Consider the estimation of an unknown parameter θ in a set Θ , based on data $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$. Each function $h(x, \cdot)$ on Θ defines a *Z*-estimator $\widehat{\theta}_n = \widehat{\theta}_n(x_1, \ldots, x_n)$ as a zero of a random *criterion function*

$$H_n(\theta) := H_n(\theta, \mathbf{x}) := \frac{1}{n} \sum_{i \le n} h(x_i, \theta).$$

That is, $\hat{\theta}_n$ is defined by the equality $H_n(\hat{\theta}_n) = 0$. For different choices of *h* we get different estimators—different functions of the data. The choice of *h* can be suggested by a model or by various optimality criteria.

For simplicity I will consider only the case where Θ is a subset of the real line. Vector-valued parameters can be handled by taking *h* as a vector-valued function.

<1> **Example.** Suppose the data x_1, \ldots, x_n are modelled as independent observations from a density belonging to a family $\{f_{\theta}(x) : \theta \in \Theta\}$.

The maximum likelihood estimator (MLE) is defined as the value that maximizes the joint density $p(x_1, ..., x_n, \theta) = \prod_{i \le n} f_{\theta}(x_i)$. If f_{θ} is a smooth function of θ , and if the maximum occurs at the point where $\partial p/\partial \theta$ is zero, the MLE corresponds to the Z-estimator defined by

$$h(x, \theta) = \frac{\partial}{\partial \theta} \log f(x, \theta).$$

For example, for fitting a $N(\theta, 1)$ model the function $h(x, \theta) = x - \theta$ generates the MLE, which happens to coincide with the *method of moments estimator*. In general, if $m(\theta) := \int x f_{\theta}(x) dx$, the method of moments estimator for a one-dimensional parameter θ is defined as the solution to $m(\hat{\theta}_n) = \sum_{i < n} x_i/n$, which corresponds to the function $h(x, \theta) := x - m(\theta)$.

For the purposes of numerical illustration I will work with the function

<2>

$$\bar{h}(x,\theta) = \begin{cases} x - \theta & \text{if } |x - \theta| \le 1 \\ +1 & \text{if } x > \theta + 1 \\ -1 & \text{if } x < \theta - 1 \end{cases}$$

I choose this particular function for two reasons: there is no simple closed-form expression for the corresponding Z-estimator $\bar{\theta}_n$; and similar *h* functions have played an important role in the modern theory of "robust statistics". The first property shows why it is important to have some general theory for the behaviour of Z-estimators, to cover cases where we cannot analyze a closed-form representation. For this handout, whenever I write a bar over a function or estimator you will know that I am referring to this particular choice for *h*. Thus \overline{H}_n denotes the corresponding criterion function for a sample of size *n*, and $\bar{\theta}_n$ is defined by $\overline{H}_n(\bar{\theta}_n) = 0$.

Suppose the data are generated as independent observations from some fixed density f. (The method also works for discrete distributions. I leave the substitution of sums for integrals to you.) It is seldom possible to calculate the exact distribution of the Z-estimator $\hat{\theta}_n$. But, as I will soon explain,

if the function h is smooth enough in θ and the sample size n is large enough, then $\hat{\theta}_n$ will typically have an approximately normal distribution, with variance of order 1/n.

To understand why $\hat{\theta}_n$ behaves well for large samples from a fixed f, we first have to understand what the random criterion function H_n is doing. Different realizations of the data generate different H_n functions. For example, the following pictures were obtained by superimposing the \overline{H}_n functions (corresponding to the \overline{h} from <2>) for 10 independent samples of size n = 5:

from the N(0, 1) distribution on the left-hand side, and from the standard Cauchy distribution on the right-hand side.

Look at the 10 realizations of the estimator $\bar{\theta}_n$ (the points at which the \bar{H}_n curves intersect the horizontal axis) in each picture. Notice the spread around the origin. The estimator $\bar{\theta}_n$ has a distribution that depends on the joint distribution of the data.

Consistency

Suppose the x_i are independent observations from some density f. For each fixed θ , the random variable $H_n(\theta)$ is an average of the n independent random variables $h(x_i, \theta)$, for i = 1, 2, ..., n. By the law of large numbers, $H_n(\theta)$ should be close to its expected value, $H(\theta, f) := \mathbb{E}_f h(x, \theta) = \int h(x, \theta) f(x) dx$.

For example, if f equals ϕ , the N(0, 1) density, with distribution function $\Phi(x)$, then the $\overline{H}(\theta, \phi)$ corresponding to the \overline{h} from <2> is given by

$$\overline{H}(\theta,\phi) = \int_{\theta+1}^{\infty} \phi(x) \, dx - \int_{-\infty}^{\theta-1} \phi(x) \, dx + \int_{\theta-1}^{\theta+1} (x-\theta)\phi(x) \, dx$$
$$= 1 - \Phi(\theta+1) - \Phi(\theta-1)$$
$$- \theta(\Phi(\theta+1) - \Phi(\theta-1)) - (\phi(\theta+1) - \phi(\theta-1)).$$

With a little imagination you might convince yourself that each of the 10 superimposed plots for $\overline{H}_5(\cdot)$ from the N(0, 1) density look like $\overline{H}(\cdot, \phi)$. Perhaps the effect is more obvious in a sequence for n = 5, 10, 20:

As *n* gets larger, \overline{H}_n converges to $\overline{H}(\cdot, \phi)$. With probability tending to one, the estimator $\overline{\theta}_n$ concentrates around the solution $\theta = 0$ for the equation $\overline{H}(\theta, \phi) = 0$. That is, $\overline{\theta}_n$ converges in probability to 0 for independent samples from the N(0, 1) density.

For general *h* with data x_1, x_2, \ldots generated independently from a density *f*, the estimator $\widehat{\theta}_n$ converges in probability (as $n \to \infty$) to z = z(f, h), the root—which I assume is unique—of the equation H(z, f) = 0.

If the data $x_1, x_2...$ are modelled as independent observations from a density belonging to some f from a family $\{f_{\theta}(x) : \theta \in \Theta\}$, it is traditional

to consider behaviour of $\hat{\theta}_n$ under each f_{θ} . If the equation $H(z, f_{\theta}) = 0$ has its solution $z(f_{\theta}, h)$ equal to θ , for each θ , then $\hat{\theta}_n$ will converge in probability under the f_{θ} model to θ ; if the data actually are generated from an f_{θ_0} , for an unknown "true" value θ_0 , then the Z-estimator will converge to that θ_0 . This consistent requirement places a constraint on h.

Asymptotic normality

How closely will $\hat{\theta}_n$ be distributed about its limiting value z = z(f, h), for data generated independently from a density f? A Taylor expansion about z gives the answer.

$$0 = H_n(\widehat{\theta}_n) \approx H_n(z) + (\theta - z) \sum_{i \le n} h'(x_i, z) / n,$$

where h' denotes the partial derivative of h with respect to θ . Solve.

$$\sqrt{n}(\widehat{\theta}_n - z) = \frac{-\sqrt{n}H_n(z)}{\sum_{i \le n} h'(x_i, z)/n}$$

You'll see in a moment why I have multiplied through by a \sqrt{n} . By the law of large numbers, the average in the denominator has large probability of being close to

$$J(f,h) := \mathbb{E}_f h'(x,z) = \int h'(x,z) f(x) \, dx$$

where z is defined by the equality $\int h(x, z) f(x) dx = 0$.

A similar argument shows that $H_n(z)$ should lie close to 0 = H(z, f), which merely reconfirms that $\hat{\theta}_n - z$ should get close to zero. We can do better. As an average of independent random variables $h(x_i, z)$ with zero expected values, the random variable $H_n(z)$ will have an approximate $N(0, \sigma^2(f, h)/n)$ distribution, where

$$\sigma^{2}(f,h) := \operatorname{var}_{f}h(x,z) = \int h(x,z)^{2}f(x) \, dx \qquad \text{because } H(z,f) = 0$$

The extra factor of \sqrt{n} magnifies the $H_n(z)$ up to a quantity distributed roughly $N(0, \sigma^2(f, h))$, leaving $\sqrt{n}(\hat{\theta}_n - z)$ with an approximate normal distribution with zero mean and variance equal to $\sigma^2(f, h)/J(f, h)^2$.

A magnified version of the picture for ten realizations of the \overline{H}_{20} function, generated from samples of size 20 with f equal to the standard Cauchy, shows what is going on.

In the region near zero, where the Z-estimator lies with high probability, the $\overline{H_n}$ function is roughly linear, with slope equal to J(f, h), with the intercept shifted around by the random variable $H_n(z)$, which has roughly a normal distribution with standard deviation of order $1/\sqrt{n}$. For the asymptotics at the $1/\sqrt{n}$ -level, the Z-estimation problem reduces to a simple linear equation, through the workings of the law of large numbers and the central limit theorem.

Statistics 610a: 1 October 2001

Optimal choice of h

Once again consider the situation where the data x_1, \ldots, x_n are modelled as independent observations from a density belonging to a family $\{f_{\theta}(x) : \theta \in \Theta\}$. Let me write \mathbb{E}_{θ} and $\operatorname{var}_{\theta}$, instead of $\mathbb{E}_{f_{\theta}}$ and $\operatorname{var}_{f_{\theta}}$, to denote calculations carried out under the f_{θ} model. Thus $\mathbb{E}_{\theta}g(x)$ will be shorthand for $\int g(x)f_{\theta}(x) dx$; the *x* is treated both as a generic x_i and as a dummy variable of integration.

In order that the Z-estimator $\hat{\theta}_n$ should converge to θ under the f_{θ} model, for every θ , we must have

<3>

$$\mathbb{E}_{\theta}h(x,\theta) = \int h(x,\theta)f_{\theta}(x)\,dx = 0 \quad \text{for every } \theta.$$

The problem is to find the h function that minimizes

$$\frac{\sigma^2(f_\theta, h)}{J(f_\theta, h)^2} := \frac{\mathbb{E}_\theta h(x, \theta)^2}{\left(\mathbb{E}_\theta h'(x, \theta)\right)^2}$$

for each θ , subject to the constraint <3>.

I will show that the minimum is achieved when $h(x, \theta)$ equals

$$\ell_{\theta}(x) := \frac{\partial}{\partial \theta} \log f_{\theta}(x) = \frac{f'_{\theta}(x)}{f_{\theta}(x)}.$$

That is, the lower bound for asymptotic variance is achieved when *h* defines the MLE. Some authors call ℓ the *score function* for the model. The corresponding $J(f_{\theta}, \ell_{\theta})$ is given by

$$-J(f_{\theta}, \ell_{\theta}) = -\mathbb{E}_{\theta}\left(\frac{\partial^2}{\partial \theta^2} \log f_{\theta}(x)\right) =: \Im(\theta) = \operatorname{var}_{\theta}(\ell_{\theta}) = \mathbb{E}_{\theta}\ell_{\theta}^2,$$

the (Fisher) information function for the model.

To establish the optimality property for ℓ , we can argue as in the proof of the information inequality to derive first a lower bound for $\sigma^2(f_{\theta}, h)/J(f_{\theta}, h)^2$, and then show that ℓ achieves that lower bound.

Differentiate $\langle 3 \rangle$ with respect to θ , assuming appropriate smoothness for the densities (and ignoring the question of whether we are allowed to take the derivative inside the integral sign):

<4>

$$\int h'(x,\theta) f_{\theta}(x) \, dx + \int h(x,\theta) f'_{\theta}(x) \, dx = 0.$$

Recognize the first integral as $J(f_{\theta}, h)$. Rewrite $f'_{\theta}(x)$ as $\ell_{\theta}(x)f_{\theta}(x)$ to recognize the second integral as $\mathbb{E}_{\theta}h(x,\theta)\ell_{\theta}(x)$, and thereby deduce that $J(f_{\theta}, h) = -\mathbb{E}_{\theta}h(x,\theta)\ell_{\theta}(x)$ and

$$\sigma^{2}(f_{\theta},h)/J(f_{\theta},h)^{2} = \frac{\mathbb{E}_{\theta}h(x,\theta)^{2}}{\left(\mathbb{E}_{\theta}h(x,\theta)\ell_{\theta}(x)\right)^{2}}$$

The Cauchy-Schwarz inequality asserts

$$\left(\mathbb{E}_{\theta}h(x,\theta)^{2}\right)\left(\mathbb{E}_{\theta}\ell_{\theta}(x)^{2}\right) \geq \left(\mathbb{E}_{\theta}h(x,\theta)\ell_{\theta}(x)\right)^{2},$$

with equality when $h(x, \theta)$ equals $\ell_{\theta}(x)$. Thus

$$\sigma^2(f_{\theta}, h)/J(f_{\theta}, h)^2 \ge 1/\mathbb{E}_{\theta}\ell_{\theta}(x)^2 = 1/\mathfrak{I}(\theta),$$

with equality when $h(x, \theta) = \ell_{\theta}(x)$, in which case $\sigma^2(f_{\theta}, \ell) = \mathfrak{I}(\theta) = -J(f_{\theta}, \ell)$ and $\sqrt{n}(\hat{\theta}_n - \theta)$ is approximately $N(0, 1/\mathfrak{I}(\theta))$ distributed under the f_{θ} model, for each θ .

Statistics 610a: 1 October 2001

In summary: If we require that the Z-estimator converge in probability to θ under independent sampling from f_{θ} , for every θ , then the asymptotic variance cannot be smaller than $1/\Im_{\theta}$. The asymptotic normal distribution for the MLE has variance equal to the lower bound.

Warnings

I have not been rigorous about the conditions required for the arguments leading to "asymptotic optimality" of the MLE amongst the class of consistent Z-estimators. For example, the argument surely fails when f_{θ} denotes the Uniform $(0, \theta)$ density, which is not everywhere differentiable. A completely rigorous treatment is quite difficult. The development of the rigorous theory has been a major theme in modern theoretical statistics.