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Categorical Models and Chi-Square Tests

Categorical data are given by counts within each of a finite number of
mutually exclusive categories, when a finite number of individuals are distributed
by some random mechanism amongst those categories. There are several good
reasons for studying the asymptotics for categorical data models.

• Pearson’sχ2 test was one of the first examples of a statistical test for
goodness-of-fit. Even though Pearson (1900) got the story on degrees of freedom
wrong, theχ2 test has become a standard part of statistical methodology. Several
key statistical ideas, such as maximum likelihood estimation and efficiency,
were developed by Fisher during the period of his running battle with Pearson
over the correct choice for the degrees of freedom of the approximatingχ2

distribution. Some of his original arguments for the goodness-of-fit problem
still offer helpful insights into those general ideas.

• The χ2 test is much used, but not always well understood. What
difference does it make if one uses Poisson rather than multinomial models?
Why does conditioning on various marginal totals in cross-tabulated data have
the same effect on degrees of freedom as the estimation of certain parameters?
It is not too hard to answer these questions in an asymptotic sense.

• As an introduction to asymptotic methods, the theory for categor-
ical models has several technical advantages. Finiteness and monotonicity
properties simplify calculations. Regularity conditions are clean and easy to
understand. Pathologies that complicate general theory are easier to eliminate
from categorical models. The technicalities don’t obscure the ideas.

1. The multinomial model

Suppose each ofn objects is placed independently into one ofk mutually
exclusive categories (orcells), labelled 1, 2, . . . , k, according to the distribution

P{object placed in celli } = pi for i = 1, . . . , k.

The {pi } are nonnegative and sum to 1. Define the cell counts

Sni = total number in celli .

Then the random vector(Sn1, . . . , Snk) has a multinomial distribution, denoted
by M(n, p1, . . . , pk):

P{Sn1 = x1, . . . , Snk = xk} = n!

x1! . . . xk!
px1

1 . . . pxk
k ,

wherex1, . . . , xk range over all choices of nonegative integers summing ton.
When the vectorp = (p1, . . . , pk) of probabilities is known, the goodness-

of-fit statistic

X2
n(p) =

∑
α

(Snα − npα)2

npα

has approximately aχ2 distribution; it converges in distribution toχ2
k−1 as n

tends to∞. If p is unknown, but is modelled as a member of some setP,
replacement of the unknownpi by estimateŝpni defines an analogous goodness-
of-fit statistic X2

n(̂pn). Under simple assumptions onP, the new statistic has a
limiting χ2 distribution, but with a reduced number of degrees of freedom, for
appropriately efficient estimatorŝpn. Pearson got it wrong; Fisher (1922, 1923,
1928) got it right. Birch (1964) proved it elegantly.
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Two appropriatêpn choices are (the method of minimumχ2) the value
that minimizesX2

n(p), and the maximum likelihood estimator (MLE), which is
defined to maximize

∑
i Sni log pi over P. Equivalently, the MLE minimizes

G2
n(p) = 2n

∑
i

fni log( fni/pi )

over P, where fni = Sni/n. Both X2
n(p) and G2

n(p) provide a measure of fit
between a proposedp and the observed vectorfn of proportions. Cressie &
Read (1984, 1988) treated both functions as members of a one-parameter family
of power-divergencefunctions:

Jλ(fn, p) = 2

λ(λ + 1)

∑
i

(
f 1+λ
ni /pλ

i − fni

)
.

For λ = 0 andλ = −1 the functions are defined by continuity:

J0(fn, p) = lim
λ→0

Jλ(fn, p) = 2
∑

i

fni log( fni/pi )

and similarly for J−1. Using the fact that both{ fni } and {pi } sum to 1, it is
easy to expand out the quadratic to get

X2
n(p) = n J1(fn, p).

For each realλ an estimator is defined by minimization of theJλ function over
the parameter setP:

p̂n(λ) = argmin
p∈P

Jλ(fn, p).

In the next few sections I will derive limit results for these estimators and
the corresponding goodness-of-fit statistics. Under regularity conditions close
to those of Birch (1964), for fixedλ and λ′, I will show that p̂n(λ) =
p̂n(λ

′) + op(1/
√

n) and

n Jλ(fn, p̂n(λ
′))� χ2

k−1−s,

wheres is a dimension defined byP. My presentation draws many ideas from
Dudley (1976).

Properties of power-divergence functions

The functionJλ(fn, p) is a sum ofk termsHλ( fni , pi ), where

Hλ(x, y) = 2

λ(1 + λ)

(
x1+λ

yλ
+ λ(y − x) − x

)
for x > 0, y > 0.

As before, the definition forλ = 0 or λ = −1 is by continuity:

H0(x, y) = 2x log(x/y) = H−1(y, x) for x > 0, y > 0.

Similarly, the limits asx → 0 or y → 0, when they exist, define the values
Hλ(0, y) and Hλ(x, 0). The extra linear termλ( fni − pi ) has no direct effect
on Jλ; it contributes zero to the sum. But it does makeHλ a more convenient
function.

Simple algebra shows that

<1> H−1−λ(y, x) = Hλ(x, y) = x Hλ(1, y/x),

at least whenx > 0. The partial derivates,

∂

∂y
Hλ(x, y) = 2

1 + λ

(
− x1+λ

y1+λ
+ 1

)
,

∂2

∂y2
Hλ(x, y) = 2x1+λ

y2+λ
,
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identify Hλ(x, ·) as a convex function that achieves its minimum of zero atx.
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Plot of Hλ(t) versus t, for various λ
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For t near 1 a Taylor expansion gives

Hλ(1, t) = (t − 1)2 − 2(2 + λ)(t − 1)3s−3−λ,

with s between 1 andt . It follows via equality<1> that for eachx0 > 0 there
exists a neighborhoodU and a constantC such that∣∣∣∣Hλ(x, y) − (y − x)2

x

∣∣∣∣ ≤ C|y − x|3 for x, y ∈ U.

Of course bothC andU depend onx0 andλ. Puttingx = qi and y = pi then
summing overi , we get for each vector of cell probabilitiesπ0 with strictly
positive components a neighborhoodV such that

<2>

∣∣∣∣Jλ(q, p) −
∑

i

(qi − pi )
2

qi

∣∣∣∣ ≤ C|q − p|3 for q, p ∈ V.

Notice that the approximating sum does not depend onλ. The fact thatHλ(x, y)

increases asy moves away fromx in either direction greatly simplifies the
asymptotic theory for power-divergence estimators. It implies thatJλ(fn, fn+tv)

for t ≥ 0 is an increasing function oft for each fixedv; the functionJλ(fn, ·)
increases along each ray emanating fromfn.

2. Asymptotics for power-divergence estimators

Until further notice,λ will be held at some fixed real value.
Suppose the cell counts are generated from anM(n, π0) distribution, where

each component of theπ0 (the true value of the parameter) is strictly positive.
Suppose also thatπ0 belongs to some specified set of probability vectorsP.

The first step in most asymptotic arguments is a proof of consistency. One
needs to know that̂pn is close toπ0 before any sort of Taylor expansion can
be of use. As it will later turn out, the first step is actually superfluous for
the multinomial model. Nevertheless, it will be instructive as a prototype for a
style of argument that typically would be required.

I will prove that p̂n converges almost surely toπ0. The weaker convergence
in probability would actually suffice, but there is no added difficulty in
establishing convergence in the stronger sense. We may as well establish the
stronger result, even if we don’t really need it.

The behaviour offn controls p̂n. The relevant facts follow directly from
the slln and themclt.
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<3> Lemma. Under the multinomial modelM(n, π0),

(i) fn → π0 almost surely.

(ii)
√

n(fn −π0)� N(0, V), where the limiting variance matrix has(i, j )th

element−πi πj if i �= j , and πi − π2
i if i = j .

Proof. The components offn are not independent; they sum to 1. There is
another source of independence, though. Writeeα for the unit vector with a
1 in positionα and zeros elswhere. A single observation corresponds to a
random vectorX that takes the valueeα with probabilityπα, the position of the
1 indicating the cell into which the observation falls. Thus

PX = π1e1 + . . . + πkek = π0

PXX ′ = π1e1e′
1 + . . . + πkeke′

k.

Consequently,

var(X) = diag (π1, . . . , πk) − π0π
′
0 = V.

Write fn as an average ofn independent copies ofX, then deduce assertion
(i) from the slln and (ii) from themclt.�

What do we need to show in order to establish the almost sure convergence
of p̂n to π0? To understand the problem let us temporarily make explicit the
dependence of̂pn = p̂n(ω) on the pointω in the underlying sample space
�. We need to find a negligible setN0, and for eachδ > 0 we need a finite
n0(ω, δ), such that

<4> |̂pn(ω) − π0| < δ for all n ≥ n0(ω, δ) andω �∈ N0.

The same negligible setN0 works for eachδ > 0. If the restrictionω �∈ N0

were replaced byω ∈ Nδ, for a negligible setNδ that might depend onδ, it
would be a simple matter of casting out a sequence of negligible sets to recover
an appropriateN0: we could takeN0 to be the union of the countable family
{N1/m : m = 1, 2, . . .}. In summary, for eachδ > 0 we need to show that, with
probability one,

<5> |̂pn − π0| < δ eventually.

Be certain that you understand the quantities hidden in the wordswith
probability oneandeventually.They are the negligible setNδ and then0(ω, δ)

corresponding to the modified form of assertion<4>. It would be most
cumbersome to make the dependences explicit every time.

<6> Theorem. Under the multinomial modelM(n, π0), with π0 a point in
P having strictly positive components, the minimizerp̂n of Jλ(fn, p) over P

converges toπ0 almost surely.

Proof. Fix δ > 0. Write B for the open ball with radiusδ centered atπ0.
We need to show that, with probability one, the estimatorp̂n eventually lies
in B, for eachδ small enough. From now on let me omit the qualification
with probability one. At the end of the proof you should mentally cast out a
countable collection of negligible sets to make the assertions hold on a set with
probability one.

The estimator̂pn minimizesJλ(fn, p) over allp in P. In particular, it must
do better than the (unknown)π0:

Jλ(fn, p̂n) ≤ Jλ(fn, π0).

By the almost sure convergence offn to π0 and the continuity ofJλ in its first
argument,

Jλ(fn, π0) → Jλ(π0, π0) = 0.
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For each fixedε > 0, we must therefore have

Jλ(fn, p̂n) < ε eventually.

To force p̂n into the ballB we need only show that, for someε > 0,

inf
p∈Bc

Jλ(fn, p) ≥ ε eventually.

In a more typical asymptotic problem an infimum over a large piece of the
parameter space might present unpleasant global complications. Strange things
might happen as the parameter wanders off to the far corners of the parameter
space. For the multinomial problem, monotonicity ofJλ(fn, ·) along each ray
emanating fromfn spares us the global complication.

When |fn − π0| < δ, as must eventually happen by virtue of Lemma<3>

part (i), the infimum overBc is achieved on the boundary∂ B of the ball B.
For eachp ∈ Bc there is ap∗ on the boundary for whichJλ(fn, p∗) ≤ Jλ(fn, p).
It follows that

inf
p∈Bc

Jλ(fn, p) = inf
p∈∂ B

Jλ(fn, p) when |fn − π0| < δ.

Asymptotic problems do not always allow us to sidestep global considerations
so easily.

If δ is chosen small enough, the boundary∂ B lies within the neighborhood
of π0 in which the quadratic approximation<2> holds. In particular, eventually∣∣∣∣Jλ(fn, p) −

∑
i

( fni − pi )
2

fni

∣∣∣∣ ≤ C|fn − p|3 for all p ∈ ∂ B.

It is important that the inequality eventually holdssimultaneouslyfor all p on the
boundary∂ B. Each fni converges almost surely to a positiveπi . Eventually the
approximating quadratic will be larger than the sum obtained by replacingfni

in the denominator by 2πi . Using the fact that eventually 2δ > |fn − p| > δ/2
for all p in ∂ B, deduce that

inf
p∈∂ B

Jλ(fn, p) ≥ min
i

(2πi )
−1(δ/2)2 − C(2δ)3 eventually.

Call the lower boundε. If δ is small enough,ε is positive. As explained earlier,
it follows that p̂n eventually lies within the ballB, as required.�

The proof of the last theorem made only feeble use of the almost sure
convergence. Nowhere did we need to consider the behaviour offn at a fixed
ω for more than one sample sizen; nowhere did we need control overJλ(fn, p)

for more than onen. The real role was to provide thewith probability one
. . . eventually, which justified the existence of several inequalities for a fixed
sample size. If we had to rely on only a weak law of large numbers—that
is, convergence offn to π0 in probability—the incantation would have been
eventually, with probability close to one. The meaning would then be: given
an ε > 0 there exists ann0(ε) such thatP{. . .} > 1 − ε for n ≥ n0(ε). When
we combine a fixed, finite number of such assertions we arrive at assertions
that hold except possibly for a set ofω (depending onn) that has probability
bounded by a fixed multiple of the (arbitrarily small)ε. The main line of the
argument changes little.

It becomes more important that we do not depend on almost sure assertions
when we study the finer asymptotics forp̂n. The asymptotic normality forfn

asserted by part (ii) of Lemma<3> controls behaviour for each fixedn, not
behaviour at a fixedω along a whole sequence of sample sizes. (A law of the
iterated logarithm forfn would give an almost sure bound, but the distributional
consequences of the weaker result turn out to be more interesting.)
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Reinterpreted as a manipulation of inequalities that hold eventually with
probability close to one, the proof of the last theorem could establish much more
than mere convergence in probability ofp̂n to π0: with δ allowed to decrease
with increasing sample size, it gives an in-probability rate of convergence.
Another slight improvement, which will later allow us to relate the estimators
derived from differentJλ function, comes at no great cost. We do not need
p̂n to exactly minimizeJλ(fn, ·); it has only to come within some prescribed
distance from the infimum. For those who worry about such things, the slight
increase in generality also eliminates technical problems related to existence,
uniqueness, and measurability of an exactly minimizing value.

<7> Theorem. Assume theM(n, π0) model withπ0 a point in P having strictly
positive components. Supposep̂n is an element ofP for which

Jλ(fn, p̂n) ≤ inf
p∈P

Jλ(fn, p) + Op(1/n).

Thenp̂n converges toπ0 at an Op(1/
√

n) rate.

Proof. Let B be the open ball with centerπ0 and (random) radiusδn of order
Op(1/

√
n). The precise value forδn will be specified soon.

The defining inequality for̂pn implies

Jλ(fn, p̂n) ≤ Jλ(fn, π0) + Op(1/n).

The convergence in distribution of
√

n(fn − π0) implies thatfn lies within a
distanceOp(1/

√
n) of π0. From the quadratic approximation<2>, it follows

that

Jλ(fn, π0) ≤
∑

i

( fni − π0i )
2

fni
+ O(|fn − π0|3) = Op(1/n).

Thus there exists a (random)εn of order Op(1/
√

n) for which

Jλ(fn, p̂n) < ε2
n.

To force p̂n into the ball B we need to chooseδn large enough to make
(eventually, with probability close to one)

inf
p∈Bc

Jλ(fn, p) ≥ ε2
n.

If we ensure that|fn − π0| < δn/2, monotonicity ofJλ(fn, ·) along rays fromfn

reduces the left-hand side to the infimum over the boundary∂ B of B, giving
the lower bound

(min
i

(2πi )
−1)(δn/2)2 − C(2δn)

3

when fn gets close toπ0. For n large enough (that is, eventually), with
probability close to one, the lower bound is greater thanδ2

n/16. To satisfy the
two requirements forδn the value 4εn + 2|fn − π0| would suffice.�

The multinomial problem is atypical in that a monotonicity property allows
us to deduce a rate of convergenceOp(1/

√
n) directly from the behaviour of the

criterion functionJλ(fn, p) on the boundary of a very small ball. It is typical,
however, in that no particular local structure need be imposed onP, except that it
should contain the trueπ0, in order to force theOp(1/

√
n) rate. Comparisons

betweenJλ(fn, p̂n) and Jλ(fn, π0) cannot take us any further. To establish
distributional results for

√
n(̂pn − π0) we must impose more structure on the

parameter setP, at least in a neighborhood ofπ0. The following assumptions,
essentially due to Birch (1964) with modifications by Dudley (1976), can hardly
be improved upon.

Let us assume that a small piece ofP near the trueπ0 is well approximated
by a small piece of ans-dimensional hyperplane, wheres < k − 1. The
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minimization of Jλ(fn, p) will then become asymptotically equivalent to the
minimization of a quadratic form, derived from approximation<2>, over the
whole hyperplane—an asymptotic problem of weighted least squares.

<8> Local Smoothness Assumption. Say thatP is locally s-dimensional
near π0 if there exists a continuous, one-to-one mapp(·) from a compact
neighborhood�0 of the origin inR

s into P such that:

(i) the setP0 = {p(θ) : θ ∈ �0} is a neigborhood ofπ0 = p(0) within P.;

(ii) the mapp(·) is differentiable at0,

p(θ) = π0 + Dθ + o(|θ|) near0,

with derivative matrix D of full rank s.

Property (i) means that everyp in P that is close enough toπ0 must have
the formp(θ) for a uniquely determinedθ in �0. The assumption of full rank
ensures existence of constants 0< c1 < c2 < ∞ such that

c1|t| ≤ |Dt| ≤ c2|t| for all t ∈ R
s.

It follows (Problem ???) that there exist other constants 0< C1 < C2 < ∞
such that

<9> C1|θ| ≤ |p(θ) − π0| ≤ C2|θ| for θ ∈ �0

These inequalities will ensure that rates of convergence for estimators ofπ0

translate into the same rates of convergence for theθ values. For example,fn

converges toπ0 at Op(1/
√

n) rate; with probability tending to one it has the
representationp(θ̂n), where|θ̂n| = Op(1/

√
n).

Maybe better to give the argument for known π0 first.
Also, note clash of notation with H and Hλ.

Before I state and prove a formal limit theorem, let me argue heuristically
to suggest how local smoothness controls the finer behaviour ofp̂n. The
informal arguments will also establish needed notation.

From approximation<2> and the fact thatfn ≈ π0, we have

Jλ(fn, p) ≈
∑

i

( fni − pi )
2

fni
�

∑
i

( fni − pi )
2

π0i
for p nearπ0.

If we defineW to be the weight matrix diag(
√

π01, . . . ,
√

π0k), the approximat-
ing quadratic becomes|W−1(fn − p)|2. In particular,

Jλ(fn, p(θ)) ≈ Qn(θ) = |Xn − W−1Dθ|2 whereXn = W−1(fn − π0).

The valueθ̂n nearly minimizes the left-hand side overθ in �0. It should
therefore also come close to minimizingQn(θ) over �0. The global minimum
of Qn(θ) over the whole ofRs corresponds to the valueθ∗

n for which

<10> W−1Dθ∗
n = HXn,

where H is the matrix that projectsRk orthogonally onto thes-dimensional
subspace sp(W−1D) spanned by the columns ofW−1D. Becausefn − π0 =
Op(1/

√
n) and the matrixW−1D is of full rank, θ∗

n is also of orderOp(1/
√

n).
In particular, with probability tending to one it lies in the neighborhood�0.

The rate of convergence forθ∗
n also gives

√
n(p(θ∗

n) − π0) = √
nDθ∗

n + op(1)

= WXn + op(1).

From part (ii) of Lemma<3>,

Xn � N(0, Ik − ∆∆′),
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where∆′ denotes the unit row vector(
√

π01, . . . ,
√

π0k ). The matrixIk − ∆∆′

represents the projection orthogonal to the one dimensional space spanned by
∆. The limiting normal distribution forXn is that of(Ik −∆∆′)Z for a vector
Z of independentN(0, 1) random variables. Thus

√
n(p(θ∗

n)−π0) has limiting
distribution W H(Ik − ∆∆′)Z. The projectionH kills the ∆∆′ because∆ is
orthogonal to sp(W−1D):

∆′W−1D = 1′D = 0′.

The last equality—the orthogonality of the rows ofD to the vector of ones—is
a consequence of the differentiability assumption and the fact that the cell
probabilities sum to one:

1 = 1′p(θ) = 1 + 1′Dθ + o(|θ|).
This gives1′Dθ = 0 for all θ in R

s, whence1′D = 0′. In summary,

<11>
√

n(p(θ∗
n) − π0)� HZ.

The minimization overθ has contributed the projection onto sp(W−1D).
Whenθ∗

n does lie in�0, it should be close to the near-minimizing value
θ̂n. This would give the approximation

p̂n ≈ π0 + Dθ̂n ≈ π0 + Dθ̂∗
n = π0 + W HW−1(fn − π0).

If these approximations are to be believed we should have
√

n(̂pn − π0)� W HZ

and

n Jλ(fn, p̂n) ≈ n‖Xn − W−1Dθ̂∗
n‖2

= ‖(I − H)Xn‖2

� ‖(I − H)(I − ∆∆′)Z‖2

The product(I − H)(I − ∆∆′) is an orthogonal projection onto a subspace of
dimensionalk−s−1: the second factor kills the component in the∆ direction
and then the first factor kills the components in the orthogonal subspace
sp(W−1D). The second factor corresponds to the constraint that the cell counts
Sni sum ton; the first factor corresponds to thes parameters fitted (locally) by
P. The squared length of the projection(I − H)(I − ∆∆′)Z has the desired
χ2

k−s−1 distribution.
To make the heuristic arguments rigorous we need to establish uniform

probabilistic bounds on the errors of approximation. A slight extension of the
stochastic order notation will save us from much tedious deatil, even if it does
increase the risk of error—even more of the supporting mathematics will be
hidden behind a few dangerously convenient words. We will need to make
assertions of the form

Gn(t) = Op(αn) uniformly over An,

for random processes{Gn(t) : t ∈ T} and various subsetsAn of the parameter
setT , with αn possibly random. Such an assertion means

sup
t∈An

|Gn(t)| = Op(αn).

That is, for eachε > 0 there exists a constantMε and an integern0(ε) such
that

P

{
sup
t∈An

|Gn(t)| > Mεαn

}
< ε for n ≥ n0(ω).

Ignoring an event of small probability, we may eventually assume that|Gn(t)|
is bounded by a fixed multiple ofαn, simultaneously for allt in An.
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Notice that we need̂pn to be slightly closer to minimizing the criterion
function Jλ(fn, ·) over P—within op(1/n) rather than theOp(1/n) from
Theorem<7>. Such an estimator will be referred to, with only a slight risk of
ambiguity, as a power-divergence estimator.

<12> Theorem. Assume theM(n, π0) model withπ0 a point ofP having strictly
positive components. Supposep̂n is an element ofP for which

(i) Jλ(fn, p̂n) ≤ infp∈P Jλ(fn, p) + op(1/n).
Suppose

(ii) P is locally s-dimensional nearπ0, in the sense of the Local Smoothness
Assumption<8>, with matrix of derivatives D.

Then

(iii)
√

n(̂pn − π0) = √
nW HW−1(fn − π0) + op(1), which has an

asymptotic normal distribution N(0, W HW−1), where W denotes
the matrix diag(

√
π01, . . . ,

√
π0k), and ∆′ denotes the unit vector

(
√

π01, . . . ,
√

π0k), and H denotes the matrix for orthogonal projection
onto the columns of W−1D.

(iv) n Jλ(fn, p̂n)� χ2
k−s−1.

Proof. We need to establish approximations that hold uniformly over a ballC
with center0 in R

s and radiusδn of order Op(1/
√

n). With probability tending
to one, such aC will be contained within the neighborhood�0 where the local
parametrization is valid. Chooseδn large enough to ensure thatC contains
both theθ̂n for which p̂n = p(θ̂n) and theθ∗

n that minimizes the quadratic
Qn(θ) over all of R

s. This is possible for̂θn by virtue of Theorem<7> and
the inequality<9>; it is possible forθ∗

n because equality<10> has the unique
solution

θ∗
n = (D′D)−1D′W HXn = Op(1/

√
n).

The inverse matrix(D′D)−1 exists becauseD has full rank.Comment further on subtlety
about nonexistence ofθ∗

n with
small probability? Uniformly over C,

|fn − p(θ)| ≤ |fn − π0| + C2|θ| = Op(1/
√

n).

It follows from inequality<2> that

Jλ(fn, p(θ)) −
∑

i

( fni − pi (θ))2

fni
= Op(n

−3/2) uniformly on C.

Replacing thefni in the denominator byπ0i we perturb the summand by at
most

Op((| fni − pi (θ)|2))Op((| fni − π0i |)) = op(1/n) uniformly on C.

Here I have used the weak fact that| fni − π0i | is of orderop(1), rather than the
strongerOp(1/

√
n), in order to stress the idea that thefni in the denominator

does not play a crucial role; any quantity lying withinop(1) of π0i would
suffice. The numerator in thei th summand has the form

( fni − π0i − (Dθ)i − Op(1/
√

n))2 uniformly on C.

The contributions from theOp(1/
√

n) contribute at mostop(1/n) to the
expansion of this quadratic.

The combined effect of replacingp(θ) by its linear approximation and
replace thefni by π0i in the denominator is a uniform quadratic approximation,

<13> Jλ(fn, p(θ)) = Qn(θ) + op(1/n) uniformly on C.

If we expandQn(θ − θ∗
n + θ∗

n) as a quadratic inθ − θ∗
n, the cross product term

disappears (otherwiseθ∗
n could not be a global minimizing value) leaving

Qn(θ) = Qn(θ
∗
n) + |W−1D(θ − θ∗

n)|2 for all θ ∈ R
s.
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Whenθ∗
n lies in �0 it defines a member ofP for which

Jλ(fn, p̂n) ≤ Jλ(fn, p(θ∗
n)) + op(1/n).

Replacing bothJλ terms by means of approximation<13> then consolidating
op(1/n) terms, we get

Qn(θ̂n) ≤ Qn(θ
∗
n) + op(1/n).

That is,
|W−1D(θ̂n − θ∗

n)|2 ≤ op(1/n).

It would perhaps be more precise to make such a set of comparisons only with
the explicit stipulation that̂pn ∈ P0 andθ∗

n ∈ �0. The final inequality offers us
a way to avoid those details. Theop(·) acknowledges existence of a set where
the 1/n rate assertion has no effect; that set covers all the realizations where
the comparison argument is not strictly justified.

The rest of the argument is easy. The full rank assumption onD ensures
existence of a positive constantC3 for which |W−1Dt| ≥ C3|t| for all t ∈ R

s.
Consequently,

θ̂n − θ∗
n = op(1/

√
n).

The differentiability then gives

p̂n = p(θ∗
n) + op(1/

√
n),

which translates into assertion (iii) of the Theorem. It also gives

Jλ(fn, p̂n) = Qn(θn) + op(1/n)

= Qn(θ
∗
n) + op(1/n)

= |(I − H)Xn|2 + op(1/n).

As explained during the heuristic discussion leading up to the Theorem, when
multiplied by n the last quadratic expression has the asserted limitingχ2

distribution. Theop(1) perturbation does not affect that limit.�
Notice that the choice ofλ had no effect on the last proof, except for the

hidden control over various constants. For everyλ, the estimator̂pn(λ) has the
asymptotic representation asserted by (iii) in Theorem<12>; the standardized
estimators for differentλ values are equal up to theop(1) error terms. That is,
for all λ andλ′,

p̂n(λ) − p̂n(λ
′) = op(1/

√
n),

as asserted at the end of Section 1. Similarly, the behaviour ofn Jλ(fn, p̂n(λ))

is determined by the approximation

p̂n(λ) = p(θ∗
n) + op(1/

√
n).

The θ∗
n does not depend onλ. It follows that, under the conditions of the

Theorem,n Jλ(fn, p̂n(λ
′))� χ2

k−s−1, for all λ andλ′.
What happens if we use an estimator forπ0 that is not defined by near

minimization of one of theJλ(fn, ·) functions? More specifically, supposep̃n

has the formp(θ̃n) with probability tending to one, wherẽθn = Op(1/
√

n).
If θ̃n does not lie withinop(1/

√
n) of the θ∗

n that minimizesQn, the term
n|W−1D(θ̃n − θ∗

n)|2 will not converge in probability to zero; it will inflate
the approximatingnQn(θ

∗
n), which has the limitingχ2

k−s−1 distribution, by a
quantity that does not disappear asymptotically.

As we will see in Section 5, the propertỹθn = θ∗
n +op(1/

√
n) corresponds

to the property calledefficiency.
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3. Power-divergence estimators under local alternatives

How does thêpn from Theorem<12> behave if the fixedπ0 is replaced by
a πn that changes withn? Such a question arises when one considers the
power of goodness-of-fit test. It also appears as part of the definition of a
regular estimator, a restriction that will be introduced in Section 5 as part of
the program to rescue the flawed concept of efficiency.

Consider first the behaviour of̂pn under a modelM(n, π1), for a fixed
π1 �∈ P for which inf{‖π1 − p‖ : p ∈ P} > 0. The last assumption eliminates
the awkward posibility thatπ1 might be a limit of points inP without actually
belonging toP itself. Let B be a small open ball that is disjoint fromP,
centered atπ1. Then, by an argument similar to the proof of Theorem<6>,
when fn ∈ B we have

Jλ(fn, p̂n) ≥ inf
p∈∂ B

Jλ(fn, p)

→ inf
p∈∂ B

Jλ(π1, p) almost surely

> 0.

The rescaled statisticn Jλ(fn, p̂n) diverges to infinity; it no longer has a proper
limiting distribution. A test of fit will reject the modelP with probability
tending to one, underM(n, π1). The test has power tending to one atπ1.

Discrimination betweenπ1 andP is to easy a task for any halfway decent
estimator or testing procedure. We need to pose a more difficult task if we are
to compare different procedures. We must consider power atlocal alternatives,
which change withn. Replaceπ1 by a sequence{πn} that moves towardsP at
a rate that allows good procedures to discriminate betweenP andπn, but not
with probability tending to one. Alternatives of the form

<14> πn = π0 + Wδn/
√

n with δn → δ,

lend themselves to easy limiting calculations. Hereπ0 and W have the same
meaning as in Theorem<12>. By building theW into the perturbation we
eliminate a number ofW−1 factors in later formulae.

An easy application ofmclt for triangular arrays shows that
√

n(fn − πn)� N(0, V) underM(n, πn),

with the same limiting variance matrixV = diag(π0) − π0π
′
0 as before. The

asymptotic arguments from Section 2 were driven by the behaviour of the
standardized random vectorXn = W−1√n(fn − π0). UnderM(n, π0) it has a
limiting N(0, I − ∆∆′) distribution. The local alternative adds a shift:

Xn � N(δ, I − ∆∆′) underM(n, πn).

At this point you should reexamine the proofs of Theorems<7> and <12>

to convince yourself that most of the argument required only thatfn − π0

be of orderOp(1/
√

n)); the limiting distribution was needed only in the last
paragraph of the second theorem. UnderM(n, πn) it is still true that

θ̂n = θ ∗n +op(1/
√

n),√
nW−1(̂pn − π0) = HXn + op(1),

n Jλ(fn, p̂n) = ‖(I − H)Xn‖2 + op(1).

One should be a little careful with the interpretation of theop(·) quantities here.
They represent random vectors and random variables that are probabilistically
small under the modelM(n, πn). The same assertions were established under
M(n, π0) in the proofs of the theorems. If we could pass directly from
op(·) underM(n, π0) to op(·) underM(n, πn), there would be no need to
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reexamine the proofs for subtle consequences of calculations carried out under
the alternative models. It will turn out that the dual interpretation ofop(·) is
justified by Le Cam’s concept ofcontiguity, which will be discussed in more
detail in Section 4.

The changes in the conclusions of Theorem<12> are due only to changes
in the limiting distributions of the functions ofXn:

HXn � Hδ + HZ,

‖(Ik − H)Xn‖2� ‖(Ik − H)δ + (Ik − H)(Ik − ∆∆)Z‖2,

whereZ has aN(0, Ik) distribution, as before.
The quadratic form inZ has a noncentral chi-square distributionχ2

k−s−1(γ )

with noncentrality parameterγ = ‖(Ik − H)δ‖. That is, it has the same
distribution as

(Y1 + γ )2 + Y2
2 + . . . + Y2

k−s−1,

with the {Yi } independentN(0, 1) random variables. The tail probabilities

β(t, γ ) = P{χ2
k−s−1(γ ) ≥ t}

increase withγ . For a formal goodness-of-fit test, one choosest to make
β(t, 0) a prescribed small value (the size of the test). Thenβ(t, γ ) becomes
the asymptotic power for the local alternatives{πn}.

Notice that the asymptotic power depends onδ only through its component
(Ik − H)δ orthogonal to sp(W−1D). In particular, the test has no asymptotic
power for alternatives withδ ∈ sp(W−1D). It would be most unfortunate if this
were not so, because suchδ could correspond to{πn} approachingπ0 along
the surfaceP; the alternatives would then part of the model, and no test should
be able to distinguish betweenP and such a{πn}.

The effect of theδn perturbation also shows up in the asymptotic behaviour
of p̂n: underM(n, πn),√

n(̂pn − π0) = W HXn + op(1)� W Hδ + HZ.

If we center atπn, which is the parameter that̂pn really estimates, theδ
disappears: using the factδn = δ + o(1), we have

√
n(̂pn − πn) = W HXn − Wδn + op(1)

� W Hδ + W HZ − Wδ.

If πn ∈ P, the vectorδ lies in sp(W−1D) and Hδ = δ. Thus
√

n(̂pn −πn), has
the same limiting distribution for all local alternativesπn = π0 + δn/

√
n that

approachπ0 through the model. An estimator with this property will be called
regular (in Hájek’s sense). Section 5 will develop the concept of efficiency for
regular estimators.

4. The conditional Poisson model

This Section unedited. It contains many errors.

In the multinomial model, the constraint that the cell counts sum tok has
the asymptotic effect of removing one degree of freedom from the limiting
χ2 distribution. It is also the reason for theIk − ∆∆′ factor in the limiting
variance of the standardized counts.

In other applications of theχ2-test, further linear constraints are placed
on the cell counts, resulting in further reductions in the limiting degrees of
freedom.
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<15> Example. In a two-way table, the cells are arranged into a rectangular
array, with the rows and columns corresponding to different partitions of the
population. The table of Greenwood & Yule (1915), which cross-classified
individuals as either inoculated or uninoculated against cholera and as either
attacked or not attacked by the disease, was cited by Fisher (1922) as a case
where degrees of freedom must be adjusted.

Cholera Not Attacked Total
Attacked

Inoculated 1625 5 1630

Not 1022 11 1033

Total 2647 16 2663

More generally, if cell countsSi j for i = 1, . . . , r and j = 1, . . . , c are analyzed
with the marginal totalsSi + and S+ j treated as fixed (that is, the analysis is
done conditional on those marginal totals), the degrees of freedom are reduced
by r + c − 1, not just by the 1 due to the fixed sample size. Notice that one of
the marginal constraints is redundant, because

∑
i Si + = ∑

j S+ j = n; there are
only r + c − 1 linearly independent equalities involved.�

Fisher recognized that the fixed marginal totals play the same asymptotic
role as the estimation of parameters, which he saw as another way to force
the estimated cell probabilities to come closer to the observed frequencies.
He referred to estimation as a “method for reconstructing the population”. He
clearly understood the (asymptotic) equivalence of conditioning and parameter
estimation. His concept of degrees of freedom recognized estimation or marginal
conditioning as constraints that forced the vectorp̂n to lie in lower dimensional
subspaces (asymptotically).

. . . in all cases linear restrictions imposed upon the frequencies of the
sampled population, by our methods of reconstructing that population,
have exactly the same effect upon the distributions ofχ2 as have
restrictions placed upon the cell contents of the sample.

[Fisher (1922), page 92]

In cases where the population, with which the sample is compared
in calculatingχ2 has been itself reconstructed from the sample, we
must also take account of the number of degrees of freedom absorbed
in this process of reconstruction. The two cases of widest application
were (i) contingency tables in which the population is reconstructed by
assigning to the margins the frequencies observed in the sample, and
(ii) frequency curves constructed to agree with the sample in respect
of one or more moments. The common sense of this correction lies in
the fact that when the population with which the sample is compared
has been artificially identified with the sample in certain respects, such
as the marginal frequencies, or the moments, we shall evidently make
an exaggerated estimate of the closeness of agreement between sample
and population, if we regard the sample as an unselected sample
of a population knowǹa priori . It was possible to show that the
distribution was in fact that which arises when from any population
a large number of samples are taken, and only those samples chosen
which agree with the population in (say) the marginal frequencies;
these samples compared to the true population will give values ofχ2

distributed in the same manner as in the practical case in which we
compare any sample with a population artificially constructed from it.

[Fisher (1923), page 139]
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Fisher also gave a geometric interpretation to explain the large sample
behaviour of the goodness-of-fit statistic. (He wrotex for the difference between
the observed counts and the (estimated) expected counts.)

The most general way of proving this result consists in regarding the
values ofx (above) as independent co-ordinates in generalised space;
then owing to the linear relations by which the deviations are restricted,
for example that the marginal totals of the population should be equal
to those observed, all possible sets of observations will lie relative to
the centre of the distribution, specified by the assumed population, in
a plane space, of the same number of dimensions as there are degrees
of freedom.

[Fisher (1922, page 88)]

The interesting point here is the idea of identifying dependence as a consequence
of constraining a vector of independent quantities, which is the main topic of
this section.

Where do those independent coordinates come from? Fisher (1922)
introduced the device of treating the multinomial as a conditioned set of
independent Poissons. SupposeY1, . . . , Yk are independent, withYi distributed
Poisson (λi ). Then Y1 + . . . + Yk has a Poisson (λ) distribution, with λ =
λ1 + . . . + λk, and

P{Y1 = y1, . . . , Yk = yk | Y1 + . . . + Yk = n}
=

∏
i

e−λi λ
yi

i

yi !

/e−λλn

n!
if y1 + . . . + yk = n

= n!

y1! . . . yn!
py1

1 . . . pyk

k where pi = λi /λ.

The conditioning on the sum accounts for the one degree of freedom lost in
theM(n, p) model. The vector of standardized countsXi = (Yi − λi )/

√
λi has

an asymptoticN(0, Ik) distribution. For the multinomial model, the limiting
distribution would appear to be that of theN(0, Ik) conditioned on the value
of a particular linear combination. If we choose theλi so that

∑
i λi = n the

constraint is simple:
∑

i Xi = 0. Clearly we are free to choose theλi in this
way, because the{pi } depend only on the ratios of the{λi }. The idea can
be taken further. In an excellent paper summarizing the state of theχ2 art,
Cochran (1952) noted:

This approach also makes it clear that if further homogeneous linear
restrictions are imposed [on theYi − λi ], either by the structure of the
data or in the process of fitting, the effect will merely be to reduce the
degrees of freedom inχ2.

[Cochran (1952), page 319]

For example, in the two-way table, a multinomial model where marginal totals
are used to estimate cell probabilities under an independence hypothesis leads to
a limiting χ2

(r −1)(c−1) distribution for the goodness-of-fit statistics. An analysis
treating the marginal totals as fixed would lead to the same distribution; and so
would an analysis with row marginals fixed but with column marginals used
to estimate the remaining unknown parameters. All analyses fit into the same
framework of a table of independent Poisson counts, conditioned on certain
linear combinations and with possible parameter estimation.

Unfortunately, there exists quite a technical gap between what is intuitively
clear and what is mathematically provable. Haberman (1974, Theorem 1.1) has
established a rigorous result that exposes a number of the hidden subtleties.

The limit theory in Section 2—Theorem<12> in particular—was driven
by the convergence in distribution of the random vectorW−1√n(fn − π0).
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Under the Poisson model withπoi = λi /λ and λ = n, the components of
this vector are precisely the standardized counts(Yi − λi )/

√
λi . If we want

asymptotic theory for the conditional Poisson model, we have only to establish
a conditional limit theorem for the random vector

X = �−1(Y − λ) where� = diag(
√

λ1, . . . ,
√

λk).

The limit should be taken as the sumn = ∑
λi tends to infinity.

What sort of conditioning constraint should we consider? In the example
with the two-way table, the various marginal totals all correspond to quantities
of the formA � Y, whereA is a vector with (nonnegative) integer components.
Moreover, the Poisson means could be chosen so the constraints were

<16> A j � Y = A j � λ for j = 1, . . . , k − s,

for linearly independent, integer vectors{A j }. If we apply the Gram-Schmidt
procedure to the expanded collectionA1, . . . , Ak−s, e1, . . . , ek, whereei is the
unit vector with a 1 in thei th position, we construct an orthogonal basis forR

k

consisting of vectors with rational coordinates. To see this, consider the first
few steps in the procedure. LetA1 have squared lengthα1, an integer. Then
the component ofA2 orthogonal toA1 is

B2 = A2 − 1

α1
(A2 � A1)A1,

which certainly has all coordinates rational. The squared lengthα2 of B2 is
rational. In the direction orthogonal to bothA1 and A2 the vectorA3 has
component

B3 = A3 − 1

α1
(A3 � A1)A1 − 1

α2
(A3 � B2)B2,

which has rational coordinates. And so on. Multiplication of the{Bi } by
suitably large integers will then produce an orthogonal basis forR

k with vectors
having only integer coordinates.

Let V1, . . . , Vs denote the basis vectors that span the subspaceL that
is orthogonal to sp(A1, . . . , Ak−s). Then the linear constraints<16> have the
interpretation thatY − λ should belong toL.

Notice thatL must contain points from the integer latticeZk; integer
linear combinations of the{V i } have only integer components. Ifλ has integer
coordinates, as will be assumed from now on, the setλ ⊕ Z

k will contain
lattice points to whichY attaches nonzero probability, when minλi is large
enough. We will be able to make use of the elementary notion of conditional
probability, and not need to worry about abstract methods of conditioning. To
avoid nonnormal limiting behaviour (Problem??) we should also require that
none of theλi increases much more slowly thann. Remember that� is the
diagonal matrix diag(

√
λ1, . . . ,

√
λk).

<17> Theorem. Let L denote the subspace ofR
k spanned by vectorsV1, . . . , Vk

with integer coordinates. LetY be a random k-vector of independent Poisson
variables whose vector of meansλ has integer coordinates for which

∑
i λi = n

andmini λi /n stays bounded away from zero. Then the conditional distribution
of the vector of standardized counts(Yi − λi )/

√
λi , given thatY − λ belongs

to L, converges to a N(0, Ik), conditioned to lie in�−1L.

Perhaps it is imprecise to assert convergence to a conditioned normal
distribution depending onλ. Nothing in the hypotheses of the theorem requires
the subspace�−1L to settle down in any of the usual senses. The limit
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distribution is not fixed; it might change withλ. The assertion should be
interpreted to mean

P((h(�−1(Y − λ)) | Y − λ ∈ L)) − Nλh → 0

for each bounded, uniformly continuoush(·) on R
k. The approximating

probability distributionNλ has densityψ(x) = (2π)−s/2 exp(− 1
2‖x‖2) with

respect to Lebesgue measureσ on the subspace�−1L; it is the distribution of
a N(0, Ik) random vector conditioned to lie in�−1L.

Rather than presenting a complete, detailed proof of Theorem<17>, I will
give only an outline of a simplified version of Haberman’s argument, leaving
the technical details to the problems.

The main ingredient is a local limit theorem for Poisson probabilities,
derived from Stirling’s approximation,m! ≈ √

2π mm+ 1
2 e−m. If Y has a

Poisson(λ) distribution then, for an integerm = λ + t
√

λ ,

P{Y = m} ≈ φ(t)√
λ

whereφ(·) denotes theN(0, 1) density. More precisely, the excellent error
bounds in Stirling’s approximation give

<18> P{Y = m} = φ(t)√
λ

(
1 + o(1)

)
wheret = m − λ√

λ

uniformly over ao(
√

λ) range fort , asλ tends to infinity. For the vectorY
of independent Poissons, multiplication ofk such approximating factors leads
to the local limit theorem, which relates the Poisson probability attached to a
lattice pointm and the normal integral over a small region:

<19> P{Y = m} = (2π)−(k−s)/2ψ(t)
∏

i
λ

−1/2
i for m = λ + �t,

uniformly over‖t‖ = o(
√

n). The product term on the right-hand side decreases
like n−k/2: ∏

i
λ

− 1
2

i = n−k/2α(λ),

whereα(λ) is a factor that stays bounded away from zero and infinity under
the conditions of the theorem. Absorb the(2π)−(k−s)/2 into this factor.

To approximate the probability ofY lying in some subset we have only
to sum the terms from<19> over the lattice points in the set. Two slight
complications arise with this idea. First, the approximation<19> only works
for lattice points withino(

√
n) of λ. Second, it is no mean feat to figure out

which lattice points lie within a given set.
The first complication actually causes very little trouble. The Poisson(λ)

probabilities drop off rapidly asm moves away fromλ:

P{| Y − λ |> t
√

λ} ≤ 2 exp((− 1
2t2B(t/

√
λ))),

whereB(·) is a continuous function that decreases monotonely fromB(0) = 1.
(See Problem ??) In particular, it is easy to find at or ordero(

√
λ) such that the

tail probability decrease faster than any fixed power of 1/λ. Correspondingly,
it is easy to dispose of contributions from regions where<19> fails.

The second complication was foreseen by the specification of integer
coordinates for the vectorsV1, . . . , Vs that spanL. For eachw in Z

s define a
cell

C(w) = {(w1 + t1)V1 + . . . + (ws + ts)Vs : − 1
2 ≤ ti < 1

2 for eachi }.
The cells partitionL into disjoint sets, each of which has the sames-
dimensional Lebesgue measure. Because each cell is a translation ofC(0) by
integer multiples of theV i vectors, it must contain the same number of lattice
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points fromZ
k. It might be difficult to calculate the actual number,N, of

lattice points per cell, but its constancy simplifies the approximation of Poisson
probabilities:

P{Y − λ ∈ C(w)} ≈ NP{Y − λ = w}
≈ n−k/2α(λ)Nψ(�−1w).<20>

The linear transformation�−1 maps each cellC(w) into a smaller cell in�−1L

with Lebesgue measureσ(�−1C(0)) = n−s/2β(λ), whereβ(λ) is another
factor that stays bounded away from zero and infinity under the conditions of
the theorem. Using the approximation

ψ(�−1w)σ (�−1C(w)) ≈
∫

{x ∈ �−1C(w)}ψ(x)σ (dx),

we deduce from<20> that

P{Y − λ ∈ C(w)} ≈ n−(k−s)/2γ (λ)

∫
{x ∈ �−1C(w)}ψ(x)σ (dx),

whereγ (λ) = Nα(λ)/β(λ). Of course, we should worry about bounds on the
error. But if we ignore that difficulty while summing overw in a large region
we getP{Y − λ ∈ L} ≈ n−(k−s)/2γ (λ), because

∫ {x ∈ �−1L}ψ(x)σ (dx) = 1.
Some attention to errors in the approximation would show that it omits only
terms of ordero(n−(k−s)/2).

A similar argument would give an approximation to the contribution

Ph(�−1(Y − λ)){Y − λ ∈ C(w)}
for a bounded, uniformly continuoush(·). Summation over all cells in a large
region would then lead to

Ph(�−1(Y − λ)){Y − λ ∈ L} ≈ n−(k−2)/2γ (λ)

∫
{x ∈ �−1L}h(x)ψ(x)σ (dx),

with an error again of ordero(n−(k−s)/2). The assertion of the theorem is
established when we take the ratio of the last two approximating quantities.

Remark: Things to do: explain how the conditional limit theorem
fits with the goodness-of-fit test with parameter estimation.

5. Problems

These problems have not yet been edited to make any sense.
More problems will be added.

[ 1 ] If Pn � P, show that lim infPn� ≥ P� for all lower-semicontinuous functions�
that are bounded below. [Hint:]

[ 2 ] Suppose{x1, . . . , xn} and {y1, . . . , yn} are positive numbers with
∑

i xi =∑
i yi = 1. Show that

∑
i xi log(xi /yi ) ≥ 1

2

∑
i |xi − yi |2. [Hint: Try a Taylor

expansion ofx log(x/y) abouty.]

[ 3 ] Supposen objects are independently cross-classified according to one ofr
possible row characteristics and one ofc possible column characteristics, with
probability pi j of an object ending up in rowi and column j . (This gives
a multinomial model withk = rc cells.) LetP be the model that specifies
independence between row and column characteristics:

pi j =
(∑

�
pi �

)(∑
�

p�j

)
/rc for all i , j , underP.

Suppose the trueπ0 has all components positive.

Statistics 603a: 2 December 2001 c©David Pollard



18

(i) Show thatP is locally s-dimensional nearπ0, for an s that you should
specify.

(ii) Find the maximum likelihood estimator̂pn.

(iii) Find the limiting distribution of
√

n(̂pn − π0).

(iv) Describe the space sp(W−1D). (Basis vectors?)

[ 4 ] Under the conditions specified by the Local Smoothness Assumption<8>,
prove that there exist constants 0< C1 < C2 < ∞ such that

C1|θ| ≤ |p(θ) − π0| ≤ C2|θ| for θ ∈ �0

[Hint: First consider the bound forθ in a neighborhood of0 small enough to
make theo(‖θ‖) term less than a suitably small multiple of‖θ‖. Then use
continuity and compactness to extend the range of the inequalities.]

[ 5 ] If {Xn} = op(1), show that there exists a sequence{εn} that converges to
zero slowly enough to ensureP{|Xn| > εn} → 0. [Hint: Build εn using an
increasing sequencen(k) such thatP{|Xn| > 1/k} < 1/k for n ≥ n(k).]

[ 6 ] Let Qn be the Bin(n, δn) distribution andPn be the Bin(n, 1
2). Show that

Qn � Pn if and only if δn = 1
2 + O(1/

√
n).

[ 7 ] RemoveO(1/
√

n) rate of converegnce restriction, under extra Lipschitz on
model, for convergence under laternatives.
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