
Chapter 3

Total variation distance between
measures

1. Why bother with different distances?

When we work with a family of probability measures, {Pθ : θ ∈ �}, indexed
by a metric space �, there would seem to be an obvious way to calculate
the distance between measures: use the metric on �. For many problems of
estimation, the obvious is what we want. We ask how close (in the metric)
we can come to guessing θ0, based on an observation from Pθ0 ; we compare
estimators based on rates of convergence, or based on expected values of loss
functions involving the distance from θ0.

When the parametrization is reasonable (whatever that means), distances
measured by the � metric are reasonable. (What else could I say?) However
it is not hard to concoct examples where the � metric is misleading.

<1> Example. Let Pn,θ denote the joint distribution for n independent obser-
vations from the N (θ, 1) distribution, with θ ∈ R. Under Pn,θ0 , the sample
average, X̄n , converges to θ0 at a n−1/2 rate. The parametrization is reasonable.

What happens if we reparametrize, replacing the N (θ, 1) by a N (θ3, 1)?
We are still fitting the same model—same probability measures, only the
labelling has changed. The maximum likelihood estimator, X̄1/3

n , still converges
at an n−1/2 rate if θ0 �= 0, but for θ0 = 0 we get an n−1/6 rate, as an artifact of
the reparametrization.

More imaginative reparametrizations can produce even stranger behaviour
for the maximum likelihood estimator. For example, define the one-to-one
reparametriztion

ψ(θ) =
{

θ if θ is rational
θ + 1 if θ is irrational

Now let Pn,θ denote the joint distribution for n independent observations from
the N (ψ(θ), 1) distribution. If θ0 is rational, the maximum likelihood estimator,
ψ−1(X̄n), gets very confused: it concentrates around θ0 − 1 as n gets larger.�

You would be right to scoff at the second reparametrization in the Example,
yet it does make the point that distances measured in the � metric, for some
parametrization picked out of the air, might not be particularly informative
about the behaviour of estimators. Less ridiculous examples arise routinely in
“nonparametric” problems, that is, in problems where “infinite dimensional”
parameters enter, making the choice of metric less obvious.

Fortunately, there are intrinsic ways to measure distances between proba-
bility measures, distances that don’t depend on the parametrizations. The rest
of this Chapter will set forth a few of the basic definitions and facts. The
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2 Chapter 3: Total variation distance between measures

total variation distance has properties that will be familiar to students of the
Neyman-Pearson approach to hypothesis testing. The Hellinger distance is
closely related to the total variation distance—for example, both distances define
the same topology of the space of probability measures—but it has several
technical advantages derived from properties of inner products. (Hilbert spaces
have nicer properties than general Banach spaces.) For example, Hellinger
distances are very well suited for the study of product measures (Section 5).
Also, Hellinger distance is closely related to the concept called Hellinger
differentiability (Chapter 6), an elegant alternative to the tradional assumptions
of pointwise differentiability in some asymptotic problems. Kullback-Leibler
distance, which is also kown as relative entropy, emerges naturally from the
study of maximum likelihood estimation. The relative entropy is not a metric,
but it is closely related to the other two distances, and it too is well suited for
use with product measures. See Section 5 and Chapter 4.

The intrinsic measures of distance are the key to understanding minimax
rates of convergence, as you will learn in Chapter 18.

For reasonable parametrizations, in classical finite-dimensional settings,
the intrinsic measures usually tell the same story as the � metric, as explained
in Chapter 6.

2. Total variation and lattice operations

In classical analysis, the total variation of a function f over an interval [a, b]
is defined as

v( f, [a, b]) := supg

∑k

i=1
| f (ti ) − f (ti−1)|,

where the supremum runs over all finite grids g : a = t0 < t1 < . . . < tk = b
on [a, b].

The total variation of a signed measure µ, on a sigma-field A of subsets
of some X, is defined analogously (Dunford & Schwartz 1958, Section III.1):

v(µ) := supg

∑k

i=1
|µAi |,

where now the supremum runs over all finite partitions g : X = ∑k
i=1 Ai of X

into disjoint A-sets.

Remark. The simplest way to create a signed measure is by taking a
difference µ1 − µ2 of two nonnegative measures. In fact, one of the key
properties of signed measures with finite total variation is that they can
always be written as such a difference.

In fact, there is no need to consider partitions into more than two sets: for if
A = ∪i {Ai : µAi ≥ 0} then∑

i
|µAi | = µA − µAc = |µA| + |µAc|

That is,
v(µ) := supA∈A

(|µA| + |µAc|) .

If µ has a density m with respect to a countably additive, nonnegative
measure λ then the supremum is achieved by the choice A = {m ≥ 0}:

v(µ) := supA∈A

(|λAm| + |λAcm|) = |λ{m ≥ 0}m| + |λ{m < 0}m| = λ|m|
That is, v(µ) equals the L1(λ) norm of the density dµ/dλ, for every choice
of dominating measure λ. This fact suggests the notation ‖µ‖1 for the total
variation of a signed measure µ.
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3.2 Total variation and lattice operations 3

The total variation v(µ) is also equal to sup| f |≤1 |µ f |, the supremum
running over all A-measurable functions f bounded in absolute value by 1.
Indeed,

|µ f | = λ|m f | ≤ λ|m| if | f | ≤ 1,

with equality when f = {m ≥ 0} − {m < 0}.
When µ(X) = 0, there are some slight simplifications in the formulae

for v(µ). In that case, 0 = λm = λm+ − λm− and hence

v(µ) = ‖µ‖1 = 2λm+ = 2λm− = 2µ{m ≥ 0} = 2 supA∈A µA

As a special case, for probability measures P1 and P2, with densities p1 and p2

with respect to λ,

v(µ) = ‖µ‖1 = 2λ(p1 − p2)
+ = 2λ(p2 − p1)

+

= 2 supA (P1 A − P2 A) = 2 supA (P1 A − P2 A)

= 2 supA |P1 A − P2 A|<2>

Many authors, no doubt with the special case foremost in their minds, define the
total variation as supA |P1 A − P2 A|. An unexpected extra factor of 2 can cause
confusion. To avoid this confusion I will abandon the notation v(µ) altogether
and write ‖µ‖TV for the modified definition.

In summary, for a finite signed measure µ on a sigma-field A, with
density m with respect to a nonnegative measure λ,

‖µ‖1 := λ|m| = sup
| f |≤1

|µ f | = supA∈A

(|µA| + |µAc|)
If µX = 0 then

1
2‖µ‖1 = ‖µ‖TV := supA |µA| = supA µA = − infA µA.

The use of an arbitrarily chosen dominating measure also lets us perform
lattice operations on finite signed measures. For example, if dµ/dλ = m and
dν/dλ = n, with m, n ∈ L1(λ), then the measure γ defined by dγ /dλ := m ∨n
has the property that

<3> γ A = λ
(
(m ∨ n)A

) ≥ max
(
µA, ν A

)
for all A ∈ A.

In fact, γ is the smallest measure with this property. For suppose γ0 is a nother
signed measure with γ0 A ≥ max

(
µA, ν A

)
for all A. We may assume, with

no loss of generality, that γ0 is also dominated by λ, with density g0. The
inequality

λ
(
m A{m ≥ n}) = µA{m ≥ n} ≤ γ0 A{m ≥ n} = λ

(
g0{m ≥ n}A

)
,

for all A ∈ A, implies g0 ≥ m a.e. [λ] on the set {m ≥ n}. Similarly g0 ≥ n
a.e. [λ] on the set {m < n}. Thus g0 ≥ m ∨ n a.e. [λ] and γ0 ≥ γ , as measures
on A.

Even though γ was defined via a particular choice of dominating measure λ,
the setwise properties show that the resulting mesure is the same for every
such λ.

<4> Definition. For each pair of finite, signed measures µ and ν on A, there is
a smallest signed measure µ ∨ ν for which

(µ ∨ ν)(A) ≥ max
(
µA, ν A

)
for all A ∈ A

and a largest signed measure µ ∧ ν for which

(µ ∧ ν)(A) ≥ min
(
µA, ν A

)
for all A ∈ A
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4 Chapter 3: Total variation distance between measures

If λ is a dominating (nonnegative measure) for which dµ/dλ = m and
dν/dλ = n then

d(µ ∨ ν)

dλ
= max(m, n) and

d(µ ∧ ν)

dλ
= min(m, n) a.e. [λ].

In particular, the nonnegative measures defined by dµ+/dλ := m+ and
dµ−/dλ := m− are the smallest measures for which µ+ A ≥ µA ≥ −µ− A for
all A ∈ A.

Remark. Note that the set function A 
→ max
(
µA, ν A

)
is not, in

general, a measure because it need not be additive. In general, (µ ∨ ν)(A)

is strictly greater than max
(
µA, ν A

)
.

<5> Example. If µ and ν are finite signed measures on A with densities m
and n with respect to a dominating λ then (µ − ν)+ + (ν − µ)+ has density
(m − n)+ + (n − m)+ = |m − n|. Thus

(µ − ν)+(X) + (ν − µ)+(X) = λ|m − n| = ‖µ − ν‖1.

Similarly,

(µ−ν)+(X)−(ν−µ)+(X) = λ
(
(m − n)+ − (n − m)+

) = λ(m−n) = µX−νX.

In particular, if µX = νX then (µ − ν)+(X) = (ν − µ)+(X) = ‖µ − ν‖TV.�
<6> Example. If µ and ν are finite signed measures on A, then

(µ ∧ ν)(A) = inf{µ( f A) + ν(g A) : f + g = 1 and f, g ≥ 0}
The infimum here runs of all pairs of nonnegative, measurable functions f, g
for which f (x) + g(x) = 1 everywhere. again the assertion is easy to establish
by expressing it in terms of a dominating λ. For f and g as above,

λ
(
(m ∧ n)A

) ≤ λ
(
( f m + gn)A

)
,

with equality when f = {m < n}.
In particular, if µ and ν are nonnegative measures,

µ ∧ ν(X) = inf{µ f + νg : f + g = 1 and f, g ≥ 0} = ‖µ ∧ ν‖1,

a quantity that is sometimes called the affinity between µ and ν and denoted
by α1(µ, ν). When µ and ν are probability measures,

2α1(µ, ν) = 2λ(m ∧ n) = λ
(
m + n − |m − n|) = 2 − ‖µ − ν‖1.

Equivalently, for probability measures µ and ν,

α1(µ, ν) + ‖µ − ν‖TV = 1.

Some arguments involving total variation distances belong clearer when
reexpressed in terms of affinities.�

<7> Example. Suppose P and Q are probability measures on (X, A). If X and
Y are random elements of X with distributions P and Q,then for every A in A,

|P A − Q A| ≤ |P{X ∈ A, X = Y } − P{Y ∈ A, X = Y }|
+ |P{X ∈ A, X �= Y } − P{Y ∈ A, X �= Y }|

≤ 0 + P{X �= Y }
Take the supremum over A to deduce that

<8> ‖P − Q‖TV ≤ inf{P{X �= Y } : X ∼ P, Y ∼ Q}.
The infimum runs over all probability spaces (�, F, P), on which (X, Y ) can
be defined with the desired marginals, (P, Q).

Strictly speaking, we would need to assume that the diagonal 	 :=
{(x, y) ∈ X2 : x = y} is A ⊗ A-measurable, to ensure that {ω : X (ω) �= Y (ω)}
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3.2 Total variation and lattice operations 5

belongs to F. Under such an assumption, the inequality in <8> is an equality.
Indeed, the assertions trivial if ‖P − Q‖TV = 0 because then P = Q.

If c := ‖P − Q‖TV > 0, let µ be the measure P ∧ Q lifted up by the map
x 
→ (x, x) to live on 	. The nonnegative measure

P := µ + (P − Q)+ ⊗ (Q − P)+/c

has, by Example <5> and <6>, total mass

‖P ∧ Q‖1 + ‖(P − Q)+‖1‖(Q − P)+‖1/c = (1 − c) + c2/c = 1.

That is, P is a probability measure on A ⊗ A. It has marginals

(P − Q)+(P ∧ Q) = P and (Q − P)+(P ∧ Q) = Q

and mass (P ∧ Q)(X) = 1 − c on 	. The coordinate maps X and Y have
distributions P and Q and P{X �= Y } = P	c = ‖P − Q‖TV.�

3. Some examples of total variation distances

In a few cases it is possible to calculate the exact total variation distance
between two measures.

<9> Example. Let P1 denote the N (θ1, In) multivariate normal distribution
and P2 denote the N (θ2, In), with θ1 �= θ2. Define τ := |θ1 − θ2|/2 and
u = (θ2 −θ1)/|θ2 −θ1|. Note that u′(x −θ1) has a N (0, 1) distribution under P1,
and a N (2τ, 1) distribution under P2. The density of P1 − P2 with respect to
Lebesgue measure is nonnegative in the halfspace A0 = {x : u′(x − θ1) ≤ τ }.
Thus

‖P1 − P2‖1 = 2(P1 − P2)A0

= 2P{N (0, 1) ≤ τ } − 2P{N (2τ, 1) ≤ τ }
= 2P{|N (0, 1)| ≤ τ }
= 4τ√

2π
+ O(τ 2) as τ → 0

When θ1 is close to θ2, so that τ = |θ1 − θ2|/2 ≈ 0, the total variation distance
is approximately

√
2/π |θ1 − θ2|.

The rate of convergence in this Example is typical. Consider for example
a family of probability measures {Pθ : θ ∈ Rk} with densities { fθ } with respect
to a measure λ. Supose the family of densities is differentiable in L1(λ) norm
at θ . That is, suppose there is an integrable function ḟθ for which

λ| fθ+t − fθ − t ′ ḟθ | = o(|t |) as t → 0

Then, writing u for the unit vector t/|t |, we have

‖Pθ+t − Pθ‖1

|t | = λ| fθ+t − fθ |
|t | = λ|u′ ḟθ | + o(1)

For the N (θ, In) densities, φ(x − θ), the pointwise derivative (x − θ)φ(x − θ)

is also the derivative in L1 norm, which gives

‖N (θ + t, In) − N (θ, In)‖1

|t | = o(1) +
∫

|u′(x − θ)φ(x − θ)|
= o(1) + P|u′N (0, In)|
= o(1) + 2√

π

because u′N (0, In) is N (0, 1) distributed, and P|N (0, 1)| = √
2/π .�
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6 Chapter 3: Total variation distance between measures

Exact calculation of total variation distances in closed form can be
difficult, if not impossible. Bounds and approximations often suffice. The next
Section compares two methods by means of an application to a well known
approximation.

<10> Example. Let Pn denote the Bin(n, θ) distribution and Qn denote the
Poisson(nθ) distribution, for a fixed θ > 0. Example <8> gives a bound on the
distance ‖Pn − Qn‖TV. For the simple case with n = 1, the measure P1 ∧ Q1

puts mass only on the points 0 and 1:

min(1 − θ, e−θ ) = 1 − θ at 0

min(θ, θe−θ ) = θe−θ at 1

Thus
‖P1 − Q1‖TV = 1 − (P1 ∧ Q1)(R) = θ(1 − e−θ ) ≤ θ2

Construct, on the same probability space, independent pairs (Xi , Yi ) with
Xi ∼ P1 and Yi ∼ Q1 and P{Xi �= Y1} ≤ θ2 for i = 1, 2, . . . , n. Then
X := ∑

i Xi is distributed as Pn and Yn := ∑
i is distributed as Qn . By

Example <8>,

‖Pn − Qn‖TV ≤ P{X �= Y } �=
∑

i
P{Xi �= Yi } ≤ nθ2.

This bound makes precise the idea that Qn is a reasonable approximation to Pn

if nθ is not too big and θ is small.�
The bound from the previous Example can be strengthened for nθ ≥ 1 by

a more direct calculation.

<11> Example. For a fixed n, abbreviate the Pn and Qn from the previous Example
to P and Q. A more delicate argument will show that ‖P − Q‖TV ≤ θ .

Define

b(k) := P{k} =
(

n

k

)
θ k(1 − θ)n−k for k = 0, 1, . . . , n

p(k) := Qk{k} = e−nθ (nθ)k/k! for k = 0, 1, . . .

To avoid trivial cases, assume 0 < θ < 1. For k = 0, 1, . . . , n define

g(k) := p(k)/b(k) = e−nθ (1 − θ)x−n
x−1∏
i=1

(
1 − i

n

)−1

Then
‖P − Q‖TV =

∑n

k=0
(p(k) − q(k))+ = 2P (1 − g(k))+

It suffices to show that g(k) ≥ 1 − (k/n), for then the last expected value is
bounded by P(k/n) = θ .

The lower bound for g(k) is trivial when k = n. For other values of k
note that

log
g(k)

1 − (k/n)
= −nθ − (n − k) log(1 − θ) −

∑k

i=1
h′(i/n)

where h′(t) := − log(1 − t) and

h(t) := t + (1 − t) log(1 − t) =
∑∞

k=2

t k

k(k − 1)
for 0 ≤ t ≤ 1.

Note that h is convex and h′ is increasing. For each integer k with 1 ≤ k ≤ n−1,

<12> h (k/n) − h(0) =
∫ k/n

0
h′(t) dt =

∑k

i=1

∫ i/n

(i−1)/n
h′(t) dt ≤ 1

n

k∑
i=1

h′ (i/n) .

The inequality is also valid when k = 0, for then both sides equal zero.
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3.3 Some examples of total variation distances 7

Remark. The inequality is fairly sharp, because

<13>
1

n

∑k

i=1
h′ (i/n) ≤

∑k

i=1

∫ (i+1)/n

i/n

h′(t) dt = h ((k + 1)/n) − h (1/n)

From <12>,

log
g(k)

1 − (k/n)
≥ −nθ−(n−k) log(1−θ)+nh (k/n) for k = 0, 1, . . . , n − 1.

Replace k in the right-hand side by a continuous variable x in [0, n]. The
lower bound becomes a convex function of x that achieves its minimum when
h′(x/n) = log(1 − θ), that is, when x = nθ . The lower bound is everywhere
greater than than

−nθ − n(1 − θ) log(1 − θ) + nh(θ) = −nh(θ) + nh(θ) = 0.

It follows that g(k) ≥ 1 − (k/n), as asserted.�
The bound from Example <11> can be refined further (Le Cam 1965) by

exploitation of properties of the ratio

R(k + 1) := g(k + 1)

g(k)
= (1 − θ)n

n − k

The ratio decreases as k increases from 0 to n, with R(k + 1) ≥ 1 if and only
if k ≥ nθ . Thus g(k) achieves its minimum value at k0, the smallest integer for
which k0 ≥ nθ . Not coincidentally, both b(k) and p(k) achieve their maxima
near k0. Indeed,

b(k + 1)

b(k)
= (n − k)θ

(k + 1)(1 − θ)
≥ 1 if and only if θ ≥ k + 1

n + 1
,

and
p(k + 1)

p(k)
= nθ

k + 1
≥ 1 if and only if θ ≥ k + 1

n
,

Let me ignore these small differences by assuming that k0 = nθ and that both
b(k) and p(k) are maximized at k0. By Stirling’s formula,

b(k0) ≈ nn+1/2θ k0(1 − θ)n−k0

√
2πkk0+1/2

0 (n − k0)n−k0+1/2
≈ (

2πk0(1 − θ)
)−1/2

and
p(k0) ≈ (

2πk0
)−1/2

which gives

g(k) ≥ g(k0) ≈ √
1 − θ for k = 0, 1, . . . , n.

Remark. JAH explained to me that the
√

1 − θ comes from the fact
that the normal approximation to P has standard deviation

√
nθ(1 − θ)

whereas the normal approximation to Q has standard deviation
√

nθ . It
would be worthwhile to compare with ‖N (0, σ 2

1 ) − N (0, σ 2
2 )‖. Presumably

this distance behaves like 1 − (σ2/σ1) if σ1 > σ2.

The set A0 := {k : b(k) ≥ p(k)} is of the form {k : k1 ≤ k ≤ k2}. Of
course k0 ∈ A. Treating the approximations as equalities, we have

‖P − Q‖TV =
∑
k∈A

(
γ b(k) + b(k)

√
1 − θ − p(k)

)
where γ := 1 − √

1 − θ

≤ γ
∑
k∈A

b(k) because p(k) ≥ b(k)
√

1 − θ on A

= γ P A
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8 Chapter 3: Total variation distance between measures

Thus, ‖P − Q‖TV should be (approximately) smaller than

1 − √
1 − θ = 1

2θ + O(θ2) near θ = 0.

With a more careful accounting of errors, Le Cam (1965, page 187) got
a bound 2θ for the total variation distance. He noted that more elaborate
calculations by Prohorov (1961) gave an even better result,

‖P − Q‖TV = θ
(
λ0 + O(1 ∧ (nθ)−1/2

)
with λ0 = 1/

√
2eπ ≈ 0.242.

Actually, this is the form reported by Barbour, Holst & Janson (1992, page 2),
Check

who corrected a minor error in the original.

4. Total variation and minimax rates of convergence

The basic idea relating performance of an estimator to total variation distance is
due to Le Cam (1973). Suppose θ̂ is an estimator of a parameter θ in a metric
space such that

<14> Pθ {d (̂θ, θ) ≥ δ} ≤ ε for all θ .

In particular, suppose such an inequality holds for two values θ0 and θ1 for
which d(θ0, θ1) ≥ 2δ. If we define A0 := {ω : d (̂θ(ω), θ0) < δ} then

Pθ0 A0 ≥ 1 − ε and Pθ1 A0 ≤ ε

from which it follows that

‖Pθ0 − Pθ1‖TV ≥ Pθ0 A0 − Pθ1 A0 ≥ 1 − 2ε.

Conversely, if we wish to show that assertion <14> cannot be true, we can try
to frind a pair θ0 and θ1 for which d(θ0, θ1) ≥ 2δ but ‖Pθ0 − Pθ1‖TV < 1 − 2ε.

<15> Example. Consider the problem of estimation of a parameter θ , based on
a sample {X1, . . . , Xn} of size n from the Uniform[0, θ ] distribution. More
formally, let Pn,θ be the uniform distribution on the cube [0, θ ]n and the {Xi }
be the coordinate maps on Rn .

The estimator Mn := max{X1, . . . , Xn} lies within Op(1/n) of θ :

Pn,θ {|Mn − θ | ≥ C/n} = Pn,θ {Xi ≤ θ − C/n for i = 1, . . . , n}
= (1 − C/nθ)n

→ exp(−C/θ) as n → ∞.

More precisely, for each θ0 > 0, there exists a constant C0 = C0(ε, θ0) such
that

<16> Pn,θ {|Mn − θ | ≥ C0/n} ≤ ε for all n and all θ ∈ (0, θ0].

The Op(1/n) rate of convergence for {Mn} is uniform over bounded subsets of
the parameter space.

In general, an estimator sequence {̂θn} for which a rate of convergence is
required to hold uniformly over even a small neighborhood of an particular θ0

cannot do better than Op(1/n). For simplicity, suppose θ0 = 1. Consider θn =
1 − 2Cε/n, for some (suitably large) positive Cε . Calculate total variation
distance using densities with respect to Lebesgue measure on B(Rn).

‖Pn,θn − Pn,θ0‖ =
∫ (

θ−n
n {maxi xi ≤ θn} − {maxi xi ≤ 1})+

dx

= (θ−n
n − 1)

∫
{maxi xi ≤ θn} dx

= 1 − (1 − 2Cε/n)n

→ 1 − exp(−2Cε).
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3.4 Total variation and minimax rates of convergence 9

If Cε < 1
2 log(1/2ε) then 1 − (1 − 2Cε/n)n < 1 − 2ε for n ≥ nε . For no

estimator θ̂n can we have

sup
n≥nε

Pn,θ {|̂θn − θ | ≥ Cε/n} ≤ ε for both θ = 1 and θ = 1 − 2Cε/n.

We certainly cannot find an estimator that converges at a rate faster than Op(1/n)

uniformly over θ near 1.�
Traditional theoretical statistics is much concerned with estimation based

on independent observations. By calculating bounds on the total variation
distance between two product measures, we can deduce lower bounds on the
local minimax rates of convergence of estimators. For these calculations, it is
sometimes easier to work with distances for which the calculation reduces to
calculation of distances between (“one-dimensional”) marginals. The Hellinger
and Kullback-Leibler distances, the key properties of which will be summarized
in the next Sections, have this desirable property. However, as shown in
Section 6, there are also tractable bounds based on calculations with L2

distances.
The simple argument from the start of the section will be generalized in

Chapter 18 to show that total variation distance between convex hulls of sets of
measures provide better lower bounds for minimax rates. Unfortunately, even
with independent observations, the taking of convex hulls destroys much of
the convenience of working with Hellinger or Kullback-Leibler distances. We
will need to explore other methods for controlling total variation distance. The
method from Section 6 has a simple generalization to handle convex hulls.

5. Helinger and Kullback-Leibler distances

Let P and Q be probability measures with densities p and q with respect to a
dominating measure λ. The square roots of the densities,

√
p and

√
q are both

square integrable; they both belong to L2(λ). The Hellinger distance between
the two measures is defined as the L2 distance between the square roots of their
densities,

H(P, Q)2 = λ(
√

p − √
q)2

= λ(p + q − 2
√

pq)

= 2 − 2λ
√

pq.<17>

It is easy to show that the integral defining the Hellinger distance does not
depend on the choice of dominating measure (Problem [2]). The quantity
λ
√

pq is called the Hellinger affinity between the two measures. It is denoted
by α2(P, Q).

The Hellinger distance satisfies the inequality 0 ≤ H(P, Q) ≤ √
2. Some

authors prefer to have an upper bound of 1; they include an extra factor of a
half in the definition of H(P, Q)2. The equality at 0 occurs when

√
p = √

q
almost surely mod[λ], that is, when P = Q as measures on A. Equality at

√
2

occurs when the Hellinger affinity is zero, that is, when pq = 0 almost surely
mod[λ], which is the condition that P and Q be supported by disjoint subsets
of X. For example, discrete distributions (concentrated on a countable set) are
always at the maximum Hellinger distance from nonatomic distributions (zero
mass at each point).

The Kullback-Leibler “distance” (also known as the relative entropy)
between P and Q is defined as D(P‖Q) = λ(p log(p/q)). Again D(P‖Q)

does not depend on the choice of dominating measure. In fact D(·‖·) is not
a metric—for one thing, it is not symmetric—but it does have analogous
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10 Chapter 3: Total variation distance between measures

properties, which makes it a useful substitute for total variation distance. It is
not hard to show, via Jensen’s inequality, that D(P‖Q) is always nonnegative,
achieving the value zero if and only if P = Q. If λ{p > 0 = q} > 0, which
happens when P is not dominated by Q, then D(P‖Q) = ∞. When P is
dominated by Q we can choose λ equal to Q, giving D(P‖Q) = Q(p0 log p0),
where p0 := d P/d Q.

The following properties of Hellinger distance are directly relevant to
calculation of minimax rates. See Chapter 5 for a more systematic treatment of
Hellinger distance and the related concept of Hellinger differentiability.

(i) 1
2‖P − Q‖1 ≤ H(P, Q) ≤ ‖P − Q‖1/2

1 . See Problem [5].

(ii) H(P1 ⊗ . . .⊗ Pn, Q1 ⊗ . . .⊗ Qn)
2 ≤ ∑n

i=1 H(Pi , Qi )
2. See Problem [6].

(iii) H 2(P, Q) ≤ D(P‖Q). See Problem [7]

The following properties of Kullback-Leibler distance are directly relevant
to calculation of minimax rates. See Chapter 4 for a more systematic treatment
of Kullback-Leibler distance.

(iv) 1
2‖P − Q‖2

1 ≤ D(P‖Q). See Problem [8].

(v) D(P1 ⊗ . . . ⊗ Pn‖Q1 ⊗ . . . ⊗ Qn) = ∑
i≤n D(Pi‖Qi ). See Problem [9]

If P and {Pn} are probability measures then inequality (i) implies

‖Pn − P‖1 → 0 if and only if H(Pn, P) → 0.

Inequality (iv) implies that

‖Pn − P‖1 → 0 if min
(
D(Pn‖P), D(P‖Pn)

) → 0,

but the implication in the opposite direction does not hold.

6. Second-moment bounds on total variation distance

Particularly for probability measures P and Q that are close, we often need
only upper bounds on total variation distance. If both measures are dominated
by a probability measure λ, with densities p and q, then

<18> ‖P − Q‖2
1 ≤ λ(p − q)2

Notice that the right-hand side depends on the choice of λ, whereas the left-hand
side does not. Often it will be convenient to choose λ = P or λ = (P + Q)/2.

The second-moment upper bound is often of the correct order of magnitude
for a well chosen λ. For example, suppose d Q/d P = 1 + 	, with 	 small
enough to justify integration of the expansion

(1 + 	)1/2 = 1 + 1
2	 − 1

4	2 + . . .

to give P(1 + 	)1/2 ≈ 1 − P	2/4. (Of course P	 = 0 because 1 = Q1 =
P1 + P	.) Then

H 2(P, Q) = 2 − 2P(1 + 	)1/2 ≈ 1
2 P	2

More precisely, if there exists a constant C such that
√

p +√
q ≤ C everywhere

then

H 2(P, Q) = λ
|p − q|2

|√p + √
q|2 ≥ λ|p − q|2

C2
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3.6 Second-moment bounds on total variation distance 11

and if there exists a constant c such that
√

p + √
q ≥ c everywhere then

H 2(P, Q) ≤ λ|p − q|2
c2

In particular, if λ = (P + Q)/2 then p +q = 2, so that
√

2 ≤ √
p +√

q ≤ 2
√

2
and

<19>
λ|p − q|2

4
≤ H 2(P, Q) ≤ λ|p − q|2

2
if λ = P + Q

2
See Problem [10] for a comparison between P and (P + Q)/2 as dominating
measures.

<20> Example. As shown in Example <9>, and the explanation that follows
that Example, the total variation distance between the N (θ, 1) and the N (0, 1)

distributions decreases like
√

2/π |θ | as θ → 0. More precisely,

φ(x − θ) = φ(x) + θxφ(x) + 1
2θ2(x2 − 1)φ(x) + . . .

so that ∫
|φ(x − θ) − φ(x)| dx = |θ |

∫
|x |φ(x) dx + O(θ2)

A similar argument suggests that the mixture Pθ = 1
2 N (θ, 1) + 1

2 N (−θ, 1)

converges to the N (0, 1) at an even faster rate:
1
2 (φ(x − θ) + φ(x + θ)) = φ(x) + 1

2θ2(x2 − 1)φ(x) + . . .

so that∫ ∣∣ 1
2φ(x − θ) + 1

2φ(x + θ) − φ(x)
∣∣ dx = 1

2θ2
∫

|x2 − 1|φ(x) dx + O(θ4)

Integration by parts gives 1
2

∫ |x2 − 1|φ(x) dx = 2φ(1) ≈ 0.48.
It is not too difficult to make these calculations rigorous. The second

moment bound gives the same rate of convergence even more easily.

‖Pθ − P0‖2
1 ≤ P0

∣∣∣∣d Pθ

d P0
− 1

∣∣∣∣2

= P0

∣∣∣∣d Pθ

d P0

∣∣∣∣2

− 1

= 1
4 P0

∣∣∣∣exp

(
θx − θ2

2

)
+ exp

(
−θx − θ2

2

)∣∣∣∣
2

− 1

= 1
2

(
exp(θ2) + exp(−θ2)

) − 1

= θ4

2!
+ θ8

4!
+ . . .

The bound on the distance ‖Pθ − P0‖1 decreases like θ2/
√

2, an overestimate
by a constant factor of approximately 1.5.�

Often the second moment method reduces calculations of bounds on total
variation distances to calculations of variances and covariances.

<21> Lemma. If P = ∏
i≤n Pi and Q = ∏

i≤n Qi are finite products of probability
measures such that Qi has density 1 + 	i (xi ) with respect to Pi , then

‖P − Q‖2
1 ≤

∏
i≤n

(
1 + Pi	

2
i

) − 1 ≤ exp
( ∑

i
Pi	

2
i

)
− 1.

Proof. We may assume each Pi	
2
i finite, for otherwise the asserted inequality

is trivial.Thanks to JAH for neater
proof.

15 February 2005 Asymptopia, version: 15feb05 c©David Pollard 11



12 Chapter 3: Total variation distance between measures

Note that L := dQ/dP = ∏
i (1 + 	i (xi )). Also P	i = Pi	i = 0 because

both Pi and Qi are probabilities. Thus PL = 1. From <18>,

‖P − Q‖2
1 ≤ P (L − 1)2

= PL2 − 1

=
∏

i
Pi (1 + 2	i + 	2

i ) − 1

=
∏

i
(1 + 0 + Pi	

2
i ) − 1,

as asserted.�
The upper bound in the Lemma decreases like

∑
i Pi	

2
i when the sum is

small. In situations where Pi	
2
i behaves like H 2(Pi , Qi )

2, the second moment
bound is comparable to the the analogous bound for Hellinger distance:

H 2(P, Q) ≤
∑n

i=1
H(Pi , Qi )

2

As you will see in Chapter 18, the second moment method also works for
situations where it becomes exceedingly difficult to calculate Hellinger distances
directly.

7. Pointwise estimation of densities

The literature on density estimation is filled with assertions like “If a density f
has an eighth order derivative satisfying a Lipschitz condition near a point x0

then the optimal rate of convergence for estimators of f (x0) is O(n−β)”, where
β turns out to be some weird fractional power that depends on the smoothness
assumptions (and on the dimension of the underlying Euclidean space in
multidimensionalresults). Where do such strange results come from? How
does one know if an unknown density really does satisfy all the smoothness
assumptions? What happens if the assumptions are violated?

Apart from its obvious virtues as a means of keeping mathematical
statisticians employed, density estimation is worthy of study as an illustration
of the ideas behind the minimax calculations from the previous Chapter. Many
fancy smoothing ideas, particularly those that chew up immense numbers of
computing cycles, have their roots in the density estimation literature.

Most of the ideas will be plain enough for the one-dimensional case,
with the origin as the point at which the density is to be estimated. Typically
density estimation requires smoothness assumptions about the underlying f in
a neighborhood of a point, which lets us borrow data from a neighborhood
of 0 in order to make inferences about f (0). As a heuristic, smoothness lets
us pretend that f is like a polynomial of fixed degree near 0. The minimax
bounds will emerge when we discover the most untrustworthy density with a
given degree of smoothness, as quantified by formal definition of the following
type.

<22> Definition. Let s and δ be strictly positive. Let k be the largest integer
strictly less than s and let s = k + α, with 0 < α ≤ 1. For a function f
defined and k times differentiable at least on the interval (−δ, δ), define the
norm ‖ f ‖s,δ as the smallest constant C (possibly infinite) for which

sup
|t |<δ

| f (i)(t)| ≤ C for i = 0, 1, . . . , k

| f (k)(t1) − f (k)(t2)| ≤ C |t1 − t2|α for |t1|, |t2| < δ.

Call f locally s-smooth if ‖ f ‖s,δ is finite for some positive δ. Write Ss(0, δ, C)

for the class of such functions with ‖ f ‖s,δ ≤ C .
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3.7 Pointwise estimation of densities 13

Notice that finiteness of ‖ f ‖1,δ requires only a Lipschitz condition on f
near the origin.

Let f0 denote the uniform density on [− 1
2 , 1

2 ]. For a fixed small δ > 0 and
a constant C > 1, let us work with a smoothness class Ss = Ss(0, δ, C) for the
remainder of the Section. Of course f0 ∈ Ss . Untrustworthy densities near f0

can be manufactured in a systematic fashion, by means of small perturbations.Hall ISI 57, 1989
Let h be an infinitely differentiable function with the following properties.

(i) h(x) = 0 for x /∈ [−1, +1]

(ii) h(0) �= 0

(iii)
∫ +1
−1 h(x) dx = 0.

For example, one could splice together several rescaled and translated pieces of
a function like

exp(−1/x2)
(
1 − exp(−1/(1 − x)2)

)
.

Construct a small perturbation for small positive ε by

fε(x) = f0(x) + εsh(x/ε).

The i th derivative is bounded by εs−i supx |h(i)(x)|, which satisfies the requisite
assumptions for Ss if the constant C is large enough. Notice that it is only
the Lipshitz condition on the kth derivative that might cause any trouble; for
the lower-order derivatives there is a positive power of a small ε to keep the
function small.More detail needed?

The choice of the uniform distribution for P makes calculation of the
second moment quantities child’s play.

P

∣∣∣∣ fε
f

− 1

∣∣∣∣2

=
∫ 1

2

− 1
2

ε2sh(x/ε)2dx ≤ ε2s+1
∫ ∞

−∞
h(y)2dy.

That is,

Argue that ε equal to a small multiple of n−1/(1+2s) gives models that are not
well separated in the total variation sense, which leads to n−s/(1+2s as the
minimax rate for estimation of f (0).

8. Problems

[1] Suppose P1 and P2 are probability measures with densities p1 and p2 with
respect to a dominating measures λ. Let ν be another dominating measure.
Write � for the density of λ with respect to λ + ν.

(i) Show that Pi has density pi� with respect to λ + ν.

(ii) Show that (λ + ν)(
√

p1� − √
p2�)

2 = λ(
√

p1 − √
p2)

2.

(iii) Deduce that the integral that defines the Hellinger distance H(P1, P2) does
not depend on the choice of dominating measure.

[2] Let P and Q be probability measures with densities p and q with respect to a
sigma-finite measure λ. For fixed α ≥ 1, show that 	α(P, Q) := λ|p1/α−q1/α|α
does not depend on the choice of dominating measure. Hint: Let µ be another
sigma-finite dominating measure. Write ψ for the density of λ with respect
to λ + µ. Show that d P/d(λ + µ) = ψp and d Q/d(λ + µ) = ψq. Express
	α(P, Q) as an integral with respect to λ + µ. Argue similarly for µ.
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14 Chapter 3: Total variation distance between measures

[3] Adapt the argument from the previous Problem to show that the relative entropy
D(P‖Q) does not depend on the choice of dominating measure.

[4] Let P be the standard Cauchy distribution on the real line, and let Q be the
standard normal distribution. Show that D(P‖Q) = ∞, even though P and Q
are mutually absolutely continuous.

[5] For probability measures P and Q with densities p and q with respect to λ,
show that

‖P − Q‖1 ≤ H(P, Q)
√

4 − H(P, Q)2 ≤ 2H(P, Q) ≤ 2‖P − Q‖1/2
1

Hint: Show that

(
√

p − √
q)2 = |√p − √

q| (√
p + √

q
) = |p − q|.

Invoke the Cauchy-Schwarz inequality when integrating the middle term.

[6] For probability measures {Pi } and {Qi }, show that

H(P1 ⊗ . . . ⊗ Pn, Q1 ⊗ . . . ⊗ Qn)
2 = 2 − 2

∏
i≤n

(
1 − 1

2 H(Pi , Qi )
2
)

≤
n∑

i=1

H(Pi , Qi )
2

Hint: Write yi for H(Pi , Qi )
2/2. For the final inequality you need to show

that the function

Gn(y1, . . . , yn) :=
∑n

i=1
yi +

∏n

i=1
(1 − yi ) − 1

is nonnegative for all 0 ≤ yi ≤ 1. Check the case n = 1 directly. The lower
bound of 0 is achieved when n = 1. For fixed y1, . . . , yn−1, show that Gn

achieves its minimum at either yn = 0 or yn = 1. Also show that

min (Gn(y1, . . . , yn−1, 0), Gn(y1, . . . , yn−1, 1)) ≥ Gn−1(y1, . . . , yn−1)

[7] For probabilities P and Q on the same space, show that D(P‖Q) ≥ H 2(P, Q),
by the following steps.

(i) Dispose of the case where P is not dominated by Q.

(ii) Define η := √
p − 1 where p = d P/d Q. Show that Qη2 = H 2(P, Q)

and 2Qη = −H 2(P, Q). Hint: Consider Q(1 + η)2.

(iii) Show that

D(P‖Q) = 2Q
(
(1 + η)2 log(1 + η)

) ≥ 2Q

(
(1 + η)2 η

1 + η
)

)
.

[8] (Due to Csiszar (1967), Kullback (1967), and Kemperman (1969). Also
Pinsker?). For probabilities P and Q on the same space, show that D(P‖Q) ≥

Check citation 1
2‖P − Q‖2

1 by these steps. Remember that

ψ(x) := (1 + x) log(1 + x) − x

x2/2
≥ (1 + x/3)−1 for x ≥ −1.

(i) Dispose of the case where P is not dominated by Q.

(ii) Define δ := p − 1 where p = d P/d Q. Show that Qδ = 0 and

D(P‖Q) = 1
2 Q

(
δ2ψ(δ)

) ≥ 1
2 Q

(
δ2

1 + δ/3

)
Q(1 + δ/3).

(iii) Invoke the Cauchy-Schwarz inequality to bound the last product from
below by 1

2

(
Q|δ|)2

.
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3.8 Problems 15

[9] Show that D(P1 ⊗ . . .⊗ Pn‖Q1 ⊗ . . .⊗ Qn) = ∑
i≤n D(Pi‖Qi ). Hint: Suppose

d Pi/d Qi = pi . Consider log
( ∏

i pi
)
.

[10] Suppose a probability measure Q has density 1+	 with respect to a probability
measure P. Define M = (P+Q)/2. Write p and q for the densities of P and QThis problem needs checking.
with respect to M.

(i) Show that p = (1 + 	/2)−1 = 2 − q.

(ii) Deduce that M|p − q|2 ≤ 2P	2. Hint: 	 ≥ −1.

(iii) If 	/2 is bounded above by a constant C , show that M|p − q|2 ≥
P	2/(1 + C).

9. Notes

I adapted the results on the total variation and relative entropy distances
between Binomial and Poisson distributions from Reiss (1993, p 25). he
credited Barbour & Hall (1984) with the first result, and Falk & Reiss (1992)

Check Barbour and Hall
with the second result.

Barbour et al. (1992) have devoted a whole book to the topic of Poisson
approximation.

The idea for Section 7 is adapted from Hall (1989).
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