{E}_B \setminus \mathcal{E}_A} \Psi_e(x_e) \prod_{e \in \mathcal{E}_A} \Psi_e(x_e)$$

The denominator in <15> equals

$$\sum_{x_A} \prod_{e \in \mathcal{E}_B} \Psi_e(x_e) = \prod_{e \in \mathcal{E}_B \setminus \mathcal{E}_A} \Psi_e(x_e) \sum_{x_A} \prod_{e \in \mathcal{E}_A} \Psi_e(x_e)$$

because no x_e for $e \in \mathcal{E}_B \setminus \mathcal{E}_A$ depends on the coordinates for sites in A. The final sum equals $Z_A(b)$. The leading product cancels from the ratio, leaving \Box the ratio that defines $\mathbb{P}_A (X_A = x_A \mid X_{\partial A} = b)$.

[§notes] 4. Notes

Theorem <1> is due to Ahlswede & Daykin (1978), but the proof comes from Karlin & Rinott (1980). Eaton (1986, Chapter 5) contains a nice exposition.

The original paper of Fortuin, Kasteleyn & Ginibre (1971) stated the result of Corollary <6> for increasing functions defined on a finite distributive lattice. It also contained applications to Physics, including the Ising model.

Preston (1974*a*) noted that finite distributive lattices can always be represented as a collection of subsets of some finite set. Equivalently, the points of such a lattice can be represented as *n*-tuples of 0's and 1's, or as *n*-tuples of \pm 1's. Preston (1974*b*, Chapter 3) reproduced a proof Holley (1974), which was expressed as a coupling of two probability measures satisfying the setwise analog of the condition in Corollary <5>. In fact, a general coupling result of Strassen (1965) shows that the Holley result is equivalent to the result asserted by the Corollary.

.4 Notes

I need to get the history of FKG straight.

See the survey by Den Hollander & Keane (1986) for more about the history of the FKG inequality and its variants.

See Georgii (1988, Chapter 6) for a detailed, rigorous analysis of the Ising model.

References

- Ahlswede, R. & Daykin, D. (1978), 'An inequality for the weights of two families of sets, their unions and intersections', *Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete* 43, 183–185.
- Den Hollander, W. T. F. & Keane, M. (1986), 'Inequalities of FKG type', *Physica* **138A**, 167–182. (Pages 176–177 missing from copy at journal web site.).
- Eaton, M. (1986), *Lectures on topics in probability inequalities*, Centre for Mathematics and Computer Science, Amsterdam. CWI tract 35.
- Fortuin, C. M., Kasteleyn, P. W. & Ginibre, J. (1971), 'Correlation inequalities on some partially ordered sets', *Communications in Mathematical Physics*[?] 22, 89–103.
- Georgii, H.-O. (1988), Gibbs Measures and Phase Trasitions, Walter de Gruyter.
- Holley, R. (1974), 'Remarks on the FKG inequalities', *Communications in Mathematical Physics*[?] **36**, 227–231.
- Karlin, S. & Rinott, Y. (1980), 'Classes of orderings of measures and related correlation inequalities: 1. Multivariate totally positive distributions', *Journal of Multivariate Analysis* 10, 467–498.
- Kindermann, R. & Snell, J. L. (1980), Markov Random Fields and their Applications, Vol. 1 of Contemporary Mathematics, American Mathematical Society.
- Preston, C. J. (1974*a*), 'A generalization of the FKG inequalities', *Communications in Mathematical Physics*[?] **36**, 233–241.
- Preston, C. J. (1974b), *Gibbs States on Countable Sets*, Cambridge University Press.
- Strassen, V. (1965), 'The existence of probability measures with given marginals', *Annals of Mathematical Statistics* **36**, 423–439.

7