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Chapter 1

Heuristics

The official statistical dogma on estimation is: good estimators converge to the
right thing and have limiting normal distributions. Moreover, the variance of the limiting
distribution should not be smaller than a quantity defined by the Fisher information
function. The estimators that achieve the asymptotic lower bound are called efficient.
Maximum likelihood estimators are efficient.

The dogma is not quite correct, but much of it can be rescued in slightly altered form.
Therein hangs a tale. This Chapter starts the story by describing one method for building
estimators that typically have good properties, by explaining when the estimators should be
efficient, and by showing what can go wrong.

1. Notation

There is a large body of statistical theory and literature regarding optimality and
large sample approximation, some of it true, some of it almost true, and some of it a
little bit wrong. As with most folklore, there are grains of truth buried amongst the
chaff. Some ideas—such as efficiency and sufficiency—have survived mathematical
indignations and counterexamples, by evolving to retain their secure place at the
foundations of statistics. Some myths have died out.

Mostly we will be concerned with parts of the theory that are both useful
and mathematically correct, but, to appreciate the virtues of rigor, you must first
understand some of the folklore.

Many problems in mathematical statistics boil down to the following question.
Let {Pθ : θ ∈ �} be a statistical model—a family of probability measures all defined
on the same sigma-fieldF on a set�. Let T = T(ω) be a random variable (or, more
generally, a random vector, or even a random element of some wonderfully abstract
space). What is the distribution ofT under eachPθ model?

Typically T is thought of as an estimator for some functionτ(θ) of the indexing
parameterθ , or perhaps it represents a choice from a set of possible actions. From
knowledge of the distribution ofT under eachPθ , one calculates various expectations
used to evaluate the performance ofT .

Unfortunately, it is seldom possible to calculate all the distributions directly.
Instead one must make simplifying approximations, or, more formally, find limiting
forms of distributions for sequences of estimators{Tn} under sequences of models
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2 Chapter 1: Heuristics

{Pn,θ : θ ∈ �n}. The extra parametern typically denotes a sample size, and the
approximations are calledlarge-sample(or asymptotic) distributions.

Let me start with a more concrete example to establish some finer points of
notation.

<1> Example. Let { fθ : θ ∈ �} be a family of probability densities for probability
measuresPθ on the (Borel sigma-field of the) real line. LetX1, . . . , Xn be random
variables on�, and letPθ be a probability measure on� under which the{Xi } are
independent, each with distributionPθ . The method of maximum likelihood defines
θ̂ as the value ofθ that maximizes

∏
i ≤n fθ (Xi (ω)). For the moment I will ignore

all questions of existence, uniqueness, or measurability of a maximizing value.
Notice thatθ̂ depends onω only through the vector of observationsX(ω) :=

(X1(ω), . . . , Xn(ω)). For many purposes it is better to think of an estimator as a
function onR

n (or Xn, if the variablesXi take values in a setX). That is, define the
estimating functionθ̂ (x) to maximize∏

i ≤n
f (xi , θ) for x := (x1, . . . , xn) ∈ R

n,

then use the estimator̂θ(X(ω)). This approach has the conceptual advantage of
focussing attention on̂θ as a function ofx, before making any assumptions about
how x is to be interpreted. It shows that the definition of the maximum likelihood
estimator depends only on the model being fitted. The performance of the estimator
under various probabilistic mechanisms for generation of the sampleX(ω)—and not
just for those mechanisms prescribed by the model—becomes a separate question.
That is, the view of̂θ(·) as a function ofx disentangles the issue of definition via a
model from the issue of behaviour of the estimator under those models.

The idea of an estimating function also helps to distinguish between the multiple
roles played byθ . For the definition of the maximum likelihood estimator,θ is
merely a dummy variable, a placeholder that indicates a function to be maximized.
In its second role,θ identifies one particular model, under which performance is to be
evaluated. It is traditional to use a separate symbol, such asθ0, for this second use of
the θ parameter. Theθ0 is usually held fixed throughout an asymptotic calculation.
It is tempting to callθ0 the “true value”, or refer toPθ0 as the “true underlying
mechanism”, for the purposes of the calculation. Of course if we actually knew
the truth we wouldn’t need to estimate; the title “true” serves merely to distinguish
one particular parameter value during the course of a calculation. A name like “test
case” or “typical case” might be less misleading.

One must be careful not to confuse the two roles forθ . For example, it would
usually be a fatal error to replace a dummyθ by a fixedθ0 before optimizing over
the dummy value. One way to avoid confusion between dummies and truth is to
consider behaviour of the estimator under a fixedP, or under a sequence of fixed
distributions{Pn}, which might—or might not—correspond to a particularθ0 model.
The θ0 can then be thought of as some value ofθ that just happens to be picked out
by some procedure related toP; it is a value defined byP, and not necessarily the
index value that selectsP from a parametric class of possible distributions.�
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2. Limit theory heuristics

With the preliminaries about truth out of the way, let me turn to a general problem
that illustrates a number of important asymptotic ideas. Suppose the data are given
by random quantitiesX := (X1, . . . , Xn) taking values in a setXn (such asRn).
Suppose� is a set, perhaps with some interpretation as an index for a model, or
perhaps not. Suppose{g(·, θ) : θ ∈ �} is a collection of real-valued functions onX.
Define an estimating function̂θn(x) as the value ofθ that minimizes

Gn(x, θ) = n−1
∑

i ≤n
g(xi , θ) for x := (x1, . . . , xn) ∈ Xn.

That is, θ̂n(x) := argminθ∈� Gn(x, θ). In the language of Huber (1964), the
correrspondinĝθn(X) is anM-estimator.

Typical question: What can we say about the behaviour of the estimator
θ̂n when the Xi are independent, each with marginal distribution P?

For the purposes of an asymptotic answer to thequestion, we might regard
the data as the initial segment of an infinite sequence of independentX-valued
random variablesX1, X2, . . ., all defined on the same probability space(�, F, P),
with eachXi having distributionP. Alternatively, we might treat the data as one row
in a triangular array of random variables, defined on a probability space(�n, Fn, Pn)

that can change withn. The X1 for the nth row of the array might be completely
unrelated to theX1 element in other rows. It might even be better to make this
possibility explicit, by writing the data asXn := (Xn,1, . . . , Xn,n). The distributionP
could also be replaced by aPn that changes withn, a generalization that will be
needed when we consider behavior of estimators under sequences of alternatives.

For the moment I will work with the the simpler setting of a fixed underlying
probability space(�, F, P) and a fixed distributionP. The traditional answer to the
question then comes in three stages. The first two steps require a distance function
on �. The third step has meaning only when� is a subset of a vector space.

(i) Consistency

Show that̂θn converges to some fixedθ0 asn → ∞. If the underlying probability
space does not change withn, it makes sense to ask about convergence at
P-almost allω; that is, it makes sense to enquire aboutstrong consistencyof the
estimators. If� or P could change withn, then strong consistency is ill defined.
In that case, it is better to enquire about possibleweak consistency, that is,
convergence in probability of̂θn to θ0, or even to a valueθn that changes withn.

The weaker form usually suffices when consistency is just the prelude to a
more detailed analysis of asymptotic behaviour. Strong consistency is sometimes
of interest only because it implies weak consistency.

(ii) Root-n consistency

If we know thatθ̂n converges to someθ0, then it makes sense to ask how rapidly
it converges. Again we have a choice between asking about rates at almost allω

or about rates of convergence in probability. Again the in-probability assertion is
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4 Chapter 1: Heuristics

often the more useful, in part because of its role as a necessary preliminary to
the next stage in the analysis.

Remark. The name root-n consistency is slightly misleading: it is a 1/
√

n
rate that is typical. That is, we seek to prove thatθ̂n = θ0 + Op(1/

√
n).

(iii) Limiting distribution

Convergence at a 1/
√

n-rate in probability need not imply existence of a limiting
distribution for the standardized estimator

√
n(̂θ − θ0). And even if there is a

limiting distribution, it might be concentrated at zero, which would mean that the
estimator actually converges at a rate faster than 1/

√
n. To settle the matter, it

would suffice if we could demonstrate existence of a nontrivial limiting distribution
for the standardized estimator. Sometimes the existence of that limit is made to
follow from an explicit asymptotic representation,

√
n(̂θn − θ0) = Wn + op(1) ,

whereWn has known limiting behaviour. You will learn in Chapter 3 how such
a representation can be more useful than mere existence of a limit distribution.

Typically M-estimators are well behaved, under mild regularity assumptions.
Consider the simplest case where� is a subset of the real line. To understandθ̂n we
need to know whatGn is doing. The key idea is approximation ofGn by another
process, whose minimizing value is more easily analyzed. For a rigorous analysis
we would have to determine the effect of the errors in approximation toGn, to
ensure that the minimizing values are close. The rigorous treatment will begin with
Chapter 2, where error will be expressed as remainder terms from Taylor expansions.
For the moment, I will approximate with abandon.

Consistency for M-estimators

For each fixedθ , a law of large numbers (strong or weak?) implies thatGn(θ)

should be close to its expected valueG(θ) := Pxg(x, θ). That is, as a first
approximation, we should haveGn(θ) ≈ G(θ) for every θ . We might then hope
that argminθ Gn(θ) ≈ argminθ G(θ). That is, we might hope that̂θn lies close to the
value θ0 := argminθ G(θ), the value that minimizes the approximatingG. Notice
that θ0 depends onP.

Remark. You will learn in Chapter 2 one way, essentially due to Wald (1949),
to make the approximation idea more precise and establish consistency. Later
Chapters will generalize the method. The crucial idea will always be that the
approximations should hold uniformly inθ , at least in regions of� that matter.

Asymptotic normality for M-estimators

If we know thatθ̂n has large probability of lying close toθ0, then the behaviour of
Gn nearθ0 becomes our main concern. A Taylor expansion ofg(x, ·) aboutθ0, with
dots denoting partial derivatives with respect toθ ,

g(x, θ) ≈ g(x, θ0) + (θ − θ0)ġ(x, θ0) + 1
2(θ − θ0)

2g̈(x, θ0)
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leads to a quadratic approximation forGn nearθ0:

Gn(θ) = n−1
∑

i ≤n
g(Xi , θ)

≈ n−1
∑

i ≤n

(
g(Xi , θ0) + (θ − θ0)ġ(Xi , θ0) + 1

2(θ − θ0)
2g̈(Xi , θ0)

)
.

The random variableṡg(Xi , θ0) should have zero expected value,

<2> Pġ(Xi , θ0) = Px ∂

∂θ
g(x, θ)

∣∣
θ=θ0

?=
(

∂

∂θ
Pxg(x, θ)

) ∣∣
θ=θ0

= Ġ(θ0) = 0,

becauseG is minimized atθ0. (Of course some regularity conditions would be
needed to justify the interchange in the order of differentiation and integration.) The
random variables have varianceσ 2 := Pxġ(x, θ0)

2. The standardized average

Zn :=
∑

i ≤n
ġ(Xi , θ0)/

√
n

should be approximatelyN(0, σ 2) distributed.
The analogous approximation forG nearθ0,

G(θ) ≈ G(θ0) + (θ − θ0)Pxġ(x, θ0) + 1
2(θ − θ0)

2Pxg̈(x, θ0)

= G(θ0) + 1
2(θ − θ0)

2J where J := Pxg̈(x, θ0),

tells us thatJ should be nonnegative ifG is to have a minimum atθ0, at least when
θ0 is an interior point of�. It would be awkward ifJ were zero, for then we would
need to consider the contributions from the higher-order derivatives.

The average
∑

i ≤n g̈(Xi , θ0)/n should be close toJ. The random criterion
function is approximately a quadratic inθ − θ0,

Gn(θ) ≈ Gn(θ0) + (θ − θ0)Zn/
√

n + 1
2(θ − θ0)

2J nearθ0.

The minimizingθ̂n for Gn should be close to the valueθ0− Zn/(J
√

n) that minimizes
the quadratic. The standardized estimator

√
n(̂θn − θ0) should be close to−Zn/J,

which has an approximateN(0, σ 2/J2) distribution.

3. Efficiency heuristics for M-estimators

If the asymptotic heuristics from the previous Section are to be believed, there is a
wide class of estimators that have approximate normal distributions, with means and
variance that decrease like 1/n. It is natural to look for ag that gives the smallest
possible multiple of 1/n for the approximate variance.

Actually, the task is slightly more complicated than choosingg to minimize the
variance at a fixedP. After all, we would not bother to estimate if we already knew
the underlying distribution exactly. The real challenge is to minimize the asymptotic
varianceunder a whole class of possible P’s.Specifically, suppose{Pθ : θ ∈ �} is a
statistical model, withX1, X2, . . . independently distributed asPθ underPθ .

Remark. Specifically, we could takePθ to be a countable product ofPθ

measures, on the product sigma-field ofXN. For calculations involving only
X1, . . . , Xn, we could also work withPn

θ on the product sigma-field ofXn. In that
case it would be better to writePn,θ , with the dependence onn made explicit.
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6 Chapter 1: Heuristics

For eachθ in �, we first need to ensure that the estimatorθ̂n converges inPθ

probability to θ . Then we need to consider the asymptotic variance as a function
of θ , and look for ag to minimize that function at everyθ .

Consider the question of consistency. For independent observations from a
fixed P the heuristics suggested thatθ̂n converges in probability to argminθ Pxg(x, θ).
Clearly there is going to be some confusion if we useθ both to identify the
underlying P and as the dummy variable for the minimization. Let me, therefore,
temporarily replacePθ by Pt , wheret also ranges over�. For samples fromPt ,
the estimator converges in probability to the valueθ0(t) minimizing the function
θ �→ Px

t g(x, θ), that is,θ0(t) := argminθ Px
t (x, θ). For consistency we needθ0(t) = t

for all t in �. By <2>, we then have

<3> Px
t ġ(x, t) = 0 for all t in �.

Defineσ 2
g (θ) := Px

θ ġ(x, θ)2 = varθ ġ(x, θ) and Jg(θ) := Px
θ g̈(x, θ). We hope to

find a g to minimize the asymptotic varianceσ 2
g (θ)/Jg(θ)2 for every θ , subject to

the constraint<3>.
Now supposePθ is given by a densityfθ (with respect to Lebesgue measure

on the real line, for simplicity, although the argument works for every dominating
measure). Write�θ (x) for log fθ (x). Classical theory asserts that the minimum
is achieved byg(x, θ) := −�θ (x), that is, by the maximum likelihood estimator.
Jensen’s inequality ensures that−Px

t log fθ (x) is minimized att ,

Px
t log fθ (x) − Px

t log ft (x) ≤ log
∫

ft (x)
(

fθ (x)/ ft (x)
)

dx ≤ log 1 = 0.

According to the heuristics, the maximum likelihood estimator is therefore a
consistent M-estimator.

The derivative�̇θ (x) = ḟθ (x)/ fθ (x) is usually called thescore functionfor the
model. TheJg(θ) corresponding to−� equals

I(θ) := −Px
θ

(
∂2

∂θ2
log fθ (x)

)
,

the (Fisher) information function for the model.
To prove that−� achieves the constrained minimum for the asymptotic variance,

write <3> as 0≡ ∫
ġ(x, θ) fθ (x) dx, then differentiate to derive another constraint,

0 ≡
∫

g̈(x, θ) fθ (x) dx +
∫

ġ(x, θ) ḟθ (x) dx = Px
θ g̈(x, θ) + Pθ

(
ġ(x, θ)�̇θ (x)

)
.

That is, Jg(θ) = −Pθ

(
ġ(x, θ)�̇θ (x)

)
for all θ . Thus(

Jg(θ)
)2 = (

Pθ

(
ġ(x, θ)�̇θ (x)

))2

≤
(

Pθ ġ(x, θ)2
) (

Pθ �̇θ (x)2
)

by Cauchy-Schwarz

= σ 2
g (θ)σ 2

−�(θ).

Wheng equals−� we have equality in the second line, thereby implying that

<4> I(θ) = J−�(θ) = σ 2
−�(θ) = varθ

(
�̇θ

)
.
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The Cauchy-Schwartz bound then gives

σ 2
g (θ)

Jg(θ)2
≥ 1

σ 2
−�(θ)

= I(θ)−1 = σ 2
−�(θ)

J−�(θ)2
where�(x, θ) := log fθ (x).

The asymptotic normal distribution for the maximum likelihood estimator has
variance equal to the lower bound. At least that is what the heuristics suggest.

Remark. Readers familiar with the usual proof of the information inequality
should recognize the technique used in the preceding paragraphs. By restricting
myself to M-estimators, I have avoided the usual handwaving arguments by which
one tries to downplay the assumption that the estimators be unbiased.

The dual representation for the information function, as in<4>, will turn out
(Chapter 3) to be a requirement for a basic property known as contiguity.

I have not been rigorous about the conditions required for the arguments
leading to “asymptotic optimality” of the maximum likelihood estimator amongst
the class of M-estimators. For example, the argument surely fails whenfθ denotes
the Uniform(0, θ) density, which is not everywhere differentiable.

As the next Section explains, optimality is a slippery concept even for models
that seem unlikely candidates for making trouble. A completely rigorous treatment
can seem quite difficult—if one does not have the right tools. The development of
the rigorous theory has been a major theme in modern theoretical statistics.

4. Fisher’s concept of efficiency

If the heuristics are to be believed, in typical cases M-estimators cannot do better
than mimic the limiting behaviour of the maximum likelihood estimator, which
asymptotically achieves the information bound. In fact, it was long accepted in the
statistics literature that the maximum likelihood estimator has optimality properties
amongst an even wider class of estimators. As Fisher (1922, page 277) put it, “The
criterion of efficiency is satisfied by those statistics which, when derived from large
samples, tend to a normal distribution with the least possible standard deviation.”
Unfortunately, the unqualified assertion about the limit distributions is not quite
valid, although it can be rescued. There exist estimators that beat the efficiency
bound, as shown by a famous construction due to Hodges.

<5> Example. Let {̂θn} be a sequence of estimators that is efficient in Fisher’s sense,
for the framework described in Section3. Let {αn} be a sequence of positive real
numbers converging to zero more slowly than 1/

√
n, such asαn := n−1/4. For a

fixed θ0 in � defineUn := {θ ∈ � : |θ − θ0| ≤ αn}. Modify θ̂n so that it performs
superefficiently ifθ0 happens to be the true value, without disturbing its performance
elsewhere, by definingθ∗

n := θ̂n{̂θn /∈ Un} + θ0{̂θn ∈ Un}.
Remark. Notice thatθ∗

n is not an M-estimator.

Under Pθ0 the modification takes effect with probability tending to one, that is,
Pθ0{θ∗

n = θ0} ≥ Pθ0 {̂θn ∈ Un} → 1, which results in an estimator with obvious merits,
√

n(θ∗
n − θ0) → 0 in Pθ0 probability.
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In particular, the efficiency bound is well beaten atθ0. Effectively θ∗
n behaves

like the constant estimator,θ0, when the true value isθ0. But unlike the constant
estimator,θ∗

n can adapt when the true value is notθ0,

Pθ {θ∗
n = θ̂n} ≥ Pθ0 {̂θn /∈ Un} → 1 if θ �= θ0,

UnderPθ for θ �= θ0, the estimatorθ∗
n has the same asymptotic behaviour asθ̂n. The

estimatorθ∗
n achieves the efficiency bound at all points of�, except atθ0, where it

does much better than the Fisherian concept of efficiency would allow.�
The Hodges phenomenon has nothing to do with the smoothness or regularity

of the parametrization of the model. It occurs even with the estimation of the mean
of a N(θ, 1) distribution, where the maximum likelihood estimator is none other than
the sample mean. Clearly the efficiency heuristics don’t tell the whole story. The
concept of efficiency as a desirable property of estimators—the property that they
asymptotically achieve the information lower bound for variance—will be rescued in
Chapter 4, where a requirement of good behaviour of the estimator along sequences
of alternative models will be used to exclude the Hodges estimator and its ilk from
the optimality competition, in a sense that I will soon explain.

Fisher (1924) asserted another property for efficient estimators. He regarded
maximum likelihood as the basic method for constructing an efficient estimator.
He described the effect of inefficient estimation as equivalent, asymptotically (a
qualification that was seldom made explicit during the period when Fisher first
contributed to the subject), to the addition of an independent source of error beyond
what one should expect of an efficient estimator.

Let A be the efficient statistic with varianceσ 2/n, and B the inefficient statistic
with varianceσ 2/En; . . . the correlation ofA with (B − A) is zero, so that the
deviations ofB from the population value may be regarded as made up of two
parts: one, an error of random sampling, properly so called, is the deviation of
A from the population value; the other, distributed independently of the first,
is the error of estimation by which the inferior estimate,B, differs from the
superior estimate,A.

[Fisher 1924, page 446]

Fisher’s assertion corresponds to an asymptotic assertion for an estimatorTn,
√

n(Tn − θ0) = √
n(Tn − θ̂n) + √

n(̂θn − θ0) with θ̂n efficient,

where, in some sense, the two terms on the right-hand side should be asymptoti-
cally independent. If limiting distributions existed, we could interpret asymptotic
independence to mean

(√
n(Tn − θ̂ ),

√
n(̂θ − θ0)

)
� (M, Z), with Z distributed

N(0, I(θ0)
−1) independently of the “noise”M. Consequently, we would have√

n(Tn −θ0)� M + Z. The limit distribution would be least dispersed whenM were
degenerate. For example, when variances were finite, as would be the case whenM
had a normal distribution, the equalityPθ0|M + Z|2 = Pθ0|M |2 + Pθ0|Z|2 would
show that the mean-squared error were a minimum ifM ≡ 0. (An assumption of
asymptotic normality was implicit in Fisher’s concept of efficiency.) More generally,
if ρ(·) were nonnegative, symmetric, and convex, the symmetry of the distribution
of Z would give

Pθ0ρ(M + Z) = 1
2Pθ0ρ(M + Z) + 1

2Pθ0ρ(−M + Z) ≥ Pθ0ρ(Z),

Pollard@Paris2001 9 March 2001



1.4 Fisher’s concept of efficiency 9

with strict inequality ifρ(·) were strictly convex and ifM were not degenerate at
zero. Efficient estimators (in the sense of asymptotic mean squared error) would be
those for whichM ≡ 0. The distribution ofZ would provide an asymptotic lower
bound for the accuracy of estimation; only efficient estimators could achieve that
bound. For an efficientTn the difference

√
n(Tn − θ̂n) would converge in probability

to zero;Tn and θ̂n would be asymptotically equivalent.
Unfortunately, this second view of efficiency is also not quite valid, although it

too can be rescued.
The superefficient estimator from Example<5> does well underPθ if θ does not

change withn, but the modification has unfortunate consequences at alternativesPθn

for {θn} that approachesθ0 at anO(1/
√

n ) rate through�. For simple cases, such
as Pθ := N(θ, 1), it is easy to prove directly that

√
n(̂θn − θn) � N(0, I(θ0)

−1)

underPθn . (In fact,
√

n(̂θn − θn) has exactly aN(0, 1) distribution, for observations
from the N(θn, 1). See Chapter 3 for a way to handle more general models.)

The neighborhoodUn captureŝθn with highPθ0 probability, becauseαn decreases
more slowly than theOp(1/

√
n ) rate at whicĥθn converges toθ0. Unfortunately,Un

has the same effect underPθn , because|̂θn − θ0| ≤ |̂θn − θn| + |θn − θ0| = Op(1/
√

n ),
implying Pθn{θ∗

n = θ0} → 1. In particular, if θn := θ0 + δn/
√

n with δn → δ,
then

√
n(θ∗

n − θn) → −δ in Pθn probability, which is not good if|δ| is large.
If we allow δn to wander off to infinity more slowly than

√
nαn, we can even

arrange|√n(θ∗
n − θn)| → ∞ in Pθn probability. The estimatorθ∗

n has achieved its
superefficient status at the expense of poor behaviour under certain types of local
alternative.

Acceptable behaviour under alternatives close toPθ0 will rule out superlative
behaviour atθ0. With some added local uniformity requirements, Fisher’s concepts
of efficiency will be rescued in Chapter 4, in the forms of the Convolution and Local
Asyymptotic Minimax Theorems.
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