CATEGORICAL MODELS AND CHI-SQUARE TESTS

Categorical data are given by counts within each of a finite number of
mutually exclusive categories, when a finite number of individuals are distributed
by some random mechanism amongst those categories. There are several good
reasons for studying the asymptotics for categorical data models.

e Pearson’sy? test was one of the first examples of a statistical test for
goodness-of-fit. Even though Pearson (1900) got the story on degrees of freedom
wrong, they? test has become a standard part of statistical methodology. Several
key statistical ideas, such as maximum likelihood estimation and efficiency,
were developed by Fisher during the period of his running battle with Pearson
over the correct choice for the degrees of freedom of the approximafing
distribution. Some of his original arguments for the goodness-of-fit problem
still offer helpful insights into those general ideas.

e The x? test is much used, but not always well understood. What
difference does it make if one uses Poisson rather than multinomial models?
Why does conditioning on various marginal totals in cross-tabulated data have
the same effect on degrees of freedom as the estimation of certain parameters?
It is not too hard to answer these questions in an asymptotic sense.

e As an introduction to asymptotic methods, the theory for categor-
ical models has several technical advantages. Finiteness and monotonicity
properties simplify calculations. Regularity conditions are clean and easy to
understand. Pathologies that complicate general theory are easier to eliminate
from categorical models. The technicalities don’t obscure the ideas.

1. The multinomial model

Suppose each dfi objects is placed independently into onekomutually
exclusive categories (aells), labelled 12, ..., k, according to the distribution

P{object placed in celi} = p fori=1,...,k
The {p;} are nonnegative and sum to 1. Define the cell counts
S, = total number in celi.
Then the random vectdlS.y, ..., Sw) has a multinomial distribution, denoted
by M(n, py, ..., Pr):

n! X Xe
P{Swl—xl,---,&k—xk}—mpl PSS

wherexy, ..., X range over all choices of nonegative integers summing. to
When the vectop = (p, ..., p«) of probabilities is known, the goodness-
of-fit statistic s )
2 _ ( o T npot)
Xa(p) = Za T

has approximately &? distribution; it converges in distribution tg? , asn
tends tooco. If p is unknown, but is modelled as a member of someJset
replacement of the unknowp by estimate,; defines an analogous goodness-
of-fit statistic X2(pn). Under simple assumptions @h the new statistic has a
limiting x2 distribution, but with a reduced number of degrees of freedom, for
appropriately efficient estimato,. Pearson got it wrong; Fisher (1922, 1923,
1928) got it right. Birch (1964) proved it elegantly.
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Two appropriated, choices are (the method of minimug?) the value
that minimizesxﬁ(p), and the maximum likelihood estimator (MLE), which is
defined to maximizé_; S;ilog p; over ?. Equivalently, the MLE minimizes

G2(p) = 2n Z fri log( fri/ pi)

over P, where f,; = S;i/n. Both X2(p) and G2(p) provide a measure of fit
between a proposep and the observed vectdy of proportions. Cressie &

Read (1984, 1988) treated both functions as members of a one-parameter family
of power-divergencéunctions:

2
J.(fr, ) = O+ D) Z <fnli+/\/piA - fni)-

i
For A = 0 andx = —1 the functions are defined by continuity:
Flln, p) = fim, (. p) =2 _ failog(fri/ )

and similarly forJ_;. Using the fact that botlif,;} and {p;} sum to 1, it is
easy to expand out the quadratic to get

Xa(p) = nd(fn, p).
For each reak an estimator is defined by minimization of tldg function over
the parameter sék:
Pn(2) = argminJ, (fn, p).
pe?

In the next few sections | will derive limit results for these estimators and
the corresponding goodness-of-fit statistics. Under regularity conditions close
to those of Birch (1964), for fixed. and 2/, | will show thatP,(A) =

Pn(x) 4 0p(1/4/n) and

NJ (Fa, Pa(A)) ~ X 1 s

wheres is a dimension defined by. My presentation draws many ideas from
Dudley (1976).

Properties of power-divergence functions

The functionJ, (f,, p) is a sum ofk termsH, (f,i, pi), where

1+a
m<7+k(y—x)—x> forx >0,y > 0.

As before, the definition for = 0 or A = —1 is by continuity:

H.(X, y) =

Ho(X, y) = 2xlog(x/y) = H_1(y, X) forx >0,y > 0.

Similarly, the limits asx — 0 or y — 0, when they exist, define the values
H; (0, y) and H, (x, 0). The extra linear term.( f,; — p;) has no direct effect
on J,; it contributes zero to the sum. But it does maKke a more convenient
function.

Simple algebra shows that

Ho1-3(y, X) = Hi(X, y) = XHi (1, y/x),
at least wherx > 0. The partial derivates,
9 2 Xl+A
—HXxy)=— -=—+1
8y )\( ’y) 1_’_)\( y1+)\+ >’
2 2X1+A

a—yzHA(X, y) = W,
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identify H, (x, -) as a convex function that achieves its minimum of zera.at
12

10

8 Plot of H (t) versus t, for various

Fort near 1 a Taylor expansion gives
Hi(1,t) = (t — )2 — 224+ 1) (t — 1)3s37,

with s between 1 and. It follows via equality<1> that for eachxy > 0 there
exists a neighborhood and a constant such that

_ 2
HA(va)_w <Cly—x]? for x,y e U.

Of course bothC andU depend orxg andi. Puttingx = g andy = p; then
summing oveli, we get for each vector of cell probabilitiesy with strictly
positive components a neighborhoWdsuch that

- n )2
JA(va)—Z%

<Clg—pl® forg,peV.

<2>

Notice that the approximating sum does not depend.ofhe fact thatH, (x, y)
increases ay moves away fronx in either direction greatly simplifies the
asymptotic theory for power-divergence estimators. It implies dhét,, f, +tv)
for t > 0 is an increasing function df for each fixedv; the functionJ, (f,, -)
increases along each ray emanating frigm

2. Asymptotics for power-divergence estimators

Until further notice,A will be held at some fixed real value.

Suppose the cell counts are generated frorvign, o) distribution, where
each component of theg (the true value of the parameter) is strictly positive.
Suppose also thaty belongs to some specified set of probability vectdrs

The first step in most asymptotic arguments is a proof of consistency. One
needs to know thap, is close tomg before any sort of Taylor expansion can
be of use. As it will later turn out, the first step is actually superfluous for
the multinomial model. Nevertheless, it will be instructive as a prototype for a
style of argument that typically would be required.

I will prove thatp,, converges almost surely . The weaker convergence
in probability would actually suffice, but there is no added difficulty in
establishing convergence in the stronger sense. We may as well establish the
stronger result, even if we don't really need it.

The behaviour of,, controlsp,. The relevant facts follow directly from
the sLLN and themcrT.
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Lemma. Under the multinomial modéW((n, mg),
() fn — m almost surely.
(i) /N(fn— o) ~ N(O, V), where the limiting variance matrix has, j)t"
element—mi7; if i # j, andm — 72 ifi = j.

Proof. The components df, are not independent; they sum to 1. There is
another source of independence, though. Waitdor the unit vector with a

1 in positiona and zeros elswhere. A single observation corresponds to a
random vectoX that takes the value, with probability =, the position of the
1 indicating the cell into which the observation falls. Thus

PX = me + ...+ e = 7o
PXX' = mie1€) + ... + 7mxexe.
Consequently,
var(X) = diag (71, ..., ) — momy = V.

Write f,, as an average of independent copies of, then deduce assertion
(i) from the sLLN and (ii) from themcrr.

What do we need to show in order to establish the almost sure convergence
of Pn to mp? To understand the problem let us temporarily make explicit the
dependence op, = Pn(w) on the pointw in the underlying sample space
Q. We need to find a negligible s&fy, and for eachs > 0 we need a finite
no(w, 8), such that

[Pn(w) — mo| <& for all n > ng(w, 8§) andw ¢ No.

The same negligible sé{, works for eachs > 0. If the restrictionw & Ny
were replaced by € N, for a negligible seiN; that might depend o4, it
would be a simple matter of casting out a sequence of negligible sets to recover
an appropriatéNy: we could takeéNp to be the union of the countable family
{Nym:m=1,2,...}. In summary, for eachi > 0 we need to show that, with
probability one,

[Pn — w0l < 68 eventually.

Be certain that you understand the quantities hidden in the wwriths
probability oneandeventually. They are the negligible sé{; and theng(w, §)
corresponding to the modified form of assertiea>. It would be most
cumbersome to make the dependences explicit every time.

Theorem. Under the multinomial modeM(n, 7o), with g a point in
P having strictly positive components, the minimipgrof J, (f,, p) over P
converges tary almost surely.

Proof. Fix § > 0. Write B for the open ball with radiug centered atry.
We need to show that, with probability one, the estimfigreventually lies
in B, for eachs small enough. From now on let me omit the qualification
with probability one At the end of the proof you should mentally cast out a
countable collection of negligible sets to make the assertions hold on a set with
probability one.

The estimatop,, minimizes J, (f,, p) over allp in P. In particular, it must
do better than the (unknowmiy:

I (fn, ﬁn) < J,.(fn, o).

By the almost sure convergencefgfto wg and the continuity ofJ; in its first
argument,
J.(Fn, o) — (0, o) = 0.
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For each fixedt > 0, we must therefore have
J(fn, Pn) < € eventually.
To forcep, into the ballB we need only show that, for sonee> O,
pig;c J.(fr, p) > € eventually.

In a more typical asymptotic problem an infimum over a large piece of the
parameter space might present unpleasant global complications. Strange things
might happen as the parameter wanders off to the far corners of the parameter
space. For the multinomial problem, monotonicity ff,, -) along each ray
emanating fronf, spares us the global complication.

When |f, — mo| < 8, as must eventually happen by virtue of Lemraa>
part (i), the infimum overB¢ is achieved on the boundafB of the ball B.
For eachp € B€ there is ap* on the boundary for whicld, (f,, p*) < J,.(fn, p).
It follows that

inf J,(fn, p) = inf J,(fh, p) when|f, — mg| < 6.
peBe¢ pedB

Asymptotic problems do not always allow us to sidestep global considerations
so easily.

If § is chosen small enough, the boundag lies within the neighborhood
of 7o in which the quadratic approximation2> holds. In particular, eventually

foi — Pi)?
By - 3, P

It is important that the inequality eventually holsisnultaneouslyor all p on the
boundarya B. Each f,; converges almost surely to a positive Eventually the
approximating quadratic will be larger than the sum obtained by replaing
in the denominator bys2. Using the fact that eventuallys2- |f, — p| > §/2
for all p in B, deduce that

inf_J; (fn. p) > min(27;)1(8/2)> — C(25)°  eventually.
pe i

3

< C|fy — pl for all p € 9B.

Call the lower bound. If § is small enoughg is positive. As explained earlier,
O it follows thatp, eventually lies within the balB, as required.

The proof of the last theorem made only feeble use of the almost sure
convergence. Nowhere did we need to consider the behaviolyr aifa fixed
o for more than one sample sire nowhere did we need control ovéy(f,, p)
for more than onen. The real role was to provide theith probability one
... eventually which justified the existence of several inequalities for a fixed
sample size. If we had to rely on only a weak law of large numbers—that
is, convergence of, to g in probability—the incantation would have been
eventually, with probability close to ond’he meaning would then be: given
ane > 0 there exists amg(¢) such thatP{...} > 1 — ¢ for n > ng(¢). When
we combine a fixed, finite number of such assertions we arrive at assertions
that hold except possibly for a set of (depending om) that has probability
bounded by a fixed multiple of the (arbitrarily smadl) The main line of the
argument changes little.

It becomes more important that we do not depend on almost sure assertions
when we study the finer asymptotics fo§. The asymptotic normality fof,
asserted by part (i) of Lemma3> controls behaviour for each fixad not
behaviour at a fixed along a whole sequence of sample sizes. (A law of the
iterated logarithm fof,, would give an almost sure bound, but the distributional
consequences of the weaker result turn out to be more interesting.)
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Reinterpreted as a manipulation of inequalities that hold eventually with
probability close to one, the proof of the last theorem could establish much more
than mere convergence in probability @f to mo: with § allowed to decrease
with increasing sample size, it gives an in-probability rate of convergence.
Another slight improvement, which will later allow us to relate the estimators
derived from differentJ; function, comes at no great cost. We do not need
Pn to exactly minimizeJ, (f,, -); it has only to come within some prescribed
distance from the infimum. For those who worry about such things, the slight
increase in generality also eliminates technical problems related to existence,
unigueness, and measurability of an exactly minimizing value.

Theorem. Assume thévi(n, o) model withmy a point in P having strictly
positive components. Suppdseis an element of? for which

Ji(fa, Pn) < FI)Q; J(fn, P) + Op(1/n).

Thenp, converges tarp at an Q,(1/./n) rate.

Proof. Let B be the open ball with center, and (random) radiug, of order
Op(1/4/n). The precise value fo¥, will be specified soon.
The defining inequality fop,, implies
JA(fnvﬁn) < J(fn, m0) + Op(l/n)-

The convergence in distribution qfn(f, — mo) implies thatf, lies within a
distanceOp(1/4/n) of my. From the quadratic approximatiogz>, it follows
that

(fi — m01)?
i fni

Thus there exists a (randora) of order Op(1/4/n) for which
3. (Fn, Pn) < €.

To force P, into the ball B we need to choosé, large enough to make
(eventually, with probability close to one)

VN EDY + O(Ifa — mol®) = Op(1/).

piggc Ji(fn, p) > eﬁ.
If we ensure thatf, — wo| < 8,/2, monotonicity ofJ, (f,, -) along rays fronf,
reduces the left-hand side to the infimum over the bound&\of B, giving
the lower bound
(Min(27;) 1) (80/2)* — C(28,)°
1

when f, gets close tom. For n large enough (that is, eventually), with
probability close to one, the lower bound is greater th3f16. To satisfy the
two requirements foé, the value 4, + 2|f, — mo| would suffice.

The multinomial problem is atypical in that a monotonicity property allows
us to deduce a rate of converger@g(1/./n) directly from the behaviour of the
criterion functionJ, (f,, p) on the boundary of a very small ball. It is typical,
however, in that no particular local structure need be impose®, @except that it
should contain the truer, in order to force theD,(1/,/n) rate. Comparisons
betweenJ, (fn, Pn) and J, (f,, o) cannot take us any further. To establish
distributional results fon/n(p, — wp) we must impose more structure on the
parameter seP, at least in a neighborhood a&f,. The following assumptions,
essentially due to Birch (1964) with modifications by Dudley (1976), can hardly
be improved upon.

Let us assume that a small pieceJohear the truerg is well approximated
by a small piece of ars-dimensional hyperplane, whesee< k — 1. The
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minimization of J, (f,, p) will then become asymptotically equivalent to the
minimization of a quadratic form, derived from approximatien>, over the
whole hyperplane—an asymptotic problem of weighted least squares.

<8> Local Smoothness Assumption. Say that? is locally s-dimensional
near =g if there exists a continuous, one-to-one map) from a compact
neighborhood®, of the origin inRS into P such that:

(i) the setPg = {p(O) : O € Op} is a neighorhood ofry = p(0) within P.;
(i) the mapp(-) is differentiable at0,
p@) = o+ DO + 0(]0)) nearO,
with derivative matrix D of full rank s.

Property (i) means that evepyin P that is close enough tay must have
the formp(@) for a uniquely determine®@ in ®,. The assumption of full rank
ensures existence of constants@; < ¢; < oo such that

cijt| < |Dt] < cft] for all t € R®.
It follows (Problem ???) that there exist other constants G; < C; < o0
such that
<9> C1/0| < |p(8) — mo| < C2[0] for 6 € ©¢

These inequalities will ensure that rates of convergence for estimatarg of
translate into the same rates of convergence forgtivalues. For exampldp,
converges targ at Op(1/4/n) rate; with probability tending to one it has the
representatiop(8y,), where|6,| = Op(1/4/n).

MAYBE BETTER TO GIVE THE ARGUMENT FOR KNOWN 7y FIRST.

ALSO, NOTE CLASH OF NOTATION WITH H AND Hj.

Before | state and prove a formal limit theorem, let me argue heuristically
to suggest how local smoothness controls the finer behavioi,.offhe
informal arguments will also establish needed notation.

From approximation<2> and the fact that, ~ m, we have

f. — D 2 fi— _)2
d(fn, p) = Zi % ~ Zi (”'Tp' for p nearmy.

If we defineW to be the weight matrix diag/moy, . . ., /7o), the approximat-
ing quadratic become®V—1(f, — p)|°. In particular,

Ji(fn, p(8)) ~ Qn(0) = |Xn —W™DOI?  whereX, = W(f, — m).

The valueé\n nearly minimizes the left-hand side ov@rin ©q. It should
therefore also come close to minimizitig, (0) over ®y. The global minimum
of Qn(@) over the whole ofR® corresponds to the valu#: for which

<10> WD@; = HX,,
where H is the matrix that project®* orthogonally onto thes-dimensional
subspace spv—1D) spanned by the columns 8/ ~'D. Becausd, — mg =
Op(1/4/n) and the matridW—1D is of full rank, 8;; is also of orderO,(1//N).

In particular, with probability tending to one it lies in the neighborhaag
The rate of convergence fé: also gives

VN(p(8;) — o) = /ND6;, + 0p(1)
= WX;, + 0p(1).

From part (ii) of Lemma<3>,
Xn~ N, Iy — AA"),

Statistics 603a: 2 December 20(#1 (©David Pollard




<11>

8

where A’ denotes the unit row vect@y/moy, . . ., /Tok ). The matrixl, — AA’
represents the projection orthogonal to the one dimensional space spanned by
A. The limiting normal distribution foiX, is that of (Iy — AA’)Z for a vector

Z of independentN (0, 1) random variables. Thugn(p(6}) — mp) has limiting
distributionW H(lxy — AA’)Z. The projectionH Kills the AA’ becauseA is
orthogonal to spV—1D):

A'WD=1D=0.

The last equality—the orthogonality of the rows Bfto the vector of ones—is
a consequence of the differentiability assumption and the fact that the cell
probabilities sum to one:

1=1p@) =1+ 1'D0O + 0o(|0)).
This gives1’' D@ = 0 for all 8 in RS, whencel’D = 0. In summary,

Vn(p(8y) — mo) ~ HZ.

The minimization ove® has contributed the projection onto(¥p~1D).
__ When@; does lie in®q, it should be close to the near-minimizing value
6,. This would give the approximation

Pn ~ o + DO, ~ o+ DO = mo + WHW L(f,, — o).
If these approximations are to be believed we should have

VN(@n — ) ~ WHZ
and
N3, (F. P) ~ N[ Xy — WDE} 12
=l = H)XqlI?
~ [I(I = H)(I — AA)Z|?

The product(l — H)(I — AA’) is an orthogonal projection onto a subspace of
dimensionak —s— 1: the second factor kills the component in thedirection

and then the first factor kills the components in the orthogonal subspace
sp(W~1D). The second factor corresponds to the constraint that the cell counts
S\ sum ton; the first factor corresponds to tlseparameters fitted (locally) by

P. The squared length of the projectioh— H)(I — AA’)Z has the desired

xZ 4 distribution.

To make the heuristic arguments rigorous we need to establish uniform
probabilistic bounds on the errors of approximation. A slight extension of the
stochastic order notation will save us from much tedious deatil, even if it does
increase the risk of error—even more of the supporting mathematics will be
hidden behind a few dangerously convenient words. We will need to make
assertions of the form

Gn(t) = Op(an) uniformly over Ay,
for random processe$s,(t) : t € T} and various subsetd, of the parameter
setT, with oy possibly random. Such an assertion means

sup|Gn(H)| = Op(an)-
teA,

That is, for eache > 0 there exists a constaM, and an integeng(¢) such
that

}P’{ sup|Gn(t)| > Méan} <€ for n > ng(w).
te A,

Ignoring an event of small probability, we may eventually assume|Batt)|
is bounded by a fixed multiple af,, simultaneously for alt in A,.
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Comment further on subtlety
about nonexistence ¥} with

small probability?
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Notice that we neeg, to be slightly closer to minimizing the criterion
function J, (f,, -) over P—within op(1/n) rather than theO,(1/n) from
Theorem<7>. Such an estimator will be referred to, with only a slight risk of
ambiguity, as a power-divergence estimator.

Theorem. Assume thévi(n, o) model withmy a point of P having strictly
positive components. Suppdseis an element of? for which
(i) Jn(fn, Pn) < infpep i (fn, p) + 0p(1/N).
Suppose
(i) P is locally s-dimensional neat, in the sense of the Local Smoothness
Assumption<s>, with matrix of derivatives D.
Then
(i) /NPn — m0) = VAWHW(f, — mo) + 0p(1), which has an
asymptotic normal distribution t0, W HW™1), where W denotes
the matrix diag,/moz, . .., +/7ok), and A’ denotes the unit vector
(/To1, - - -, o/Tok), @and H denotes the matrix for orthogonal projection
onto the columns of WAD.

(IV) h\]}h (fn,ﬁn) ~ szfsfl'

Proof. We need to establish approximations that hold uniformly over a®all
with center0 in R® and radiuss, of order O,(1/./n). With probability tending
to one, such &£ will be contained within the neighborhoal, where the local
parametrization is valid. Choos® large enough to ensure th@t contains
both the®, for which p, = p(6,) and thga,*; that minimizes the quadratic
Qn(0) over all of R®. This is possible fo@, by virtue of Theorem<7> and
the inequality<9>; it is possible for@; because equality:10> has the unique
solution

0; = (D'D)"'D'W HX, = Op(1//N).

The inverse matrixD’'D)~?! exists becaus® has full rank.
Uniformly over C,

Ifa — p(8)| < Ifn — mo| + C2|0| = Op(1/V/N).
It follows from inequality <2> that

foi — Pi(6))°
3, pO) =), %

Replacing thef,; in the denominator byrs we perturb the summand by at
most
Op(( fni — P (B)1*) Op(([ fni — mai]) = 0p(1/N) uniformly on C.

Here | have used the weak fact thdt; — 7gi | is of orderop(1), rather than the
strongerOp(1/4/N), in order to stress the idea that tlig in the denominator
does not play a crucial role; any quantity lying withig(1) of mo would
suffice. The numerator in thé" summand has the form

(fri — o — (D@); — Op(1/4/M)?  uniformly onC.

The contributions from theD(1/./n) contribute at mosby(1/n) to the
expansion of this quadratic.
The combined effect of replacing(@) by its linear approximation and
replace thefy,; by g in the denominator is a uniform quadratic approximation,
i (fn, P(8)) = Qn(0) + 0p(1/N) uniformly onC.
If we expandQn, (0 — 6;; + 6;) as a quadratic i — 8}, the cross product term
disappears (otherwis#: could not be a global minimizing value) leaving

Qn(0) = Qn(8) + W ID® — 67>  forall § € RS.

= 0p(n~¥?) uniformly onC.
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When@;: lies in ©q it defines a member dP for which
Ji(fn, Pn) < J(fn, P(O})) 4 0p(1/1N).

Replacing bothJ;, terms by means of approximaticai3> then consolidating
0p(1/n) terms, we get

Qn(Bn) < Qn(%) 4 0p(1/N).
That is, R
IW™ID(@, — 67)[* < 0p(1/n).

It would perhaps be more precise to make such a set of comparisons only with
the explicit stipulation thap, € Py and@;; € ®¢. The final inequality offers us

a way to avoid those details. Thg(-) acknowledges existence of a set where
the 1/n rate assertion has no effect; that set covers all the realizations where
the comparison argument is not strictly justified.

The rest of the argument is easy. The full rank assumptio® ansures
existence of a positive consta@g for which [W~1Dt| > Cs|t| for all t € RS,
Consequently, R

On — 67 = 0p(1//N).

The differentiability then gives

Pn= po;) + Op(l/\/ﬁ),
which translates into assertion (iii) of the Theorem. It also gives

J,(fn, Pn) = Qn(6n) + 0p(1/1n)
= Qn(6;) + 0p(1/n)
= [(I — H)Xn[* + 0p(1/n).

As explained during the heuristic discussion leading up to the Theorem, when
multiplied by n the last quadratic expression has the asserted limitifg
O distribution. Theo,(1) perturbation does not affect that limit.

Notice that the choice of had no effect on the last proof, except for the
hidden control over various constants. For everghe estimatop, (1) has the
asymptotic representation asserted by (iii) in Theorem>; the standardized
estimators for different values are equal up to theg (1) error terms. That is,
for all » and A/,

ﬁn()\) _ﬁn()h,) = Op(l/«/ﬁ),

as asserted at the end of Section 1. Similarly, the behavioadgaf,, Pn(2))
is determined by the approximation

Pn(1) = p(Oy) + 0p(L//M).

The 6} does not depend oh. It follows that, under the conditions of the
Theorem,n J (fn, Pa(X)) ~ x2 < 4, for all x and A"

What happens if we use an estimator #ey that is not defined by near
minimization of one of theJ, (fn, -) functions? More specifically, suppopg
has the formp(6,) with probability tending to one, wher@, = Op(1//n).

If 6, does not lie withinop(1/4/n) of the 6} that minimizesQ,, the term

nw-1D@@, — 6;)|? will not converge in probability to zero; it will inflate
the approximating1Qn(6;;), which has the Iimiting)(kz_s_l distribution, by a
guantity that does not disappear asymptotically.

As we will see in Section 5, the propertly, = 0 +0,(1/./n) corresponds
to the property calleéfficiency
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Power-divergence estimators under local alternatives

How does thep, from Theorem<12> behave if the fixedr, is replaced by
a m, that changes witm? Such a question arises when one considers the
power of goodness-of-fit test. It also appears as part of the definition of a
regular estimator a restriction that will be introduced in Section 5 as part of
the program to rescue the flawed concept of efficiency.

Consider first the behaviour @, under a modeM(n, =1), for a fixed
m ¢ P for which inf{||wy — p|| : p € P} > 0. The last assumption eliminates
the awkward posibility thatr; might be a limit of points inP without actually
belonging to? itself. Let B be a small open ball that is disjoint frofh,
centered atr;. Then, by an argument similar to the proof of Theorem:,
whenf, € B we have

Jk(fnaﬁn) Z Inf J)L(fns p)
pedB
— inf J, (w1, p) almost surely
pedB

> 0.

The rescaled statistie J, (fn, pn) diverges to infinity; it no longer has a proper

limiting distribution. A test of fit will reject the modelP with probability

tending to one, undeM(n, w1). The test has power tending to onemt
Discrimination betweenr; and P is to easy a task for any halfway decent

estimator or testing procedure. We need to pose a more difficult task if we are

to compare different procedures. We must consider powlkrcat alternatives

which change witm. Replacer; by a sequencér,} that moves toward® at

a rate that allows good procedures to discriminate betvwigand =, but not

with probability tending to one. Alternatives of the form

T = 7o + Wén//N with 6, — 6,

lend themselves to easy limiting calculations. Hegand W have the same
meaning as in Theorem12>. By building theW into the perturbation we
eliminate a number 0¥~ factors in later formulae.

An easy application ofcrr for triangular arrays shows that

J/n(fn — ) ~ N(O, V) underM(n, ),

with the same limiting variance matriX = diag(m) — o7, as before. The
asymptotic arguments from Section 2 were driven by the behaviour of the
standardized random vect¥r, = W—1,/n(f, — mo). UnderM(n, m) it has a
limiting N(O, | — AA) distribution. The local alternative adds a shift:

Xn~ N@, 1 —AA) underM(n, m,).

At this point you should reexamine the proofs of Theorears- and <12>

to convince yourself that most of the argument required only that mo

be of orderOy(1/,/n)); the limiting distribution was needed only in the last
paragraph of the second theorem. Un@ém, 7y,) it is still true that

Bn = 0 %n +0p(1/3/N),
VAW Py — 7o) = HXq + 0p(D),
N3, (fa, Bn) = (1 = H)Xnll* 4 0p(D).
One should be a little careful with the interpretation of th¢) quantities here.
They represent random vectors and random variables that are probabilistically
small under the modéW(n, 7,). The same assertions were established under

M(n, mp) in the proofs of the theorems. If we could pass directly from
0p(-) underM(n, mp) to 0p(-) underM(n, 7,), there would be no need to
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reexamine the proofs for subtle consequences of calculations carried out under
the alternative models. It will turn out that the dual interpretatiorogi) is
justified by Le Cam’s concept afontiguity, which will be discussed in more
detail in Section 4.

The changes in the conclusions of Theoreme> are due only to changes
in the limiting distributions of the functions of,:

HX,~ Hé+HZ,
Ik — H)Xall2 ~ |1k — H)8 + (I — H) (I — AA)Z|%,

whereZ has aN (0, ly) distribution, as before.

The quadratic form ifZ has a noncentral chi-square distributigh . ;(y)
with noncentrality parametey = ||(Ix — H)4|. That is, it has the same
distribution as

i+ + Y+ Yo,

with the {Y;} independentN (0, 1) random variables. The tail probabilities

Bt y) =P{xf e 1(y) =t}

increase withy. For a formal goodness-of-fit test, one choosds make
B(t,0) a prescribed small value (the size of the test). TBén y) becomes
the asymptotic power for the local alternativies,}.

Notice that the asymptotic power dependsdoonly through its component
(Ix — H)é orthogonal to spN~1D). In particular, the test has no asymptotic
power for alternatives witld € sp(W~D). It would be most unfortunate if this
were not so, because suéhcould correspond t¢m,} approachingry along
the surfaceP; the alternatives would then part of the model, and no test should
be able to distinguish betweéhand such g}

The effect of thed, perturbation also shows up in the asymptotic behaviour
of Pn: underM(n, ),

VN(Pn — 70) = WHX; + 0p(1) ~ WHS + HZ.

If we center atm,, which is the parameter th#, really estimates, thé
disappears: using the fad = é + o(1), we have
VN@®n — 7)) = WHX, — W, + 0p(1)
~ WHJ + WHZ — W4.
If m, € P, the vectord lies in sgW~1D) andHé = 6. Thus./n(P, —m,), has
the same limiting distribution for all local alternatives, = mo + d,/4/n that
approachmg through the model. An estimator with this property will be called

regular (in Hajek’s sense). Section 5 will develop the concept of efficiency for
regular estimators.

4. The conditional Poisson model

This Section unedited. It contains many errors.

In the multinomial model, the constraint that the cell counts sur bas
the asymptotic effect of removing one degree of freedom from the limiting
x? distribution. It is also the reason for tHg — A A’ factor in the limiting
variance of the standardized counts.

In other applications of the?-test, further linear constraints are placed
on the cell counts, resulting in further reductions in the limiting degrees of
freedom.
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Example. In a two-way table, the cells are arranged into a rectangular
array, with the rows and columns corresponding to different partitions of the
population. The table of Greenwood & Yule (1915), which cross-classified
individuals as either inoculated or uninoculated against cholera and as either
attacked or not attacked by the disease, was cited by Fisher (1922) as a case
where degrees of freedom must be adjusted.

CHOLERA Not Attacked | Total
Attacked
Inoculated 1625 5 1630
Not 1022 11 1033
Total 2647 16 2663
More generally, if cell count§; fori =1,...,randj =1,..., care analyzed

with the marginal totalsS and S;; treated as fixed (that is, the analysis is
done conditional on those marginal totals), the degrees of freedom are reduced
by r 4+ c—1, not just by the 1 due to the fixed sample size. Notice that one of
the marginal constraints is redundant, beca§e§ . = Zj S;j = n; there are

only r + ¢ — 1 linearly independent equalities involved.

Fisher recognized that the fixed marginal totals play the same asymptotic
role as the estimation of parameters, which he saw as another way to force
the estimated cell probabilities to come closer to the observed frequencies.
He referred to estimation as a “method for reconstructing the population”. He
clearly understood the (asymptotic) equivalence of conditioning and parameter
estimation. His concept of degrees of freedom recognized estimation or marginal
conditioning as constraints that forced the veggito lie in lower dimensional
subspaces (asymptotically).

...in all cases linear restrictions imposed upon the frequencies of the
sampled population, by our methods of reconstructing that population,
have exactly the same effect upon the distributionsyéfas have
restrictions placed upon the cell contents of the sample.

[Fisher (1922), page 92]

In cases where the population, with which the sample is compared
in calculating x2 has been itself reconstructed from the sample, we
must also take account of the number of degrees of freedom absorbed
in this process of reconstruction. The two cases of widest application
were (i) contingency tables in which the population is reconstructed by
assigning to the margins the frequencies observed in the sample, and
(ii) frequency curves constructed to agree with the sample in respect
of one or more moments. The common sense of this correction lies in
the fact that when the population with which the sample is compared
has been artificially identified with the sample in certain respects, such
as the marginal frequencies, or the moments, we shall evidently make
an exaggerated estimate of the closeness of agreement between sample
and population, if we regard the sample as an unselected sample
of a population knowra priori . It was possible to show that the
distribution was in fact that which arises when from any population
a large number of samples are taken, and only those samples chosen
which agree with the population in (say) the marginal frequencies;
these samples compared to the true population will give valugg®of
distributed in the same manner as in the practical case in which we
compare any sample with a population artificially constructed from it.
[Fisher (1923), page 139]
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Fisher also gave a geometric interpretation to explain the large sample
behaviour of the goodness-of-fit statistic. (He wretir the difference between
the observed counts and the (estimated) expected counts.)

The most general way of proving this result consists in regarding the
values ofx (above) as independent co-ordinates in generalised space;
then owing to the linear relations by which the deviations are restricted,
for example that the marginal totals of the population should be equal
to those observed, all possible sets of observations will lie relative to
the centre of the distribution, specified by the assumed population, in

a plane space, of the same number of dimensions as there are degrees
of freedom.

[Fisher (1922, page 88)]

The interesting point here is the idea of identifying dependence as a consequence
of constraining a vector of independent quantities, which is the main topic of
this section.

Where do those independent coordinates come from? Fisher (1922)
introduced the device of treating the multinomial as a conditioned set of
independent Poissons. Suppd&e. .., Yy are independent, witly; distributed
Poisson ;). ThenY; + ... + Yk has a PoissonAj distribution, withi =
M+ ...+ A, and

PYi=vy,....Y%k=¥% I Y1+...+ Yk =n}

ehiA) e
=l_[ v / - ifyi+...+y=n
i i- H
|

TR pl*...pl<  wherep = Ai/A.

The conditioning on the sum accounts for the one degree of freedom lost in
the M(n, p) model. The vector of standardized coudts= (Y; — 1;)/+/A; has

an asymptoticN (0, ly) distribution. For the multinomial model, the limiting
distribution would appear to be that of tid(0, Ix) conditioned on the value

of a particular linear combination. If we choose theso that)_; A; = n the
constraint is simple"; X; = 0. Clearly we are free to choose thgin this

way, because thép;} depend only on the ratios of thg.,}. The idea can

be taken further. In an excellent paper summarizing the state of thart,
Cochran (1952) noted:

This approach also makes it clear that if further homogeneous linear
restrictions are imposed [on thé — A;], either by the structure of the
data or in the process of fitting, the effect will merely be to reduce the
degrees of freedom 2.

[Cochran (1952), page 319]

For example, in the two-way table, a multinomial model where marginal totals
are used to estimate cell probabilities under an independence hypothesis leads to
a limiting X(Zr—l)(c—l) distribution for the goodness-of-fit statistics. An analysis
treating the marginal totals as fixed would lead to the same distribution; and so
would an analysis with row marginals fixed but with column marginals used

to estimate the remaining unknown parameters. All analyses fit into the same
framework of a table of independent Poisson counts, conditioned on certain
linear combinations and with possible parameter estimation.

Unfortunately, there exists quite a technical gap between what is intuitively
clear and what is mathematically provable. Haberman (1974, Theorem 1.1) has
established a rigorous result that exposes a number of the hidden subtleties.

The limit theory in Section 2—Theorem12> in particular—was driven
by the convergence in distribution of the random vedtér®,/n(f, — o).
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Under the Poisson model with,; = Aj/A and A = n, the components of

this vector are precisely the standardized coults— A;)/+/A;. If we want
asymptotic theory for the conditional Poisson model, we have only to establish
a conditional limit theorem for the random vector

X=AYY =X  whereA =diagv/x1, ..., vVA).

The limit should be taken as the sum= Y 2; tends to infinity.

What sort of conditioning constraint should we consider? In the example
with the two-way table, the various marginal totals all correspond to quantities
of the formA .Y, whereA is a vector with (nonnegative) integer components.
Moreover, the Poisson means could be chosen so the constraints were

ALY =A;.A forj=1,....k—s5s,

for linearly independent, integer vectois;}. If we apply the Gram-Schmidt
procedure to the expanded collectidn, ..., Ax_s, €1, ..., &, Whereg is the

unit vector with a 1 in théth position, we construct an orthogonal basis#r
consisting of vectors with rational coordinates. To see this, consider the first
few steps in the procedure. L& have squared lengtf;, an integer. Then

the component oA, orthogonal toA; is

1
Bo=A>— —(A2. ApDAy,
(%}

which certainly has all coordinates rational. The squared leagtbf B, is
rational. In the direction orthogonal to botky and A, the vectorAsz has
component

1 1
Bs=A3— —(A3.Ap)A; — —(A3.B2)By,
01 (0%

which has rational coordinates. And so on. Multiplication of {i8g} by
suitably large integers will then produce an orthogonal basi&fawith vectors
having only integer coordinates.

Let V4, ..., Vs denote the basis vectors that span the subsfateat
is orthogonal to sfAs, ..., Ax_s). Then the linear constraints16> have the
interpretation thaty — A should belong tdC.

Notice thatL must contain points from the integer latti@; integer
linear combinations of thé¢V;} have only integer components. Xfhas integer
coordinates, as will be assumed from now on, theJXset Z* will contain
lattice points to whichY attaches nonzero probability, when mijnis large
enough. We will be able to make use of the elementary notion of conditional
probability, and not need to worry about abstract methods of conditioning. To
avoid nonnormal limiting behaviour (Problem??) we should also require that
none of thei; increases much more slowly tham Remember that is the

diagonal matrix diag/A1, ..., v/Ak).

Theorem. LetL denote the subspace B spanned by vectorgy, ..., Vi

with integer coordinates. LeY be a random k-vector of independent Poisson
variables whose vector of meahshas integer coordinates for which; Aj =n
andmin; A; /n stays bounded away from zero. Then the conditional distribution
of the vector of standardized courtg — )/+/Ai, given thatY — X belongs

to L, converges to a kD, ly), conditioned to lie inA~1L.

Perhaps it is imprecise to assert convergence to a conditioned normal
distribution depending ol. Nothing in the hypotheses of the theorem requires
the subspace\ L to settle down in any of the usual senses. The limit
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distribution is not fixed; it might change with. The assertion should be
interpreted to mean

P(h(A™XY =A) | Y =X e L) —Nyh—> 0

for each bounded, uniformly continuoug-) on R¥. The approximating
probability distributionN has densityy (x) = (27)~%/2 exp(—3|x]|?) with
respect to Lebesgue measuren the subspaca —1L; it is the distribution of
a N(0, Iy) random vector conditioned to lie in—1L.

Rather than presenting a complete, detailed proof of Theaters, | will
give only an outline of a simplified version of Haberman’s argument, leaving
the technical details to the problems.

The main ingredient is a local limit theorem for Poisson probabilities,
derived from Stirling’s approximationm! ~ V2rm™ze ™ If Y has a
Poissont) distribution then, for an integen = A +t/A,

P{Y:m}%@

NS
where ¢ (-) denotes theN (0, 1) density. More precisely, the excellent error
bounds in Stirling’s approximation give
m-—A

¢ (1)
=—(1+0(1) wheret = ——

Vi ( ) VA
uniformly over ao(~/A) range fort, as tends to infinity. For the vectoy
of independent Poissons, multiplication losuch approximating factors leads
to the local limit theorem, which relates the Poisson probability attached to a
lattice pointm and the normal integral over a small region:

PlY =m) = @) 2y 47 form=x+at,

P{Y = m}

uniformly over||t]] = o(,/n). The product term on the right-hand side decreases

like n=k/2: .
]_[i A2 =n" 20N,

wherea () is a factor that stays bounded away from zero and infinity under
the conditions of the theorem. Absorb ttr)~%~9/2 into this factor.

To approximate the probability of lying in some subset we have only
to sum the terms fronk19> over the lattice points in the set. Two slight
complications arise with this idea. First, the approximatiore> only works
for lattice points withino(,/n) of A. Second, it is no mean feat to figure out
which lattice points lie within a given set.

The first complication actually causes very little trouble. The Poigson
probabilities drop off rapidly asn moves away fromi.:

P{l Y = |> tVA} < 2exp(—3t°B(t/V1)),

where B(-) is a continuous function that decreases monotonely fB{f) = 1.
(See Problem ??) In particular, it is easy to findar ordero(+/) such that the
tail probability decrease faster than any fixed power 6f.1Correspondingly,
it is easy to dispose of contributions from regions when®> fails.

The second complication was foreseen by the specification of integer
coordinates for the vectoMd;, ..., Vg that spanl. For eachw in Z° define a
cell

CW) = {(wr+t)Vi+...+ (ws +1ts)Vs: —3 <t < 3 for eachi}.

The cells partitionC into disjoint sets, each of which has the same
dimensional Lebesgue measure. Because each cell is a translatz®)oby
integer multiples of the/; vectors, it must contain the same number of lattice
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points fromZK. It might be difficult to calculate the actual numb@{, of
lattice points per cell, but its constancy simplifies the approximation of Poisson
probabilities:

P{Y — XA e CW)} ~ NP{Y — A =w}
<20> ~ N e (NY (A w).
The linear transformation —* maps each celC(w) into a smaller cell inA—1L
with Lebesgue measur@(A~1C(0)) = n—%?B(\), where 8()) is another

factor that stays bounded away from zero and infinity under the conditions of
the theorem. Using the approximation

(A w)o (ATIC(wW)) ~ / x e ATIC(W)}¥ (X)o (dx),
we deduce from<20> that
BIY — A e Cw)} ~ n 972 () / (x € A1CW)}Y ()0 (dx).

wherey (A) = Na(\)/B(N). Of course, we should worry about bounds on the
error. But if we ignore that difficulty while summing over in a large region
we getP{Y — X € L} ~ n=&=9/2)(X\), becausef {x € AL}y (X)o (dx) = 1.
Some attention to errors in the approximation would show that it omits only
terms of ordero(n—k-9/2),

A similar argument would give an approximation to the contribution

Ph(A™YY = AD{Y — A € C(w)}

for a bounded, uniformly continuous(-). Summation over all cells in a large
region would then lead to

Ph(A7YY = MY =X e L} & n~®2/2), () /{x e ATLIh()¥ (X)o (dx),

with an error again of ordeo(n~*=9/2), The assertion of the theorem is
established when we take the ratio of the last two approximating quantities.
Remark: Things to do: explain how the conditional limit theorem
fits with the goodness-of-fit test with parameter estimation.

5. Problems

THESE PROBLEMS HAVE NOT YET BEEN EDITED TO MAKE ANY SENSE.
MORE PROBLEMS WILL BE ADDED.

[11 If P, ~ P, show that liminfP,¢ > P¢ for all lower-semicontinuous functiors
that are bounded below. [Hint:]

[2] Suppose{xi,...,Xn} and{yi, ..., Yo} are positive numbers with ", x; =
>~ ¥i = 1. Show thaty"; x; log(xi/yi) > %Zi Ixi — yi|2. [Hint: Try a Taylor
expansion o log(x/y) abouty.]

[3] Supposen objects are independently cross-classified according to ome of
possible row characteristics and onecgbossible column characteristics, with
probability p;; of an object ending up in row and columnj. (This gives
a multinomial model withk = rc cells.) Let? be the model that specifies
independence between row and column characteristics:

pij = (ZZ pig) (Ze pg,-)/rc for all i, j, under®.

Suppose the truag has all components positive.

Statistics 603a: 2 December 20(#1 (©David Pollard




(4]

(5]

(6]

(7]

18

(i) Show that? is locally s-dimensional neatry, for ans that you should
specify.
(i) Find the maximum likelihood estimatqp,.
(iii) Find the limiting distribution of /n(P, — o).
(iv) Describe the space §¢v—'D). (Basis vectors?)

Under the conditions specified by the Local Smoothness Assumpgtisn
prove that there exist constants<0C; < C, < oo such that

C1/0]| < |p(@) —mo| < Cy|0]  for O € ©g

[Hint: First consider the bound fda# in a neighborhood 06 small enough to
make theo(||@]) term less than a suitably small multiple p#||. Then use
continuity and compactness to extend the range of the inequalities.]

If {Xn} = 0p(1), show that there exists a sequer{eg} that converges to
zero slowly enough to ensui®{|X,| > €,} — 0. [Hint: Build e, using an
increasing sequenagk) such thatP{|X,| > 1/k} < 1/k for n > n(k).]

Let Qn be the Binn, §,) distribution andP, be the Birn, %). Show that
Qn < Py if and only if 8, = 1 + O(1/ /).

RemoveO(1/,/n) rate of converegnce restriction, under extra Lipschitz on
model, for convergence under laternatives.
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