
1. Subgaussian tails

<1> Definition. Say that a random variable X has a subgaussian distribution
with scale factor σ < ∞ if P exp(t X) ≤ exp(σ 2t2/2) for all real t .

For example, if X is distributed N (0, σ 2) then it is subgaussian.

<2> Example. Suppose X is a bounded random variable with a symmmetric
distribution. That is, |X | ≤ M for some constant M and −X has the same
distribution as X . Then

P exp(t X) = 1 +
∑
k∈N

t k
PXk

k!

By symmetry, PXk = 0 for each odd k. For even k, bound PXk by Mk , leaving

P exp(t X) = 1 +
∑
k∈N

t2k M2k

(2k)!
≤ exp(M2t2/2)

because (2k)! ≥ 2kk! for each k in N.�
The argument for bounding the maximum of normal random variables

carries over to subgaussians.

<3> Theorem. Suppose X1, . . . , Xn are subgaussian with scale factors bounded
by a constant σ . Then P maxi≤n |Xi | ≤ 3

2σ
√

1 + log(2n).

Proof. For each t > 0,

exp(tP max
i≤n

|Xi |) ≤ P max
i≤n

exp(t |Xi |) ≤
∑
i≤n

(
Pet X + Pe−t X

) ≤ 2n exp( 1
2σ 2t2)

Choose t = log(2n)/σ .�
In fact, we could improve the inequality to give similar bounds for various

Lp norms of maxi≤n |Xi | by choosing slightly different convex functions instead
of x �→ exp(t x). I won’t derive these bounds explicitly because there is an even
better inequality obtainable from another characterization of subgaussianity.

<4> Theorem. Suppose PX = 0. Then X is subgaussian if and only if there
exists a finite constant C for which P exp(X2/C2) < ∞.

Proof. If P exp(t X) ≤ exp(σ 2t2/2) for all real t then

P exp(X2/4σ 2) − 1 = P

∫ ∞

0
{X2/4σ 2 ≥ t ≥ 0}et dt

≤
∫ ∞

0
P exp

( |X |√t

σ
− t

)
dt

≤
∫ ∞

0
P

(
exp(X

√
t/σ) + exp(−X

√
t/σ)

)
e−t dt

≤
∫ ∞

0
2e−t/2 dt < ∞.

Conversely, if P exp(X2/C2) = D < ∞ then, from the inequality
ab ≤ (a2 + b2)/2, we get

P exp(t X) ≤ P exp

(
X2

C2
+ C2t2

4

)
= D exp(C2t2/4).
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This bound is not quite what we need for subgaussianity. If we bound t away
from zero we can eliminate the D: if D ≤ exp(MC2δ2) for some constant M
then

P exp(t X) ≤ exp((M + 1)C2t2) for |t | ≥ δ.

If δ is small enough, the Taylor expansion gives, for small enough δ,

P exp(t X) = 1 + tPX + 1
2 t2

PX2 + o(t2)

≤ exp
(

1
2 t2(1 + PX2)

)
when |t | ≤ δ.

The subgaussianity bound follows.�
Subgaussian random variables can also be characterized by an exponential

tail bound. Take t = x/σ 2 in the inequality

P{X ≥ x} ≤ exp(−t x)P exp(t X) ≤ exp(−t x + σ 2t2/2)

to deduce that

P{X ≥ x} ≤ exp(−x2/2σ 2) for x ≥ 0.

Replace X by −X , which is also subgaussian, then add, to derive the analogous
two-sided bound. Conversely, if P{|X | ≥ x} ≤ C exp(−x2/2σ 2) then

P exp(X2/9σ 2) − 1 = P

∫ ∞

0
{X2 ≥ 9σ 2t ≥ 0}et dt

=
∫ ∞

0
P{|X | ≥ 3σ 2

√
t}et dt

≤
∫ ∞

0
C exp(−9t/2 + t) dt < ∞

which, via Theorem <4>, gives subgaussianity.

2. Orlicz norms

The convexity argument used to prove Theorem <3> also works for higher
moments.(

P max
i≤N

|Xi |
)p

≤ P max
i≤N

|Xi |p ≤
∑
i≤N

P|Xi |p ≤ N max
i≤N

P|Xi |p.

Thus

<5> P max
i≤N

|Xi | ≤
∥∥∥∥max

i≤N
|Xi |

∥∥∥∥
p

≤ N 1/p max
i≤N

‖Xi‖p for p ≥ 1.

More generally, if ψ is a nonnegative, convex, strictly increasing function
on R

+, then, for each σ > 0,

ψ

(
P max

i≤N

|Xi |
σ

)
≤ P max

i≤N
ψ

( |Xi |
σ

)

≤
∑
i≤N

Pψ

( |Xi |
σ

)

≤ N max
i≤N

Pψ

( |Xi |
σ

)
.

If σ is such that Pψ(|Xi |/σ) ≤ 1 for each i then we have

P max
i≤N

|Xi | ≤ σψ−1(N ).
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<6> Definition. An Orlicz function is a convex, increasing function ψ on R
+

with 0 ≤ ψ(0) < 1. Define the Orlicz norm ‖X‖ψ (seminorm actually, unlessMost authors actually require
ψ(0) = 0 one identifies random variables that are almost everywhere equal) by

‖X‖ψ = inf{c > 0 : Pψ(|X |/c) ≤ 1},
with the understanding that ‖X‖ψ = ∞ if the infimum runs over an empty set.

It is not hard to show (Pollard 2001, Problems 2.22 through 2.24) that
‖X‖ψ < ∞ if and only if Pψ(|X |/C) < ∞ for at least one finite constant C .
The infimum defining ‖X‖ψ is achieved when the norm is finite.

<7> Example. Let ψ(x) = exp(x2)−1. Then ‖X‖ψ < ∞ if and only if X −PX
is subgaussian.�

Notice that a bound on an Orlicz norm, ‖X‖ψ ≤ σ , automatically gives a
tail bound,

P{|X | ≥ x} ≤ Pψ(|X |/σ)/ψ(x/σ) ≤ 1/ψ(x/σ) for x ≥ 0.

For example, if ψ(x) = 1
2 exp(x2) then we get a subgaussian tail bound.

Sometimes it is possible to find δ such that Pψ(|X |/δ) ≤ K , for a constant
K > 1. It then follows from convexity of ψ that

<8> ‖X‖ψ ≤ δ/θ where θ = 1 − ψ(0)

K − ψ(0)
,

because

Pψ (θ |X |/δ) ≤ θPψ (|X |/δ) + (1 − θ)ψ(0) ≤ θ K + (1 − θ)ψ(0) = 1.

<9> Example. (Compare with page 96 of van der Vaart & Wellner (1996).) Let
ψ be an Orlicz function (such as exp(x2) − 1, as in Problem [1]) for which
there exists a finite constant C0 such that

ψ(α)ψ(β) ≤ ψ(C0αβ) for ψ(α) ∧ ψ(β) ≥ 1.

Then

<10>

∥∥∥∥max
i≤N

|Xi |
∥∥∥∥

ψ

≤ Cψ−1(N ) max
i≤N

‖Xi‖ψ where C := 2 − ψ(0)

1 − ψ(0)
C0

To prove the assertion, define D = C0ψ
−1(N ) and δ = maxi≤N ‖Xi‖ψ . Notice

that ψ(D/C0) = N ≥ 1. When ψ(maxi |Xi |/Dδ) ≥ 1,

ψ

(
maxi |Xi |

Dδ

)
ψ

(
D

C0

)
≤ ψ

(
maxi |Xi |

δ

)
≤

∑
i

ψ

( |Xi |
δ

)
.

That is,

ψ

(
maxi |Xi |

Dδ

)
≤ min

(
1, N−1

∑
i

ψ

( |Xi |
δ

))

Take expectations.

Pψ

(
maxi |Xi |

Dδ

)
≤ 1 + N−1

∑
i

Pψ

( |Xi |
δ

)
≤ 2.

Invoke inequality <8>.�
Finally, notice that if ‖X‖ψ = σ for ψ(x) = exp(x2) − 1 then

P|X |2p

σ 2p
≤ p!P exp(X2/σ 2) ≤ 2p!.

A bound on the Orlicz norm, for this particular ψ , gives a bound on moments
of all orders.
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<11> Example. For each event A with PA > 0, write PA for the conditional
expectation given A. Suppose ‖X‖ψ ≤ δ < ∞. From Jensen’s inequality and
the definition of the Orlicz norm we get

ψ(PA|X |/δ) ≤ PAψ(|X |/δ) = Pψ(|X |/δ)A

PA
≤ 1

PA
,

from which it follows that

<12> PA|X | ≤ ‖X‖ψψ−1(1/PA).

With cunning choices of A, this inequality will deliver a useful maximal
inequality for finite collections of random variables, namely,

<13> PA max
i≤N

|Xi | ≤ δψ−1(N/PA) if maxi≤N ‖Xi‖ψ ≤ δ.

Indeed, if A1, . . . , AN denotes a partition of A into subsets, such that |Xi | is
the largest of the |X j | on the set Ai , then

PA max
i≤N

|Xi | =
∑

i

PA|Xi |Ai =
∑

i

PAi

PA
PAi |Xi |.

Inequality <12> and concavity of the function ψ−1 bound the last sum by

∑
i

PAi

PA
δψ−1

(
1

PAi

)
≤ δψ−1

(∑
i

PAi

PA

1

PAi

)
= δψ−1

(
N

PA

)
.

�
The bound <13> will turn out to be much more powerful than one might

at first glance suspect. If we choose A = {maxi≤N |Xi | ≥ ε} then we get lower
bound for 1/PA. The full power of this trick will appear in the Chapter on
chaining.

3. Problems

[1] Show that (exp(x2) − 1)(exp(y2) − 1) ≤ exp(2x2 y2) − 1 for x ∧ y ≥ 1.

[2] Suppose X has a symmetric distribution. Show that it is subgaussian if and
only if there exists some constant c for which ‖X‖k ≤ c

√
k for each k in N.

Hints: Note that ‖X‖k is an increasing function of k. For k even, try to show
that

‖X‖k
k

k!
≤ inf

t

P exp(t X)

t k

[3] Let X and Y be identically distributed random variables with PX = PY = 0.

(i) Let H be a convex function. [Any other regularity conditions?] Show that
PH(X) = PH(X − PY ) ≤ PH(X − Y ).

(ii) Show that ‖X‖ψ ≤ ‖X − Y‖ψ ≤ 2‖X‖ψ for each Orlicz function ψ .

(iii) Generalize the result from Problem [2]: Show that the moment character-
ization of subgaussianity still holds if replace the symmetry assumption
on X by the assumption that PX = 0.

4. Notes

Acknowledge Ledoux & Talagrand (1991) for several of the ideas used in
this Chapter, including Example <11> Cite Aad van der Vaart (personal
communication, or van der Vaart & Wellner 1996) for improvement on the
method used in Pollard (1990, Section 3).
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Who first got the characterization in Problems [2] and [3]? I got it from a
sharper result in Lugosi (2003, Section 2), but it must be older.

Give some history of earlier work: Dudley, Pisier?
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