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(2.1) Let (X, A, P) be a probability space for which the corresponding L2(P) has an orthonormal basis
{φi : i ∈ N}. Define 〈 f, g〉 := P( f g) and ‖ f ‖ :=

√
P f 2. You may assume these facts (cf. Pollard (2001,

Appendix B)):

(a) The series
∑

i∈N
φi 〈 f, φi 〉 converges in L2(P) norm, for each f in L2(P)

(b) for each pair f, g in L2(P),
〈 f, g〉 =

∑
i∈N

〈 f, φi 〉〈g, φi 〉
Let {ηi : i ∈ N} be a sequence of independent N (0, 1) random variables on a probability

space (�, F, P).

(i) For each f ∈ L2(P) show that the series
∑

i ηi 〈 f, φi 〉 converges in L2(P). Write Z f for the limit.
(More properly, choose Z f from the equivalence class of possible limits.)

(ii) Show that Z f : f ∈ L2(P)} is a centered Gaussian process with cov
(
Z f , Zg

) = 〈 f, g〉.
(iii) Let C be a subset of L2(P) with covering numbers N (·) for the metric d on C defined by the L2(P)

distance. Suppose ∫ 1

0

√
log N (x) dx < ∞.

Show that there is a version of {Z f : f ∈ C} with sample paths that are uniformly continuous (with
respect to the d-metric). Compare with Dudley (1999, Section 2.5) and Dudley (1973).

(2.2) Let Fn(t) := n−1 ∑
i≤n{ξi ≤ t} for 0 ≤ t ≤ 1 be the empirical distribution function based on independent

observation ξ1, ξ2, . . . from the Unif(0, 1) distribution. Define the empirical process νn(t) = √
n(Fn(t)− t)

for 0 ≤ t ≤ 1.

(i) Show that cov
(
νn(s), νn(t)

) = min(s, t) − st .

(ii) Show that there exists a centered Gaussian process {ν(t) : 0 ≤ t ≤ 1} with continuous sample paths
and cov

(
ν(s), ν(t)

) = min(s, t) − st . (The process ν is usually called a Brownian bridge.)

(iii) Show that
P|νn(s) − νn(t)|4 ≤ n−2

(
np + 3(np)2

)
where p := |s − t |.

(iv) Define d(s, t) := √|s − t |. Use facts about L2 norms to show that d is a metric on [0, 1].

(v) For pairs si , ti with n−1 ≤ |si − ti | ≤ δ2, show that

‖ max
i≤N

|νn(si ) − νn(ti )| ‖4 ≤ 2N 1/4δ

(vi) Let k(n) be the integer for which n−1 ≤ 2−k(n) ≤ 2n−1. Let Tk(n) := { j/2k(n) : j = 1, 2, . . . , 2k(n)}.
Given ε > 0, show that there exists an η, which does not depend on n, for which

P{ sup{|νn(s) − νn(t)| : d(s, t) < η and s, t ∈ Tk(n)} > ε} < ε

(vii) Suppose t, t ′ ∈ Tk(n) with t ′ − t = 2−k(n) and t ≤ s < t ′. Show that

|νn(s) − νn(t)| ≤ |νn(t
′) − νn(t)| + 2/

√
n

(viii) Show that, for all n large enough, the inequality in (vi) can be extended to all pairs s, t in [0, 1] for
which d(s, t) < η, perhaps with a slight increase in ε.

(ix) For each real-valued function {x(t) : 0 ≤ t ≤ 1} and m ∈ N, define ti = i/m for i = 0, 1, . . . , m + 1
and

(Am x)(t) = x
(
ti
)

for ti ≤ t < ti+1.

Show that ‖x − Am x‖ ≤ sup{|x(s) − x(t) : |s − t | ≤ m−1}, where ‖z‖ := sup0≤t≤1 |z(t)|.



(x) For each ε > 0 show that there exists an m, which depends on ε but not on n, for which

P{‖νn − Amνn‖ > ε} ≤ ε for all n large enough

and
P{‖ν − Amν‖ > ε} ≤ ε.

(xi) Suppose f is a real-valued functional defined at least for piecewise continuous functions on [0, 1]
such that

| f (x) − f (y) ≤ ‖x − y‖.
For each fixed m, show that f (Amνn) � f (Amν).

(xii) Deduce that f (νn) � f (ν). (Do we need to worry about measurability?)

Congratulations. You have just proved the classical form of Donsker’s theorem. See Doob (1949)
and Donsker (1952) for the glorious beginnings. See also Le Cam (1986, Section) who pointed out that
perhaps Kolmogorov deserved more of the credit. See Billingsley (1968, Section 10) for two elegant
treatments (one based on Kolmogorov’s method) and more about the history.
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