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Subgaussian tails

Definition. Say that a random variable X has a subgaussian distribution
with scale factor o < oo if Pexp(tX) < exp(c?t?/2) for all real t.

For example, if X is distributed N (0O, o?) then it is subgaussian.

Example. Suppose X is a bounded random variable with a symmmetric
distribution. That is, |X| < M for some constant M and —X has the same
distribution as X. Then

t*Pxk
Pexp(tX) =1+ 7z
keN
By symmetry, PX* = 0 for each odd k. For even k, bound PX* by M*, leaving
(2K 2%
Pexp(tX) =1+ Y — — <exp(M’t?/2)
e

because (2k)! > 2%k! for each k in N.

The argument for bounding the maximum of normal random variables
carries over to subgaussians.

Theorem. Suppose X1, ..., X, are subgaussian with scale factors bounded
by a constant . Then Pmax; <, |X;| < %a,/l + log(2n).

Proof. For each t > 0,
exp(tPmax |X;|) < Pmaxexp(t|X;|) < Z (Pe’x + IF’eftx) <2n exp(%aztz)

Choose t = log(2n)/o .

In fact, we could improve the inequality to give similar bounds for various
LP norms of max;<, | X;| by choosing slightly different convex functions instead
of x > exp(tx). I won’t derive these bounds explicitly because there is an even
better inequality obtainable from another characterization of subgaussianity.

Theorem. Suppose PX = 0. Then X is subgaussian if and only if there
exists a finite constant C for which Pexp(X?/C?) < oo.

Proof. 1f Pexp(tX) < exp(c>t?/2) for all real ¢ then

o0
Pexp(X?/40%) — 1 = IP’/ (X?/40% >t > 0}’ dt
0

o X|/t
5/ Pexp(l |J——t> dt
0 o

< /00 P (exp(X\/;/o) + exp(—X«/;/a)) e ' dt
0

o0
5/ 2¢7% dt < 0.
0

Conversely, if Pexp(X?/C?) = D < oo then, from the inequality
ab < (a® + b?)/2, we get
X2 22

_ 2.2
Pexp(tX) < Pexp (E + T) = Dexp(C~t°/4).

13 January 2005 Asymptopia, version: 13jan05 (© David Pollard




2.

<5>

This bound is not quite what we need for subgaussianity. If we bound ¢ away
from zero we can eliminate the D: if D < exp(MC?8%) for some constant M
then
Pexp(tX) < exp(M + 1)C?%t?)  for |t| > 6.
If § is small enough, the Taylor expansion gives, for small enough &,
Pexp(tX) = 1+ tPX + 1°PX* + o(1?)
<exp(3°(1+PX?)  when [t] <.
The subgaussianity bound follows.

Subgaussian random variables can also be characterized by an exponential
tail bound. Take ¢ = x /o2 in the inequality

P{X > x} < exp(—tx)Pexp(tX) < exp(—tx + 0°1%/2)
to deduce that
P{X >x} < exp(—x2/262) for x > 0.
Replace X by —X, which is also subgaussian, then add, to derive the analogous

two-sided bound. Conversely, if P{|X| > x} < C exp(—x?/20?) then

o0
Pexp(X?/902) — 1 = IP’/ {X? > 90%t > 0}e' dt
0

=/ P{|X| > 30°V/t}e' dt

0
oo
=< / Cexp(—9t/2 +1t)dt < o0
0

which, via Theorem <4>, gives subgaussianity.

Orlicz norms

The convexity argument used to prove Theorem <3> also works for higher
moments.

P
<Pmax|X,~|) < Pmax|X;|? < E P|X;|? < N maxP|X;|”.
i<N i<N = i<N

Thus
Pmax |X;| < [max |X;| | < N"?max|X;||, forp> 1.
i<N i<N i<N
P
More generally, if ¥ is a nonnegative, convex, strictly increasing function

on R, then, for each o > 0,

| X | X
4 (P%"T) fPﬁ%%””( - )

Sney

i<N

<N (|Xi|>
< N max Py .

i<N (o2

If o is such that Py (| X;|/o) < 1 for each i then we have
Pmax |X;| < oy~ (N).
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Most authors actually require

¥ (0) =

<7>

<9>

<10>

Definition. An Orlicz function is a convex, increasing function ¥ on R
with 0 < ¥(0) < 1. Define the Orlicz norm | X ||y, (seminorm actually, unless
one identifies random variables that are almost everywhere equal) by

[ Xlly = inf{c > 0: Py (|X|/c) = 1},
with the understanding that || X ||, = oo if the infimum runs over an empty set.

It is not hard to show (Pollard 2001, Problems 2.22 through 2.24) that
IX|ly < oo if and only if Py (]X|/C) < oo for at least one finite constant C.
The infimum defining || X ||, is achieved when the norm is finite.

Example. Let ¥ (x) =exp(x?) —1. Then I X|ly < oo if and only if X —PX
is subgaussian.

Notice that a bound on an Orlicz norm, || X|ly < o, automatically gives a
tail bound,

P{X| =z x} = Py (1X|/0)/¢(x/o) < 1/¢(x/o)  forx = 0.

For example, if ¥ (x) = %exp(xz) then we get a subgaussian tail bound.
Sometimes it is possible to find § such that Pyr(|X|/§) < K, for a constant
K > 1. It then follows from convexity of ¥ that

Xy <8/6 where 6 = ﬂ’
K —¢(0)

because
Py 01X1/8) < 0Py (1X]/8) + (1 — )Y (0) < 0K + (1 —0)¥(0) = 1.

Example. (Compare with page 96 of van der Vaart & Wellner (1996).) Let
¥ be an Orlicz function (such as exp(x?) — 1, as in Problem [1]) for which
there exists a finite constant C such that

Y@ (B) < ¥ (CoaB) for Yr(a) AP (B) = 1.
Then

<Cy ' Wymax X, where € = —— VO
. = 0

To prove the assertion, define D = Coyy~'(N) and § = max; <y || X;[ly. Notice
that ¥ (D/Cy) = N > 1. When ¢ (max; |X;|/D§) > 1,

() (2) 50 (20 < ().

That is,
max; | X;| . 1 | X;|
"’(T)f‘“‘“(w Zj "’( 5 ))

Take expectations.
max; | X;| 1 | Xi |
P <1+N E P <2.

Invoke inequality <8>.

——Cy

Finally, notice that if | X[, = o for ¥ (x) = exp(x?) — 1 then
P|X|?7
o 2p

A bound on the Orlicz norm, for this particular v, gives a bound on moments
of all orders.

< p'Pexp(X*/o?) < 2p!.
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3.

(1]
(2]

4.

Example. For each event A with PA > 0, write P4 for the conditional
expectation given A. Suppose || X||y, < 6 < oco. From Jensen’s inequality and
the definition of the Orlicz norm we get

FBAIXI/S) < Pay((x|/) = LUXI/OA 1
- PA — PA
from which it follows that

PAIX] < IX[, %" (1/PA).

With cunning choices of A, this inequality will deliver a useful maximal
inequality for finite collections of random variables, namely,

Pamax |X;| < Sy ' (N/PA)  if maxiey [|X;lly < 6.

Indeed, if Aj, ..., Ay denotes a partition of A into subsets, such that |X;| is
the largest of the |X;| on the set A;, then

PA,
P max |X;| = ZPAIXiIA,- = Z o1 BalXil

Inequality <12> and concavity of the function ¥~ bound the last sum by

PA, (1 . PA 1\ _ (N
ZIPA‘W <IE”A,->S(W (ZIPAIPA,-)_(W (]P’A>'

i i

The bound <13> will turn out to be much more powerful than one might
at first glance suspect. If we choose A = {max;<y |X;| > €} then we get lower
bound for 1/PA. The full power of this trick will appear in the Chapter on
chaining.

Problems

Show that (exp(x?) — 1)(exp(y?) — 1) < exp(2x?y?) — 1 forx Ay > 1.

Suppose X has a symmetric distribution. Show that it is subgaussian if and
only if there exists some constant ¢ for which || Xy < cv/k for each k in N.
Hints: Note that || X || is an increasing function of k. For k even, try to show
that .

X P tX

k! ' tk
Let X and Y be identically distributed random variables with PX = PY = 0.

(i) Let H be a convex function. [Any other regularity conditions?] Show that
PH(X)=PH(X —PY) <PH(X -7Y).
(ii) Show that || X|ly < ||X — Y|ly < 2| X||y for each Orlicz function .
(iii) Generalize the result from Problem [2]: Show that the moment character-
ization of subgaussianity still holds if replace the symmetry assumption
on X by the assumption that PX = 0.

Notes

Acknowledge Ledoux & Talagrand (1991) for several of the ideas used in
this Chapter, including Example <11> Cite Aad van der Vaart (personal
communication, or van der Vaart & Wellner 1996) for improvement on the
method used in Pollard (1990, Section 3).
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Who first got the characterization in Problems [2] and [3]? I got it from a
sharper result in Lugosi (2003, Section 2), but it must be older.
Give some history of earlier work: Dudley, Pisier?

REFERENCES

Ledoux, M. & Talagrand, M. (1991), Probability in Banach Spaces: Isoperime-
try and Processes, Springer, New York.

Lugosi, G. (2003), ‘Concentration-of-measure inequalities’, Notes from the
Summer School on Machine Learning, Australian National University.
Available at http://www.econ.upf.es/"lugosi/.

Pollard, D. (1990), Empirical Processes: Theory and Applications, Vol. 2
of NSF-CBMS Regional Conference Series in Probability and Statistics,
Institute of Mathematical Statistics, Hayward, CA.

Pollard, D. (2001), A User’s Guide to Measure Theoretic Probability, Cambridge
University Press.

van der Vaart, A. W. & Wellner, J. A. (1996), Weak Convergence and Empirical
Process: With Applications to Statistics, Springer-Verlag.

13 January 2005 Asymptopia, version: 13jan05 (© David Pollard




