Contents

1

M-est	imation	2
1.1	From model to estimator	2
1.2	Probability facts	4
	1.2.1 Law of Large Numbers	5
	1.2.2 Central Limit Theorem	5
	1.2.3 Cauchy-Schwarz inequality	5
	1.2.4 Jensen's inequality	6
1.3	Consistency	6
1.4	Asymptotic normality	6
1.5	Asymptotic efficiency	9
	1.5.1 Special case: $\tau(\theta) = \theta$	11
	1.5.2 General case	11

2 September 2013

Chapter 1 M-estimation

From model to estimator

This handout describes a general way of constructing pretty good estimators for models where $\mathcal{X} = \mathbb{R}^n$ with generic point $x = (x_1, \ldots, x_n)$ and where, under each \mathbb{P}_{θ} , the x_1, \ldots, x_n are independent, each distributed according to some probability distribution P_{θ} on \mathbb{R} .

Note well that P_{θ} is a probability distribution on the real line and \mathbb{P}_{θ} is a joint distribution. For example, if P_{θ} is specified by a density $p(z, \theta)$ on the real line then \mathbb{P}_{θ} is specified by the joint density

 $p(x_1, \theta)p(x_2, \theta) \dots p(x_n, \theta).$

I assume that the index set Θ for the model is a subset of some Euclidean space, \mathbb{R}^L , and that $\tau : \Theta \to T \subseteq \mathbb{R}^k$ is the quantity that is to be estimated. (In class I will talk mostly about the case k = L = 1.)

Remark. Each x_i takes values in the real line, \mathbb{R} . I could replace this \mathbb{R} by some other Euclidean space, or something even fancier, without much effect on the argument that follows.

Some authors write $\mathbb{P}_{\theta,n}$ instead of just \mathbb{P}_{θ} , to stress that the theory concerns a sequence of models based on increasing sample sizes.

Consider a function $g : \mathbb{R} \times T \to \mathbb{R}$. Define

 $G(\theta, t) = \mathbb{E}_{\theta} g(x_1, t).$

In this handout I consider the case where g can be chosen so that $t \mapsto G(\theta, t)$ is minimized at $t = \tau(\theta)$, for each θ . That is,

tau.def

< 1 >

$$\tau(\theta) = \operatorname*{argmin}_{t \in T} G(\theta, t) \quad \text{for each } \theta.$$

If you prefer, you could actually define τ by the last equality.

version: 2Sept2013 printed: 2 September 2013

Mestimation::Mest

1.1

To estimate $\tau(\theta)$ first define

$$G_n(t) = G_n(t, x_1, \dots, x_n) := n^{-1} \sum_{i \le n} g(x_i, t).$$

Suppose G_n is minimized at some point $\hat{\tau}_n$ of T, that is,

$$\widehat{\tau}_n(x_1,\ldots,x_n) = \operatorname*{argmin}_{t\in T} G_n(t,x_1,\ldots,x_n)$$

The random variable $\hat{\tau}_n(x_1, \ldots, x_n)$ is called an *M***-estimator** because it is defined by a <u>minimization</u> operation. Some authors prefer to deal with <u>maximization</u> operations. The two approaches are equivalent: just replace gby -g.

In this handout I will show, under broad assumptions, when sampling from the P_{θ} distribution the $\hat{\tau}_n$ is close to $\tau(\theta)$ with high \mathbb{P}_{θ} probability if *n* is large enough.

The idea is that, in the limit as the sample size goes to infinity, we learn the whole function $G(\theta, .)$ excatly if we are sampling from P_{θ} . A simple minimization would then give us the value $\tau(\theta)$. If we know $G(\theta, \cdot)$ only approximately (based on a finite sample size) then we can determine $\tau(\theta)$ only approximately.

Example. For z and t in \mathbb{R} define g(z,t) = |z-t| - |z|. If $G(t) = \mathbb{E}_P g(z,t) = \int g(z,t) dP$, show that G is minimized at a median of P. See Homework 1.

Remark. Here and elsewhere you should interpret $\int g(z,t)dP$ as $\sum_j g(z_j,t)P\{z_j\}$ if P is a discrete distribution with atoms at z_1, z_2, \ldots and as $\int g(z,t)p(z) dz$ if P is a continuous distribution with density p.

That is, the $\tau(\theta)$ defined by equality $\langle 1 \rangle$ is equal to the median of the P_{θ} distribution. Implicitly, this definition assumes that the median is unique for the "population" P_{θ} .

For the sample the median is not unique when n is even. I intend to ignore that small detail.

 $<\!\!3\!\!>$

mle.pop

Example. Consider the case where $T = \Theta$ for some subset Θ of \mathbb{R}^L . Suppose $p(z, \theta)$ is a probability density for each θ in Θ . Define g(z, t) =

Draft: 2Sept2013

Statistics 610 © David Pollard

median

 $<\!\!2\!\!>$

 $-\ell(z,t)$ where $\ell(z,\theta) = \log p(z,\theta)$. Write $p(z,\theta)$ for $\partial p(z,\theta)/\partial \theta$ and $\ell(z,\theta)$ for $\partial \ell(z,\theta)/\partial \theta = p(z,\theta)/p(z,\theta)$. Then

$$\frac{\partial G(\theta,t)}{\partial t} = -\int p(z,\theta) \frac{\partial}{\partial t} \ell(z,t) = \int p(z,\theta) \frac{\dot{p}(z,t)}{p(z,t)} dt$$

If we put t equal to θ then factors cancel, leaving

$$\frac{\partial G(\theta,t)}{\partial t}\big|_{t=\theta} = \int \frac{\partial}{\partial t} p(z,t)\big|_{t=\theta} = \left(\frac{\partial}{\partial t} \int p(z,t)\right)\big|_{t=\theta} = 0.$$

The last equality comes from the fact that $\int p(z,t) = 1$ for every t.

That is, when $g = -\ell$ we have $\tau(\theta) = \theta$. The estimator $\hat{\theta}_n$ minimizes

$$n^{-1} \sum_{i \le n} \log p(x_i, t)$$
 over all t in Θ .

Equivalently, it maximizes the joint density

 $p(x_1, t) \dots p(x_n, t)$ over all t in Θ .

That is, $\hat{\theta}_n$ is the *maximum likelihood estimator* (MLE)

1.2

Remark. The quantity

$$G(\theta, t) - G(\theta, \theta) = \int p(z, \theta) \log \left(p(z, \theta) / p(z, t) \right) dz$$

is often called the Kullback-Leibler distance (or relative entropy) between P_{θ} and P_t , often denoted by $K(P_{\theta}, P_t)$. It can be shown using Jensen's inequality that K(P, Q), for probability distributions Pand Q, is always nonnegative. If P and Q are given by densities pand q, then it can also be shown that

$$K(P,Q) \ge \frac{1}{2} \left(\int |p-q| \right)^2,$$

a result known as Pinsker's inequality.

Mestimation::probfacts

Probability facts

The asymptotic theory for M-estimators depends mostly on three important probability tools. The fourth result (Jensen's inequality) in this Section is there just for future reference.

Draft: 2Sept2013

1.2.1

Law of Large Numbers

For independent random variables Y_1, Y_2, \ldots each with the same distribution, the Law of Large Numbers (LLN) asserts that, in various probabilistic senses

$$n^{-1}\sum_{i\leq n}Y_i\to \mathbb{E}Y_1$$
 as $n\to\infty$.

LT 1.2.2

Central Limit Theorem

If $\mathbb{E}Y_1 = 0$ and $\sigma^2 = \operatorname{var}(Y) < \infty$ then the Central Limit Theorem (CLT) asserts that

$$n^{-1/2} \sum_{i \le n} Y_i \dot{\sim} N(0, \sigma^2),$$

in the sense that the distribution approaches normality as n gets larger. Similar assertions hold for random vectors. For example, if the Y_i 's are identically distributed random vectors with zero expected value and variance matrix $V = \mathbb{E}(Y_1Y_1')$ then

$$n^{-1/2} \sum_{i \le n} Y_i \stackrel{\cdot}{\sim} N(0, V),$$

with N(0, V) denoting a multivariate normal with zero mean and variance matrix V.

1.2.3

Cauchy-Schwarz inequality

If X and Y are random variables then

$$|\mathbb{E}(XY)| \le \sqrt{\mathbb{E}(X^2)} \sqrt{\mathbb{E}(Y^2)}$$

Here is a quick proof, just in case you haven't seen the inequality before. Write a for $\sqrt{\mathbb{E}(X^2)}$ and b for $\sqrt{\mathbb{E}(Y^2)}$. Then

$$0 \le \mathbb{E}\left(\frac{X}{a} \pm \frac{Y}{b}\right)^2 = 1 \pm 2\mathbb{E}(XY)/(ab) + 1,$$

which rearranges to $2ab \ge \pm 2\mathbb{E}(XY)$.

Notice that the Cauchy-Scwarz inequality becomes an equality if and only if either bX = aY or bX = -aY.

Draft: 2Sept2013

Jensen 1.2.4

1.3

Jensen's inequality

If Ψ is a convex function then

 $\mathbb{E}\Psi(X) \ge \Psi\left(\mathbb{E}X\right).$

For the special case where $\psi(z) = z^2$ the inequality becomes $\mathbb{E}(X^2) \ge (\mathbb{E}X)^2$, which is equivalent to the fact that $\operatorname{var}(X) \ge 0$.

Consistency

The Law of Large Numbers for each fixed t gives $G_n(t) \to G(\theta, t)$ as $n \to \infty$ under \mathbb{P}_{θ} . Something a little more than pointwise convergence gives

 $\tau_n = \operatorname*{argmin}_{t \in T} G_n(t) \to \operatorname*{argmin}_{t \in T} G(\theta, t) = \tau(\theta)$

in some probabilistic sense. For example, $\{\hat{\tau}_n\}$ is said to be *(weakly) consistent* for $\tau(\theta)$ if

 $\mathbb{P}_{\theta}\{|\hat{\tau}_n - \tau(\theta)| > \epsilon\} \to 0 \qquad \text{for each } \epsilon > 0 \text{ and each } \theta \in \Theta.$

1.4

Asymptotic normality

Once we know that $\hat{\theta}$ concentrates near $\tau(\theta)$ it makes sense to look at approximations to $G_n(t)$ for t in a neighborhood of $\tau(\theta)$.

The analysis in this subsection is carried out for a fixed θ . To avoid the temptation to differentiate with respect to a fixed θ , I will temporarily omit it from the notation, writing P instead of P_{θ} and G(t) instead of $G(\theta, t)$ and τ instead of $\tau(\theta)$.

Remark. In fact the analysis works even if P is not one of the distributions specified by the model. It matters only that the function $G(t) = \mathbb{E}g(x_1, t) = \int g(x_1, t) dP$ has a unique maximum at τ .

Assuming that g is a smooth function of t, make a Taylor expansion of g around τ .

$$g(x_1,t) \approx g(x_1,\tau) + (t-\tau)' g(x_1,\tau) + \frac{1}{2} (t-\tau)' g(x_1,\tau) (t-\tau)$$
 for t near τ .

Here $g(x_1, \tau)$ denotes the $k \times 1$ vector of functions $\partial g(x_1, t) / \partial t_i$, for $1 \le i \le k$, and $g(x_1, \tau)$ denotes the $k \times k$ matrix of functions $\partial^2 g(x_1, t) / \partial t_i \partial t_j$, for $1 \le i, j \le k$, and ' denotes transpose.

Draft: 2Sept2013

Statistics 610 © David Pollard

Mestimation::consistency

Mestimation::asynorm

 $<\!\!4\!\!>$

Remark. I am using the • to denote differentiation instead of ', which gets confused with transpose. If you are not used to Taylor expansions of vector-valued functions you could just assume k = 1.

If we replace x_1 by x_i then average over $1 \le i \le n$ approximation <4> gives

$$G_n(t) \approx G_n(\tau) + (t-\tau)n^{-1/2}Z_n + \frac{1}{2}(t-\tau)'J_n(t-\tau)$$

where

$$Z_n = n^{-1/2} \sum_{i \le n} \overset{\bullet}{g}(x_i, \tau)$$
 and $J_n = n^{-1} \sum_{i \le n} \overset{\bullet}{g}(x_i, \tau)$

You'll see soon why Z_n only needs the $n^{-1/2}$ rescaling.

If we take expectations of both sides of $\langle 4 \rangle$, ignoring the remainder terms we get a Taylor expansion of G around τ ,

$$G(t) \approx G(\tau) + (t-\tau)' \mathbb{E}_g^{\bullet}(x_1,\tau) + \frac{1}{2}(t-\tau)' \mathbb{E}_g^{\bullet}(x_1,\tau)(t-\tau)$$

Compare with

$$G(t) \approx G(\tau) + \frac{1}{2}(t-\tau)' \overset{\bullet\bullet}{G}(\tau)(t-\tau).$$

The linear term, $(t - \tau)' \hat{G}(\tau)$, vanishes because τ is the minimizing value for G.

Remark. Here I am assuming that τ lies in the interior of T, so that minimization implies a zero derivative. Very strange things can happen when τ lies on the boundary of T

Deduce that

zero.mean <6>

$$\mathbb{E}g(x_1,\tau) = G(\tau) = 0.$$

Similarly, the $k \times k$ matrix

$$J = \mathbb{E}^{\bullet \bullet}_g(x_1, \tau) = \overset{\bullet \bullet}{G}(\tau)$$

must be at least nonnegative definite, that is

 $\delta' J \delta \ge 0$ for all $\delta \in \mathbb{R}^k$,

otherwise there would be some direction along which G decreased below its minimum.

Draft: 2Sept2013

Statistics 610 © David Pollard

Gn.approx

 $<\!\!5\!\!>$

Remark. If there is some $\delta \neq 0$ for which $\delta' J \delta = 0$ the theory gets more complicated. (The matrix J is then singular and does not have an inverse.) Textbooks seldom mention that possibility. I'll ignore it too. That is, I'll assume J is actually positive definite with $\delta' J \delta > 0$ for all nonzero δ .

The LLN (see subsection 1.2.1) applied to each of the k^2 entries of the $k \times k$ matrix J_n from $\langle 5 \rangle$ gives $J_n \approx J$, with an error of approximation that goes to zero in some suitable probabilistic sense. The Z_n is an average of random vectors with zero expected values, by $\langle 6 \rangle$, so the CLT gives

$$Z_n \sim N(0, V)$$
 with $V = \mathbb{E}g(x_1, \tau)g(x_1, \tau)'$

Approximation $\langle 5 \rangle$ can be rewritten as

$$G_n(t) \approx G_n(\tau) + (t-\tau)' n^{-1/2} Z_n + \frac{1}{2} (t-\tau)' J(t-\tau)$$
 for t near τ .

The quadratic on the right-hand side can be simplified by writing s for $t - \tau$ and W for $n^{-1/2}Z_n$, leaving

$$\frac{1}{2}s'Js + s'W = \frac{1}{2}(s + J^{-1}W)'J(s + J^{-1}W) - \frac{1}{2}W'J^{-1}W$$

on the right-hand side. Positive definiteness of J ensures that the quadratic is minimized when $s = -J^{-1}W$. Assuming that the approximation of G_n translates into approximation of its minimizer, conclude that $\hat{\tau}_n - \tau \approx -n^{-1/2}J^{-1}Z_n$, so that

limit.distn <8>

$$n^{1/2} (\hat{\tau}_n - \tau) \approx -J^{-1} Z_n \sim N(0, J^{-1} V J^{-1})$$

with

$$J = \mathbb{E}^{\bullet}_{g}(x_1, \tau)$$
 and $V = \mathbb{E}^{\bullet}_{g}(x_1, \tau) \overset{\bullet}{g}(x_1, \tau)'.$

mle.sample

 $<\!\!9\!\!>$

Example. Consider once more the maximum likelihood estimator from Example <3>, where $T = \Theta \subseteq \mathbb{R}^L$ and $g(z,t) = -\ell(z,t) = -\log p(z,t)$. Remember that $\tau(\theta) = \theta$ and that I was writing $\hat{\theta}_n$ instead of $\hat{\tau}_n$. Remember also (cf. equality <6>) that $\mathbb{E}_{\theta}\ell(x_1,\theta) = 0$.

Draft: 2Sept2013

For this special case, the $L \times L$ variance matrix $V(\theta)$ equals

$$\mathbb{E}^{\bullet}_{g}(x_{1},\tau)^{\bullet}_{g}(x_{1},\tau)' = \operatorname{var}\left(\overset{\bullet}{\ell}(x_{1},\tau)\right) =: \mathbb{I}(\theta).$$

The matrix $\mathbb{I}(\theta)$ is called the *Fisher information matrix*.

The $J(\theta) = \mathbb{E}_{\theta} \ell(x_1, \theta)$ also takes a special form. First note that

$$\overset{\bullet\bullet}{\ell}(z,t) = \frac{\partial \ell(z,t)}{\partial t} = \frac{\partial}{\partial t} \frac{\dot{p}(z,t)}{p(z,t)} = \frac{\overset{\bullet\bullet}{p}(z,t)}{p(z,t)} - \overset{\bullet}{p}(z,t) \dot{p}(z,t)'/p(z,t)^2.$$

Take expectations.

$$\mathbb{E}_{\theta} \overset{\bullet}{\ell}(x_1, \theta) = \int \partial^2 p(z, t) / \partial t^2 \big|_{t=\theta} - \int p(z, \theta) \overset{\bullet}{\ell}(z, \theta) \overset{\bullet}{\ell}(z, \theta)'.$$

The first term vanishes—takes the second derivative outside the integral sign then use the fact that $\int p(z,t) = 1$ for all t. The second term is just the information matrix again. In summary, $V(\theta) = -J(\theta) = \mathbb{I}(\theta)$. Approximation <8> becomes

MLE:
$$Z_n = -n^{-1/2} \sum_{i \le n} \overset{\bullet}{\ell}(x_i, \theta) \stackrel{\sim}{\sim} N(0, \mathbb{I}(\theta))$$
 and
 $n^{1/2} \left(\widehat{\theta}_n - \theta\right) \approx -\mathbb{I}(\theta)^{-1} Z_n \stackrel{\sim}{\sim} N(0, \mathbb{I}(\theta)^{-1})$ under \mathbb{P}_{θ} ,

a very famous approximation.

Asymptotic efficiency

Classical (Fisherian) statistical theory assigns the MLE a very special role. According to Fisher, the MLE minimizes the limiting variance amongst all estimators. He called this property (asymptotic) *efficiency*. Modern theory has shown Fisher's assertion to be wrong unless hedged with further restrictions. One such restriction is to consider only M-estimators as competitors.

Remark. Actually Fisher usually didn't include the word "asymptotic". I find that this omission leads to a lot of confusion between optimality properties for fixed, finite sample size and optimality properties for the limiting distribution.

Draft: 2Sept2013

Statistics 610 © David Pollard

MLE.limit.distn <10>

1.5

Mestimation::efficiency

For this section suppose P_{θ} is specified by some density function $p(z, \theta)$ on the real line. (The argument for discrete distributions is similar.)

Once again consider the problem of estimating $\tau(\theta) = (\tau_1(\theta), \ldots, \tau_k(\theta))$, based on independent samples x_1, x_2, \ldots from P_{θ} . Assume τ is a smooth function of θ , so that the $k \times L$ matrix $\overset{\bullet}{\tau}(\theta)$ with $\tau_{ij}(\theta) = \partial \tau_i / \partial \theta_j$ is well defined.

For each fixed δ in \mathbb{R}^k , approximation $\langle 8 \rangle$ implies

$$n^{1/2}\delta'(\widehat{\tau}_n - \tau(\theta)) \dot{\sim} N(0, \sigma^2(\theta))$$
 under \mathbb{P}_{θ}

where

$$\begin{aligned} \sigma_{\delta}^{2}(\theta) &:= \delta' J(\theta)^{-1} V(\theta) J(\theta)^{-1} \delta \\ J(\theta) &= \mathbb{E}_{\theta} \overset{\bullet}{g}(x_{1}, \tau(\theta)) \\ V(\theta) &= \mathbb{E}_{g}^{\bullet}(x_{1}, \tau) \overset{\bullet}{g}(x_{1}, \tau(\theta))'. \end{aligned}$$

The aim is to find a g to minimize the asymptotic variance $\sigma_{\delta}^2(\theta)$.

The first step is to find a lower bound for $\sigma^2(\theta)$ by considering the behaviour of $\hat{\tau}_n$ for values of θ of the form

$$\theta_s = \theta + s\gamma$$
 for $s \in \mathbb{R}$.

Here θ denotes some point of Θ that is fixed throughout the argument and γ is a nonzero vector in \mathbb{R}^L . Notice that

$$\frac{\partial}{\partial s}\tau(\theta_s) = \overset{\bullet}{\tau}(\theta_s)\gamma,$$

the product of a $k \times L$ matrix with an $L \times 1$ vector.

Along the path defined by θ_s inequality <6> becomes

$$0 = \mathbb{E}_{\theta_s} \overset{\bullet}{g}(x_1, \tau(\theta_s)) = \int \overset{\bullet}{g}(x_1, \tau(\theta_s)) p(z, \theta_s) \quad \text{for all } s.$$

Notice the way θ_s appears in two places. Differentiate with respect to s.

$$0 = \int \overset{\bullet}{g} (x_1, \tau(\theta_s)) \overset{\bullet}{\tau}(\theta_s) \gamma \, p(z, \theta_s) + \int \overset{\bullet}{g} (x_1, \tau(\theta_s)) \overset{\bullet}{p} (z, \theta_s)' \gamma$$
$$= \mathbb{E}_{\theta_s} \left(\overset{\bullet\bullet}{g} (x_1, \tau(\theta_s)) \right) \overset{\bullet}{\tau}(\theta_s) \gamma + \mathbb{E}_{\theta_s} \left(\overset{\bullet}{g} (x_1, \tau(\theta_s)) \overset{\bullet}{\ell} (z, \theta_s)' \gamma \right)$$

Put s = 0 then multiply both sides by $\delta' J(\theta)^{-1}$ to deduce

$$\delta' \overset{\bullet}{\tau}(\theta) \gamma = -\mathbb{E}_{\theta} \left(\delta' J(\theta)^{-1} \overset{\bullet}{g}(x_1, \tau(\theta)) \overset{\bullet}{\ell}(z, \theta)' \gamma \right).$$
Draft: 2Sept2013 Statistics 610

Statistics 610 © David Pollard

constrain <11>

The right-hand side is of the form $\mathbb{E}_{\theta}(XY)$ for random variables

$$X = \delta' J(\theta)^{-1} \overset{\bullet}{g}(x_1, \tau(\theta)) \quad \text{AND} \quad Y = \overset{\bullet}{\ell}(z, \theta)' \gamma.$$

Notice that

$$\mathbb{E}_{\theta}X^2 = \sigma_{\delta}^2(\theta) \quad \text{AND} \quad \mathbb{E}_{\theta}Y^2 = \gamma'\mathbb{I}(\theta)\gamma.$$

Invoke the Cauchy-Schwarz inequality (subsection 1.2.3) to deduce that

$$\left(\delta' \overset{\bullet}{\tau}(\theta) \gamma\right)^2 \leq \sigma_{\delta}^2(\theta) \, \gamma' \mathbb{I}(\theta) \gamma$$

That is,

$$\sigma_{\delta}^{2}(\theta) \geq \frac{\left(\delta' \overset{\bullet}{\tau}(\theta) \gamma\right)^{2}}{\gamma' \mathbb{I}(\theta) \gamma} \quad \text{for all } \gamma \neq 0.$$

Replace γ by $\mathbb{I}(\theta)^{-1/2}\beta$ then choose β as the unit vector in the direction $\delta' \overset{\bullet}{\tau}(\theta) \mathbb{I}(\theta)^{-1/2}$ to maximize the right-hand side, leaving the lower bound

var.lower <12>

$$\delta' J(\theta)^{-1} V(\theta) J(\theta)^{-1} \delta = \sigma_{\delta}^2(\theta) \ge \lambda_{\delta}(\theta) := \delta' \overset{\bullet}{\tau}(\theta) \mathbb{I}^{-1}(\theta) \overset{\bullet}{\tau}(\theta)' \delta$$

1.5.1 Special case: $\tau(\theta) = \theta$

When $\tau(\theta) = \theta$ the matrix $\hat{\tau}(\theta)$ of derivatives becomes the identity matrix I_L and the right-hand side of <12> becomes $\delta' \mathbb{I}(\theta)^{-1} \delta$. For the special case of the MLE $\hat{\theta}_n$ the left-hand side of <12> also equals $\delta' \mathbb{I}(\theta)^{-1} \delta$. That is, the MLE achieves the lower bound, for every δ .

1.5.2 General case

When $\tau(\theta)$ is not the identity matrix it is not obvious to me how to find an M-estimator that achieves the lower bound in <12>. But there is another way to estimate $\tau(\theta)$ that does give an asymptotic variance equal to $\lambda_{\delta}(\theta)$.

By Taylor's Theorem,

 $\tau(\theta + h) \approx \tau(\theta) + \overset{\bullet}{\tau}(\theta)h \quad \text{for small } h \in \mathbb{R}^{L}.$

Draft: 2Sept2013

12

In particular, for $h = \hat{\theta}_n - \theta$ the approximation <10> for the MLE $\hat{\theta}_n$ gives

$$\tau(\widehat{\theta}_n) - \tau(\theta) \approx -\overset{\bullet}{\tau}(\theta) n^{-1/2} \mathbb{I}(\theta)^{-1} Z_n$$

where $Z_n = -n^{-1/2} \sum_{i \le n} {\overset{\bullet}{\ell}}(x_i, \theta) \stackrel{\bullet}{\sim} N(0, \mathbb{I}(\theta))$. Thus

$$n^{1/2}\left(\tau(\widehat{\theta}_n) - \tau(\theta)\right) \approx \overset{\bullet}{\tau}(\theta) \mathbb{I}(\theta)^{-1} Z_n \stackrel{\bullet}{\sim} N(0, W(\theta)) \quad \text{under } \mathbb{P}_{\theta},$$

where

$$W(\theta) = \overset{\bullet}{\tau}(\theta) \mathbb{I}(\theta)^{-1} \mathbb{I}(\theta) \mathbb{I}(\theta)^{-1} \overset{\bullet}{\tau}(\theta)'.$$

In consequence, $n^{1/2}\delta'\left(\tau(\widehat{\theta}_n) - \tau(\theta)\right) \dot{\sim} N(0, \lambda_{\delta}(\theta)).$

Draft: 2Sept2013