
Chapter 18

Minimax lower bounds

Treat Assouad, Fano, and Le Cam, as in Bin Yu paper?

1. Why minimax?

Much recent asymptotic statistical literature has been devoted to questions of
rates of convergence, especially for problems involving infinite dimensional
parameters. At first sight the various strange rates appear driven by the analytic
details of particular smoothness assumptions and other regularity conditions; it
is not always readily apparent that simple probabilistic principles can explain
the rates as consequences of geometric properties of the models.

The existence of a best rate of convergence depends on a requirement that
an estimator do well not just at a fixed model, but also at a sequence of models
that lie nearby. The rate refers not just to pointwise convergence, but rather to
convergence uniformly over models in small neighborhoods of some particular
model of interest. The idea is formalized as a calculation of (local) minimax
risk

Let P be a collection of models—probability measures on some fixed
measurable space (�, A). We could suppose that P is indexed by a parameter,
P = {Pθ : θ ∈ �}, and that we seek estimates of θ . More generally, we could
consider estimates of some function of θ , a function that might not uniquely
determine the whole distribution Pθ . In that case, it is more elegant to abandon
the parametric representation altogether and treat θ as a functional on P, that
is, treat θ as a map from P into some metric space (�, d). An estimator for
θ(P) is then a measurable map θ̂ : � → �.

Suppose the estimator is judged by means of an expected loss,
PL (̂θ(ω), θ(P)), where L is a loss function on �2. I will assume L is
nonnegative. You could safely think of L(t, θ) as a function that increases
as t moves away from θ . For example, if � = Rk then a common choice is
L(t, θ) = |t − θ |2, quadratic loss. The mimimax criterion seeks an estimator to
minimize the maximum expected loss, the minimax risk,

R(̂θ, P) := sup
P∈P PL (̂θ(ω), θ(P)).

If we add a subscript n to θ̂ , θ , P, and maybe even L , then it makes sense to
ask how rapidly Rn (̂θn, Pn) can converge to zero.

Why should we require a rate of convergence to hold uniformly in shrinking
neighborhoods of a particular parameter value? That is, why should the estimator
be judged by its worst behaviour along a sequence of alternatives converging,
in some sense, to a fixed model? As you saw in Chapter ChapEfficiency/,
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2 Chapter 18: Minimax lower bounds

the uniformity has mathematical appeal because it excludes superefficient
estimators, which exploit the weaknesses in a definition influenced only by
pointwise limit behaviour.

If one intends to make inferences based on asymptotic approximations,
uniformity also has statistical appeal. For example, one sometimes constructs
confidence intervals using an asymptotic distribution as if it were an exact
distribution. The operation of inversion of (approximate) probability statements
for P ∈ Pn makes little sense for a fixed n unless the approximations hold
uniformly in Pn .

2. Lower bounds for minimax risks

The derivation of a minimax rate of convergence for an estimator involves a
series of minimax calculations for different sample sizes. There is no initial
advantage in making the dependence on the sample size explicit. Consider then
the problem of finding a lower bound for the minimax risk

R(̂θ, P) = sup
P∈P PL (̂θ(ω), θ(P)).

Recall the argument from Chapter 3 where lower bounds for rates of
estimation were obtained via total variation distances between models. With θ

regarded as a functional on P, the result derived in that Chapter takes the
following form. Suppose

<1> P{d (̂θ, θ(P)) ≥ δ} ≤ ε for all P in P

If P0 and P1 are members of P for which d(θ(P0), θ(P1)) ≥ 2δ and if

A0 := {ω : d (̂θ(ω), θ(P0)) < δ}
then P0 A0 ≥ 1 − ε and P1 A0 ≤ ε, from which it follows that

<2> ‖P0 − P1‖TV ≥ P0 A0 − P1 A0 ≥ 1 − 2ε.

Conversely, suppose we wish to find a lower bound for

R0(̂θ, P) := sup
P∈P P{d (̂θ, θ(P) ≥ δ}

If we can find P0 and P1 with d(θ(P0), θ(P1)) ≥ 2δ and ‖P0 − P1‖TV < 1 − 2ε

then, with the same A0 as before, we can argue

2R0(̂θ, P) ≥ P0{d (̂θ, θ(P0) ≥ δ} + P1{d (̂θ, θ(P1) ≥ δ}
≥ P0 Ac

0 + P1 A0

≥ 1 − supB |P0 B − P1 B|
> 2ε,

from which it follows that R0(̂θ, P) > ε.
The calculation leading from <1> to <2> implicitly uses the zero-one

loss function L(t, θ) = {d(t, θ) ≥ δ} together with the fact that

L(t, θ0) + L(t, θ1) ≥ 1 for all t if d(θ0, θ1) ≥ 2δ.

A similar argument can be made for a general loss function if there exists a
function c0(·, ·) for which

<3> inf
t∈�

(
L(t, θ0) + L(t, θ1)

) = c0(θ0, θ1) > 0,

for each pair θ0 and θ1 in �. That is, c(θ0, θ1) is the largest constant for which

<4> L(t, θ0) + L(t, θ1) ≥ c for all t.

For example, if � = Rk and L(t, θ) = |t − θ |2 then, for all t ,
1
2 |θ0 − θ1|2 + 2|t − (θ0 + θ1)/2|2 ≤ L(t, θ0) + L(t, θ1).
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18.2 Lower bounds for minimax risks 3

That is, inequality <3> holds with c0(θ0, θ1) = 1
2 |θ0 − θ1|2.

In general, c0(θ0, θ1) will be an increasing function of d(θ0, θ1). A lower
bound for inf{c0(θ0, θ1) : θ0 ∈ �0, θ1 ∈ �1} thus corresponds to a lower bound
for the distance between the sets �0 and �1.

Inequality <4> fits with the definition (Chapter 3) of the affinity between
two probability measures:

1 − 1
2‖P0 − P1‖1 = α1(P0, P1) := inf

f0+ f1=1
P0 f + P1 f1,

where the infimum runs over nonegative measurable functions for which
f0(ω) + f1(ω) = 1 for all ω. As a consequence,

<5> P0 f + P1 f1 ≥ α1(P0, P1) if fi ≥ 0 and f1 + f2 ≥ 1.

In particular, if the loss function satisfies <4> and if θi = θ(Pi ), then the
choice fi (ω) = L (̂θ(ω), θi )/c(θ0, θ1) gives

<6> 2R(̂θ, P) ≥ P0L (̂θ, θ(P0)) + P1L (̂θ, θ(P1)) ≥ c(θ0, θ1)α1(P0, P1).

The result in Chapter 3 for the zero-one loss function is a special case of this
inequality.

We can get a much better lower bound for the maximum risk by taking
convex combinations of probability measures, then exploiting linearity of the
map P �→ Pg for fixed g.

<7> Definition. The convex hull of a set of measures M is the set of all finite
convex combinations

∑
i αiµi , with µi ∈ M and αi ≥ 0 and

∑
i αi = 1. Denote

the set of all such convex combinations by co (M).

Remark. It would not be difficult to extend the calculations to more
general mixtures, but the applications to minimax lower bounds seem to
require nothing more than finite convex combinations.

<8> Lemma. Let P0 and P1 be subsets of P for which there exists a positive
constant C = C(P0, P1) such that

L(t, θ(P0)) + L(t, θ(P1)) ≥ C for all t if P0 ∈ P0 and P1 ∈ P1.

Then
2R(̂θ, P) ≥ C sup{α1(Q0, Q1) : Qi ∈ co (Pi )}

Remark. If the c0(θ0, θ1) from <3> is an increasing function
of d(θ0, θ1), the condition on the loss function effectively sets a lower bound
for d(θ(P0), θ(P1)) when Pi ∈ Pi .

Proof. Define fi (ω) := infPi ∈Pi L (̂θ(ω), θ(Pi ))/C . Note that fi ≥ 0 and
f0 + f1 ≥ 1. As in the proof of <6>,

2R(̂θ, P) ≥ P0L (̂θ(ω), θ(P0)) + P1L (̂θ(ω), θ(P1))

≥ C
(
P0 f0 + P1 f1

)
for all Pi ∈ Pi .

The right-hand side is linear in both probability measures. The inequality is
preserved if we replace each Pi by a finite convex combination of measures
from Pi , giving probability measures Qi in the convex hulls. That is,

2R(̂θ, P)/C ≥ α1(Q0, Q1) for all Qi ∈ co (P)i .

Take suprema over Qi to complete the proof.�
Remark. If you are troubled about possible nonmeasurability of the
fi , work with finite subsets of the Pi , then take suprema at the end of the
argument.
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4 Chapter 18: Minimax lower bounds

If the loss function satisfies <3>, the Lemma suggests that we search for
pairs of subsets Pi of P for which the separation in total variation,

dTV(P0, P1) := 1
2 inf{‖Q0 − Q1‖1 : Qi ∈ co (Pi )}

= 1 − sup{α(Q0, Q1) : Qi ∈ co (Pi )}
is small, but which are well separated by the functional θ(·) in the sense that

inf{c(θ(P0), θ(P1)) : Pi ∈ Pi }
is nonzero.

It may not be obvious that we gain much by introducing convex combi-
nations into the lower bound. In fact, the gains can be substantial. A simple
example with the normal distribution gives a hint of what is to come.

<9> Example. As shown in Chapter 3, the total variation distance between the
N (θ, 1) and the N (0, 1) distributions decreases like

√
2/π |θ | as θ → 0. More

precisely,

φ(x − θ) = φ(x) + θxφ(x) + 1
2θ2(x2 − 1)φ(x) + . . .

so that ∫
|φ(x − θ) − φ(x)| dx = |θ |

∫
|x |φ(x) dx + O(θ2)

Less precisely,

‖N (θ, 1) − N (0, 1)‖2
1 ≤

∫
φ(x)|φ(x − θ)/φ(x) − 1|2 dx = exp(θ2) − 1.

A similar argument suggests that the mixture Pθ = 1
2 N (θ, 1) + 1

2 N (−θ, 1)

converges to the N (0, 1) at an even faster rate:
1
2 (φ(x − θ) + φ(x + θ)) = φ(x) + 1

2θ2(x2 − 1)φ(x) + . . .

so that∫ ∣∣ 1
2φ(x − θ) + 1

2φ(x + θ) − φ(x)
∣∣ dx = 1

2θ2
∫

|x2 − 1|φ(x) dx + O(θ4)

Integration by parts gives 1
2

∫ |x2 − 1|φ(x) dx = 2φ(1) ≈ 0.48.
It is not too difficult to make these calculations rigorous. The second

moment bound gives the same rate of convergence even more easily.

‖Pθ − P0‖2
1 ≤ P0

∣∣∣∣d Pθ

d P0
− 1

∣∣∣∣2

= P0

∣∣∣∣d Pθ

d P0

∣∣∣∣2

− 1

= 1
4 P0

∣∣∣∣exp

(
θx − θ2

2

)
+ exp

(
−θx − θ2

2

)∣∣∣∣2

− 1

= 1
2

(
exp(θ2) + exp(−θ2)

) − 1

= θ4

2!
+ θ8

4!
+ . . . ≤ exp( 1

2θ4) − 1

The bound on the distance ‖Pθ − P0‖1 decreases like θ2/
√

2, an overestimate
by a constant factor of approximately 1.5.�

<10> Example. Suppose Pθ = ⊗i≤n N (θi , σ
2), where θ = (θ1, . . . , θn) ∈ Rn . For

a fixed ξ ∈ Rn
+ let P1 = {Pθ : |θi | = ξi for each i } and P0 = {P0}.

For each Pθ in P1, the distance ‖Pθ − P0‖1 decreases like |ξ |/σ .
The uniform mixture over the 2n measures in P1 is, in fact, also a product

measure,
Q = ⊗i≤n

(
1
2 N (ξi , σ

2) + 1
2 N (−ξi , σ

2)
)
,
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18.2 Lower bounds for minimax risks 5

for which

dQ

dP
=

∏
i≤n

(
1
2 exp

(
αiξi xi

σ 2
− 1

2

ξ 2
i

σ 2

)
+ 1

2 exp

(−αiξi xi

σ 2
− 1

2

ξ 2
i

σ 2

))
Thus

P

(
dQ

dP

)2

= P
∏

i≤n

(
cosh2(ξi xi/σ

2) exp(−ξ 2
i /σ 2)

)
=

∏
i≤n

1
2

(
1 + P cosh(2ξi xi )

)
exp(−ξ 2

i )

=
∏

i≤n
cosh(ξ 2

i /σ 2)

≤ exp
( ∑

i≤n
ξ 4

i /σ 4
)

The quadratic bound now gives

‖Q − P‖2
1 ≤ exp

(
1
2

∑
i≤n

ξ 4
i /σ 4

)
− 1.

Compare with the corresponding quadratic bound for a single θ ,

‖Pθ − P‖2
1 ≤ exp

(
1
2

∑
i≤n

ξ 2
i /σ 2

)
− 1.

Effectively, the averaging over the prior has replaced
∑

i≤n(ξi/σ)2 in the
exponent by

∑
i≤n(ξi/σ)4, which can be much smaller if each |ξi |/σ is small.�

3. Achievability

Section needs to be checked against Le Cam (1973). L1 or TV?

Le Cam (1986, p476) (also in 1973 paper? Kraft 1955) has established
a direct connection between variation distances between convex hulls and the
existence of randomized tests. For arbitrary sets of probability measure P0

and P1 on (�, A),

<11> dTV(co (P0) , co (P1)) = 1 − inf
0≤ψ≤1

sup{P0ψ + P1(1 − ψ) : Pi ∈ Pi }.
The infimum on the right-hand side runs over measurable functions ψ on �

with 0 ≤ ψ ≤ 1. If we interpret ψ(ω) as a probability for rejecting P0, then
P0ψ + Q(1 − ψ) becomes a sum of the two probabilities of error with ψ as
a randomized test between P0 and P1. If dTV(co (P0) , co (P1)) > 1 − 2ε then
there exists a randomized test ψ0 for which

P0ψ0 + P1(1 − ψ0) < 2ε for all P0 in P0 and P1 in P1.

Donohu and Liu (1991a) used a sequence of such tests to construct an
estimator that comes close to achieving an accuracy of estimation, in the sense
of the uniform bound <regularity.again>, associated with a total variation
distance between convex hulls.

4. Bounds on total variation distance

In Chapter 3 we used a simple L2 bound for the L1 distance between measures
P and Q with densities p and q with respect to a probability measure λ,

‖Q − P‖2
1 = (

λ|q − p|)2 ≤ λ|q − p|2
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6 Chapter 18: Minimax lower bounds

In particular, for λ = P, the bound reduces to P(q − 1)2 = P(q2) − 1.
This inequality is easy to handle when both P and Q are product measures,
P = ⊗i≤n Pi and Q = ⊗i≤n Qi with d Qi/d Pi = qi , in which case

<12> ‖Q − P‖2
1 ≤ −1 +

∏
i≤n

Pi (q
2
i )

There is an analogous simplification for convex combinations of product
measures. The measure Q will not be a product measure itself, except in trivial
cases. The useful factorization properties of Hellinger affinity do not apply; the
Hellinger calculations are not as useful as in Chapter 3 for bounding the L1

distance between Q and P. The L2 method still delivers a useful bound.

<13> Lemma. Suppose P = ⊗i≤n Pi and Q = ∑
α∈A

wαQα , a convex combination
of product measures Qα = ⊗i≤n Qi,α with d Qi,α/d Pi = qi,α = qi (ω, α). Then

‖Q − P‖2
1 ≤ −1 +

∑
α,β∈A

wαwβ

∏
i≤n

Pi
(
qi,αqi,β

)
Proof. Note that(

dQ/dP
)2 =

( ∑
α∈A

wαqi,α

) ( ∑
β∈A

wβqi,β

)
Take P expectations, invoking the usual factorizations.�

Remark. We could use the bound

‖Q − P‖1 ≤
∑

α∈A
‖Qα − P‖1 ≤ maxα∈A ‖Qα − P‖1,

but that would wipe out the effect of any cancellations due to the averaging
over A.

If the prior is degenerate, the upper bound from the Corollary reduces to
the bound from inequality <12>

<14> Example. A key step in a beautiful calculation by Mammen (1986) was the
bounding of the total variation distance between a product measure P = Pn

and a mixture

Q = 1

n

n∑
α=1

Qα where Qα := Pα−1 ⊗ Q ⊗ Pn−α

Mammen used the second moment method with dominating measure (P + Q)/2
to obtain an upper bound in terms of H 2(P, Q). (See Problem [2] for his bound.)
A similar bound is even easier to derive when Q has density 1+� with respect
to P , with P�2 < ∞.

In the notation of Lemma <13>, we have

qi,α =
{

1 + �(xi ) if i = α

1 otherwise
Thus

Pqi,αqi,β =
{

1 + P�2 if i = α = β

1 otherwise

The assertion of the Lemma simplifies to

‖Q − P‖2
1 ≤ 1

n2

n∑
α=1

P�2 = P�2

n

In the typical case where � is bounded, so that P�2 is of the same
order of magnitude as H 2(P, Q), and H(P, Q) is of order O(1/

√
n), the

bound
√

P�2/n for ‖Q − P‖1 converges to zero at a 1/n rate. By a direct
calculation of L1 norms,

‖Qa − P‖1 = ‖Q − P‖1
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18.4 Bounds on total variation distance 7

which in typical parametric situations converges to zero at only a O(1/
√

n)

rate. The mixing greater improves the rate of convergence.�

5. Quadratic functional of Gaussian means

For linear functionals of models, the task of distinguishing between pairs
of models is often difficult enough to determine the best minimax rate of
convergence, as in Chapter 3. For only slightly more complicated functionals,
more difficult tasks are needed. The simplest, and most explored, case involves
estimation of a quadratic function of the sequence η = (η1, η2, . . .) of means
of a set x1, x2 . . . of independent N (ηi , σ

2) random variables. The asymptotic
theory involves a limit as σ tends to zero.

Several surprisingly rich problems have been studied in detail. A typical
example is estimation of the functional

θ(η) :=
∑

i
βiη

2
i ,

subject to the inequality constraints

|ηi | ≤ Ai for each i,

where {βi } and {Ai } are given decreasing sequences. Write E for the constraint
set. With squared error loss, L(t, θ) = (t − θ)2, the minimax risk is

R(̂θ, E) = sup
η∈E

Pη,σ (̂θ − θ(η))2.

The interest lies in determining the rate at which the risk decreases as a function
of σ .

For the particular case βi = i2k and Ai = i−α , for various positive α,
Fan (1991) explained a surprising cutoff phenomenon. The minimax rate is of
orderFind the correct values.

<15>

{
σ 4 if α > 2k + 1/4

σ 8(α−k)/(4α+1) if k < α < 2k + 1/4.

The bound is due to the combined effect of two mechanisms for contolling
the rate. Each contributes a lower bound, obtained as the solution to a convex
optimization problem. The maxima of the two bounds gives the achievable rate.

It is most instructive to compare these two bounds by means of their
consequences for a minimax rate as σ → 0.

At Q0 the functional θ takes the value 0. At each Qλ it takes the value
θ(ξ) = ∑

i βiξ
2
i . For quadratic loss, c(θ(Q0), θ(Qλ)) = 1/2θ(ξ)2. If we take

P0 = Q0 and P1 = Qλ in Lemma <13:5> we get

R(̂θ, E) := sup
ξ∈E

Pη,σ |̂θ − θ(ξ)|2 ≥ 1/4θ(ξ)2α(Q0, Qλ),

where
α(Q0, Qλ) = 1 − 1/2‖Qλ − Q0‖1.

If we take P0 = {Q0} and P1 = {Qλ : λ ∈ �} in Lemma <13:7> we get an
analogous lower bound with the affinity replaced by

α(P0, P1) ≥ 1 − 1/2‖Q − Q0‖1.

The following strategy now suggests itself. Use inequalities <single.L1>

and <convex.L1> to keep the affinity above a certain constant level, such
as 1 − 1/2

√
e − 1. (Where does that number come from?) This lower bound

places a constraint on ξ , in addition to the constraint that defines E. Then
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8 Chapter 18: Minimax lower bounds

maximize θ(ξ) subject to the constraints. More specifically, the two-point
(degenerate prior) case corresponds to the problem:

maximize
∑

i

βiξ
2
i

subject to
∑

i

ξ 2
i /σ 2 ≤ 1

and |ξi | ≤ Ai all i

and the convex-hull case corresponds to the problem

maximize
∑

i

βiξ
2
i

subject to 1/2

∑
i

ξ 4
i /σ 4 ≤ 1

and |ξi | ≤ Ai all i

Both problems have explicit, closed form solutions.

Two-point problem

This case is a trivial linear programming problem in yi = ξ 2
i . The solution

is ξ 2
i = Ai for all i less some i0, and equal to zero for i larger than

i0, with ξi0 chosen to achieve equality in the first constraint. When σ 2 ≤
A1, the solution degenerates to ξ1 = σ with all other ξi equal to zero.
When σ is small, the task set for the estimator is decide whether the single
observation x1 comes from a N (0, σ 2) or a N (σ, σ 2) distribution. According
to Lemma <13:5>, the minimax risk is then greater than β2

1σ 4??. As shown
in Problem [exact.minimax], an exact calculation is possible for this trivial
problem; the exact lower bound is σ 4??. The two-point case provides the σ 4

Calculate exact mmax risk.
branch of the lower bound <15>.

Convex-hull problem

This case reduces to a neat quadratic programming problem after substitution
ξi = √

yiβi :
Maximize

∑
i β2

i yi subject to the constraints:

(i)
∑

i β2
i y2

i ≤ 2σ 4 ;

(ii) 0 ≤ yi ≤ A2
i /βi for all i .

<16> Lemma. Suppose {γi } and {Bi } are sequences of strictly positive numbers
for which

∑
i γi Bi < ∞ and

∑
i γi B2

i < ∞. Let yi = Bi ∧ t , where t is the
largest value (possibly +∞) for which∑

i

γi y2
i =

∑
i

γi (Bi ∧ t)2 ≤ C.

Then {yi } maximizes θ(y) = ∑
i γi yi subject to the constraints

(i)
∑

i γi y2
i ≤ C , for a given positive C ;

(ii) 0 ≤ yi ≤ Bi for all i .

Proof. If yi ′ = Bi ′ for all i ′ then clearly θ(x) is the maximum. We may
therefore assume that xi0 = t < Bi0 for at least one i0. In that case, equality
must be achieved in constraint (i), for otherwise an increase in t would
increase θ(y). We must also have each yi ′ equal to either t or Bi ′ , whichever is
smaller.

The feasible set is compact for pointwise convergence. The function θ

must achieve its finite supremum at some feasible x. Suppose θ(x) > θ(x).
For some i we must have Bi ≥ xi > yi = Bi ∧ t , which forces yi = t ≥ yi ′ for
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18.5 Quadratic functional of Gaussian means 9

all i ′. If xi ′ ≥ yi ′ for all i ′, constraint (i) would be violated. Thus xj < yj for
some j . Note that xi > t ≥ xj .

Consider small perturbation of these two coordinates. Choose a constant
τ > 1 with xi > τ xj . For small ε > 0 consider the effect of replacing xi by
xi − ε/γi and xj by xj + τε/γj . If ε is small enough, the new vector is feasible,
because

γi x
2
i + γj x

2
j − γi (xi − ε/γi )

2 − γj (xj + τε/γj )
2 = 2ε(xi − τ xj ) + O(ε2).

The coefficient of ε is strictly positive; for small enough ε > 0 constraint (i)
still holds. The modified x is still feasible, but the change increases θ(x) by
(τ − 1)ε > 0: a contradiction.�

Question: What happens if constraint (ii) is replaced by
∑

i δi x
p
i ≤ C ′, for

some constants p > 0 and C ′?

When σ is small enough, the solution to the convex-hull problem is
yi = (A2

i /βi ) ∧ t , where ∑
i

A4
i ∧ (β2

i t2) = 2σ 4.

The maximizizing ξ is given by ξi = Ai ∧ √
βi t .

For the special case βi = i2k and Ai = i−α , the ratio A2
i /βi is decreasing.

Thus yi = t for i ≤ m and yi = A2
i /βi for i > m, where m is the solution to

W hat?

6. Quadratic functionals of densities

Editing needed

Suppose independent observations are taken from a distribution P having
density f concentrated on [0, 1]. Consider the functional (slight abuse of
notation here)

θ( f ) =
∫ 1

0
f ′(x)2 dx OR

∫ 1

0
f (x)2 dx?

Suppose f is constrained to lie in the smoothness class L I P of functions
on [0, 1] for which

sup
0≤x≤1

| f (i)(x)| ≤ C for i = 1, . . . , k,

and
| f (k)(x) − f (k)(y)| ≤ C |x − y|ν for 0 ≤ x, y ≤ 1.

Here C is a fixed constant, k is a positive integer, and ν is such that 0 < ν ≤ 1
and s = k + ν > 1.
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10 Chapter 18: Minimax lower bounds

<17> Definition. Let s and δ be strictly positive. Let k be the largest integer
strictly less than s and let s = k + α, with 0 < α ≤ 1. For a function f
defined and k times differentiable at least on the interval (−δ, δ), define the
norm ‖ f ‖s,δ as the smallest constant C (possibly infinite) for which

sup
|t |<δ

| f (i)(t)| ≤ C for i = 0, 1, . . . , k

| f (k)(t1) − f (k)(t2)| ≤ C |t1 − t2|α for |t1|, |t2| < δ.

Call f locally s-smooth if ‖ f ‖s,δ is finite for some positive δ. Write Ss(0, δ, C)

for the class of such functions with ‖ f ‖s,δ ≤ C .

Notice that finiteness of ‖ f ‖1,δ requires only a Lipschitz condition on f
near the origin.

Let f0 denote the uniform density on [−1/2, 1/2]. For a fixed small δ > 0
and a constant C > 1, let us work with a smoothness class Ss = Ss(0, δ, C) for
the remainder of the Section. Of course f0 ∈ Ss . Let P be the Uniform[0, 1]
distribution, for which (more abuse of notation) θ(P) = 0.

The value of m will be chosen later. For each i let gi = (gi1, . . . , gim) be
an m-vectors of orthogonal functions on [0, 1] with Q0gi = 0 and finite second
moment matrix Q0gi g′

i = �i . Define

Gi (xi , λ) = λ′gi (xi ) =
m∑

j=1

λj gi j (xi ).

Then τi (λ, µ) = λ′�iµ and

P
∏
i≤n

(1 + τi (λ, µ)) = P
∏
i≤n

(
1 + λ′�iµ

) ≤ P exp(λ′ ∑
i

�jµ).

The random variable λ′ ∑
i �jµ has a symmetric distribution. If you expanded

the product and took expectations term by term you would observe that
odd powers are wiped out. The exponential bound achieves the same effect
(Problem [1]). The effect is particularly easy to see if the components of gi

are orthogonal in L2(Q0), with �i = σ 2
i Im , for then the exponent becomes cW ,

with c = ∑
i σ 2

i and W = λ′µ, a sum of m independent Rademacher variables.

P exp(cW ) = (
1/2ec + 1/2e−c

)
m ≤ exp

(
1/2mc2

)
.

In summary, with the orthogonal components, inequality <convex.bound>

gives

‖Q − Q0‖2
1 ≤ exp

(
1/2m(

∑
i

σ 2
i )2

)
− 1.

Notice that the bound is of order O(m(
∑

i σ 2
i )2) near zero.

Theorem <quadratic.bound> will show that the best rate of uniform
convergence, in the sense of inequality <uniform.rate>, cannot be faster
than Op(rn) where

rn = n−(4s−4)/(4s+1).

Construct alternative models starting from a fixed, k+1-times differentiable
function g with support in [0, 1], and such that Pg = 0 and Pg2 = τ > 0
and P(g′)2 = β > 0. Partition [0, 1] into disjoint intervals of length 1/m with
centers at b1, . . . , bm . Define

gα(x) = cm−s g(mx − bα),
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18.6 Quadratic functionals of densities 11

for a small, positive constant c, to be determined. If c is small enough, the
perturbed densities 1+∑

α λαgα , corresponding to the corners of the hypercube,
lie in LIP(s, C). Check that

Pg2
α = c2τm−(2s+1),

from which
n2

∑
α

(Pg2
α)2 = c4τ 2n2m−(4s+1).

Let m increase like n2/(4s+1), to keep the last expression bounded. Given ε > 0,
choose a c small enough to ensure that

lim sup
n

exp
(

1
2 n2

∑
α

(Pg2
α)2

) − 1 <
(
2(1 − 2ε)

)2
,

as required by <rate.determining>. Define Dn1 = {0} and Dn2 = {γn},
where

γn = θ(1 +
∑

α

λαgα) =
∑

α

P(g′
α)2 = c2βm−(2s−2), for all λ.

Choose K small enough to ensure that 2Krn < γn , which makes the sets Dn1

and Dn2 at least 2Krn-separated. Then the asserted lower bound for the rate
follows.

7. Notes

Hasminskii (1979)
The basic idea was explained by Le Cam—see his 1973 paper in

particular—with recent embellishments and extensions due to
Donoho & Liu (1987) and Donoho & Liu (1991).
Hall and Marron.
Donoho, Liu and MacG.
Donoho and Nussbaum.
Ingster.
Bickel & Ritov (1988), Ritov & Bickel (1990), Birgé & Massart (1992)

Donoho & Liu (1991) Bretagnolle & Huber (1979) Le Cam (1973) Ritov &
Bickel (1990) Fan (1991)

Ingster (1986) for quadratic bound.
Huber (1997), Yu (1997) for Assouad et al?
Bretagnolle & Huber (1979)

8. Problems

[1] Let λ and µ be independent m-vectors of Rademachers, and let � be an m × m
matrix.

(i) Show that P exp(λ′�µ) ≤ P exp(Y ′�Z/2π), with Y and Z independent
N (0, Im) random vectors.

(ii) By means of a conditioning argument, followed by a diagonalization of a
matrix, show that the last expectation equals

P exp

(∑
i

θi Z2
i

)
=

∏
i

(1 − 2θi )
−1/2 if max θi < 1/2,

where the θi are the eigenvalues of the symmetric matrix �′�/2π .

(iii) Show the last bound is less than exp
(−trace(�′�)/π

)
, if max θi < 1/4.
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12 Chapter 18: Minimax lower bounds

[2] For P and Q as in Example <14>, bound ‖Q − P‖2
1 using the second moment

method for densities with respect to λ = (P + Q)/2, by following these steps.
Write q = d Q/dλ = 1 + �, so that p = d P/dλ = 1 − �. Write κ for λ�2.calculations need checking
Note that, by <quadratic.average>, κ ≤ H 2(P, Q).

(i) Show that �0,i = −� for all i , and that �α,i = � if i = α, and −�

otherwise.

(ii) Deduce that τ0,0(i) = κ for all i ; that τα,β(i) = −κ if α �= β = i or
β �= α = i , and κ otherwise; and that τα,0(i) = −κ if α = i , and κ

otherwise.

(iii) Deduce that 1 + �(τ0,0) = (1 + κ)n; that 1 + �(τα,0) = (1 + κ)n−1(1 − κ);
and that

1 + �(τα,β) =
{

(1 + κ)n−2(1 − κ)2 if α �= β

(1 + κ)n−1(1 − κ) if α = β

(iv) Deduce that

λ(q − p)2 ≤ 4κ

(
1

n
+ κ

)
(1 + κ)n−2

Compare with Mammen (1986, inequality 3.7).

[3] Bound distance between
∑

α wαQα and Q0, where all Qα are product measures
dominated by a product measure P. Suppose

dQα

dP
=

∏
i≤n

(1 + �α,i (xi )),

and
dQ0

dP
=

∏
i≤n

(1 + �0,i (xi )).

Show

‖
∑

α∈A
wαQa − Q0‖2

1 ≤
∑
α∈A

∑
β∈A

wαwβ

[
�(τα,β) − 2�(τα,0) + �(τ0,0)

]
=

∑
α∈A

∑
β∈A

wαwβ�(τα,β) − 2
∑
α∈A

wα�(τα,0) + �(τ0,0)
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