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Z-estimators (generalized method of moments)

Consider the estimation of an unknown parameterθ in a set�, based on
datax = (x1, . . . , xn) ∈ R

n. Each functionh(x, ·) on� defines aZ-estimator
θ̂n = θ̂n(x1, . . . , xn) as a zero of a randomcriterion function

Hn(θ) := Hn(θ, x) := 1

n

∑
i ≤nh(xi , θ).

That is,θ̂n is defined by the equalityHn(̂θn) = 0. For different choices ofh we
get different estimators—different functions of the data. The choice ofh can
be suggested by a model or by various optimality criteria.

For simplicity I will consider only the case where� is a subset of the real
line. Vector-valued parameters can be handled by takingh as a vector-valued
function.

<1> Example. Suppose the datax1, . . . , xn are modelled as independent obser-
vations from a density belonging to a family{ fθ (x) : θ ∈ �}.

The maximum likelihood estimator (MLE) is defined as the value that
maximizes the joint densityp(x1, . . . , xn, θ) = ∏

i ≤n fθ (xi ). If fθ is a smooth
function of θ , and if the maximum occurs at the point where∂p/∂θ is zero, the
MLE corresponds to the Z-estimator defined by

h(x, θ) = ∂

∂θ
log f (x, θ).

For example, for fitting aN(θ, 1) model the functionh(x, θ) = x − θ

generates the MLE, which happens to coincide with themethod of moments
estimator. In general, ifm(θ) := ∫

x fθ (x) dx, the method of moments
estimator for a one-dimensional parameterθ is defined as the solution to
m(̂θn) = ∑

i ≤nxi /n, which corresponds to the functionh(x, θ) := x − m(θ).�
For the purposes of numerical illustration I will work with the function

<2> h̄(x, θ) =
{ x − θ if |x − θ | ≤ 1

+1 if x > θ + 1
−1 if x < θ − 1

I choose this particular function for two reasons: there is no simple closed-form
expression for the corresponding Z-estimatorθ̄n; and similarh functions have
played an important role in the modern theory of “robust statistics”. The
first property shows why it is important to have some general theory for the
behaviour of Z-estimators, to cover cases where we cannot analyze a closed-
form representation. For this handout, whenever I write a bar over a function
or estimator you will know that I am referring to this particular choice forh.
Thus �Hn denotes the corresponding criterion function for a sample of sizen,
and θ̄n is defined by�Hn(θ̄n) = 0.

Suppose the data are generated as independent observations from some
fixed density f . (The method also works for discrete distributions. I leave the
substitution of sums for integrals to you.) It is seldom possible to calculate the
exact distribution of the Z-estimator̂θn. But, as I will soon explain,

if the function h is smooth enough inθ and the sample size n is
large enough, then̂θn will typically have an approximately normal
distribution, with variance of order1/n.

To understand whŷθn behaves well for large samples from a fixedf ,
we first have to understand what the random criterion functionHn is doing.
Different realizations of the data generate differentHn functions. For example,
the following pictures were obtained by superimposing the�Hn functions
(corresponding to thēh from <2>) for 10 independent samples of sizen = 5:
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from the N(0, 1) distribution on the left-hand side, and from the standard
Cauchy distribution on the right-hand side.
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Look at the 10 realizations of the estimatorθ̄n (the points at which the�Hn

curves intersect the horizontal axis) in each picture. Notice the spread around
the origin. The estimator̄θn has a distribution that depends on the joint
distribution of the data.

Consistency

Suppose thexi are independent observations from some densityf . For each
fixed θ , the random variableHn(θ) is an average of then independent
random variablesh(xi , θ), for i = 1, 2, . . . , n. By the law of large num-
bers, Hn(θ) should be close to its expected value,H(θ, f ) := E f h(x, θ) =∫

h(x, θ) f (x) dx.
For example, if f equalsφ, the N(0, 1) density, with distribution

function 
(x), then the�H(θ, φ) corresponding to thēh from <2> is given by

�H(θ, φ) =
∫ ∞

θ+1
φ(x) dx −

∫ θ−1

−∞
φ(x) dx +

∫ θ+1

θ−1
(x − θ)φ(x) dx

= 1 − 
(θ + 1) − 
(θ − 1)

− θ(
(θ + 1) − 
(θ − 1)) − (φ(θ + 1) − φ(θ − 1)).
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With a little imagination you might convince yourself that each of the 10
superimposed plots for�H5(·) from the N(0, 1) density look like �H(· , φ).
Perhaps the effect is more obvious in a sequence forn = 5, 10, 20:
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As n gets larger,�Hn converges to�H(· , φ). With probability tending to
one, the estimator̄θn concentrates around the solutionθ = 0 for the equation
�H(θ, φ) = 0. That is,θ̄n converges in probability to 0 for independent samples
from the N(0, 1) density.

For generalh with data x1, x2, . . . generated independently from a
density f , the estimator̂θn converges in probability (asn → ∞) to z = z( f, h),
the root—which I assume is unique—of the equationH(z, f ) = 0.

If the datax1, x2 . . . are modelled as independent observations from a
density belonging to somef from a family { fθ (x) : θ ∈ �}, it is traditional
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to consider behaviour of̂θn under eachfθ . If the equationH(z, fθ ) = 0 has
its solutionz( fθ , h) equal toθ , for eachθ , then θ̂n will converge in probability
under the fθ model toθ ; if the data actually are generated from anfθ0, for an
unknown “true” valueθ0, then the Z-estimator will converge to thatθ0. This
consistent requirement places a constraint onh.

Asymptotic normality

How closely will θ̂n be distributed about its limiting valuez = z( f, h), for data
generated independently from a densityf ? A Taylor expansion aboutz gives
the answer.

0 = Hn(̂θn) ≈ Hn(z) + (θ − z)
∑

i ≤nh′(xi , z)/n,

whereh′ denotes the partial derivative ofh with respect toθ . Solve.

√
n(̂θn − z) = −√

nHn(z)∑
i ≤nh′(xi , z)/n

.

You’ll see in a moment why I have multiplied through by a
√

n. By the law
of large numbers, the average in the denominator has large probability of being
close to

J( f, h) := E f h
′(x, z) =

∫
h′(x, z) f (x) dx

wherez is defined by the equality
∫

h(x, z) f (x) dx = 0.

A similar argument shows thatHn(z) should lie close to 0= H(z, f ), which
merely reconfirms that̂θn − z should get close to zero. We can do better. As an
average of independent random variablesh(xi , z) with zero expected values, the
random variableHn(z) will have an approximateN(0, σ 2( f, h)/n) distribution,
where

σ 2( f, h) := varf h(x, z) =
∫

h(x, z)2 f (x) dx becauseH(z, f ) = 0.

The extra factor of
√

n magnifies theHn(z) up to a quantity distributed roughly
N(0, σ 2( f, h)), leaving

√
n(̂θn − z) with an approximate normal distribution

with zero mean and variance equal toσ 2( f, h)/J( f, h)2.
A magnified version of the picture for ten realizations of the�H20 function,

generated from samples of size 20 withf equal to the standard Cauchy, shows
what is going on.
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In the region near zero, where the Z-estimator lies with high probability, the�Hn

function is roughly linear, with slope equal toJ( f, h), with the intercept shifted
around by the random variableHn(z), which has roughly a normal distribution
with standard deviation of order 1/

√
n. For the asymptotics at the 1/

√
n-level,

the Z-estimation problem reduces to a simple linear equation, through the
workings of the law of large numbers and the central limit theorem.
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Optimal choice of h

Once again consider the situation where the datax1, . . . , xn are modelled as
independent observations from a density belonging to a family{ fθ (x) : θ ∈ �}.
Let me writeEθ and varθ , instead ofE fθ and varfθ , to denote calculations carried
out under thefθ model. ThusEθ g(x) will be shorthand for

∫
g(x) fθ (x) dx;

the x is treated both as a genericxi and as a dummy variable of integration.
In order that the Z-estimator̂θn should converge toθ under the fθ model,

for everyθ , we must have

<3> Eθh(x, θ) =
∫

h(x, θ) fθ (x) dx = 0 for everyθ.

The problem is to find theh function that minimizes

σ 2( fθ , h)

J( fθ , h)2
:= Eθh(x, θ)2

(Eθh′(x, θ))2

for eachθ , subject to the constraint<3>.
I will show that the minimum is achieved whenh(x, θ) equals

�θ (x) := ∂

∂θ
log fθ (x) = f ′

θ (x)

fθ (x)
.

That is, the lower bound for asymptotic variance is achieved whenh defines
the MLE. Some authors call� the score function for the model. The
correspondingJ( fθ , �θ ) is given by

−J( fθ , �θ ) = −Eθ

(
∂2

∂θ2
log fθ (x)

)
=: I(θ) = varθ (�θ ) = Eθ �

2
θ ,

the (Fisher) information function for the model.
To establish the optimality property for�, we can argue as in the proof of

the information inequality to derive first a lower bound forσ 2( fθ , h)/J( fθ , h)2,
and then show that� achieves that lower bound.

Differentiate<3> with respect toθ , assuming appropriate smoothness for
the densities (and ignoring the question of whether we are allowed to take the
derivative inside the integral sign):

<4>

∫
h′(x, θ) fθ (x) dx +

∫
h(x, θ) f ′

θ (x) dx = 0.

Recognize the first integral asJ( fθ , h). Rewrite f ′
θ (x) as �θ (x) fθ (x) to

recognize the second integral asEθh(x, θ)�θ (x), and thereby deduce that
J( fθ , h) = −Eθh(x, θ)�θ (x) and

σ 2( fθ , h)/J( fθ , h)2 = Eθh(x, θ)2

(Eθh(x, θ)�θ (x))2 .

The Cauchy-Schwarz inequality asserts(
Eθh(x, θ)2

) (
Eθ �θ (x)2

) ≥ (
Eθh(x, θ)�θ (x)

)2
,

with equality whenh(x, θ) equals�θ (x). Thus

σ 2( fθ , h)/J( fθ , h)2 ≥ 1/Eθ �θ (x)2 = 1/I(θ),

with equality whenh(x, θ) = �θ (x), in which caseσ 2( fθ , �) = I(θ) =
−J( fθ , �) and

√
n(̂θn − θ) is approximatelyN(0, 1/I(θ)) distributed under

the fθ model, for eachθ .
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In summary: If we require that the Z-estimator converge in probability toθ

under independent sampling fromfθ , for everyθ , then the asymptotic variance
cannot be smaller than 1/Iθ . The asymptotic normal distribution for the MLE
has variance equal to the lower bound.

Warnings

I have not been rigorous about the conditions required for the arguments
leading to “asymptotic optimality” of the MLE amongst the class of consistent
Z-estimators. For example, the argument surely fails whenfθ denotes the
Uniform(0, θ) density, which is not everywhere differentiable. A completely
rigorous treatment is quite difficult. The development of the rigorous theory
has been a major theme in modern theoretical statistics.
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