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Chapter 1

M-estimation

1.1 From model to estimator
Mestimation::Mest

This handout describes a general way of constructing pretty good estimators
for models where X = Rn with generic point x = (x1, . . . , xn) and where,
under each Pθ, the x1, . . . , xn are independent, each distributed according
to some probability distribution Pθ on R.

Note well that Pθ is a probability distribution on the real line and Pθ is
a joint distribution. For example, if Pθ is specified by a density p(z, θ) on
the real line then Pθ is specified by the joint density

p(x1, θ)p(x2, θ) . . . p(xn, θ).

I assume that the index set Θ for the model is a subset of some Euclidean
space, RL, and that τ : Θ→ T ⊆ Rk is the quantity that is to be estimated.
(In class I will talk mostly about the case k = L = 1.)

Remark. Each xi takes values in the real line, R. I could replace this R
by some other Euclidean space, or something even fancier, without
much effect on the argument that follows.

Some authors write Pθ,n instead of just Pθ, to stress that the theory
concerns a sequence of models based on increasing sample sizes.

Consider a function g : R× T → R. Define

G(θ, t) = Eθg(x1, t).

In this handout I consider the case where g can be chosen so that t 7→ G(θ, t)
is minimized at t = τ(θ), for each θ. That is,

tau.deftau.def <1> τ(θ) = argmin
t∈T

G(θ, t) for each θ.

If you prefer, you could actually define τ by the last equality.
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3 M-estimation

To estimate τ(θ) first define

Gn(t) = Gn(t, x1, . . . , xn) := n−1
∑

i≤n
g(xi, t).

Suppose Gn is minimized at some point τ̂n of T , that is,

τ̂n(x1, . . . , xn) = argmin
t∈T

Gn(t, x1, . . . , xn)

The random variable τ̂n(x1, . . . , xn) is called an M-estimator because
it is defined by a minimization operation. Some authors prefer to deal with
maximization operations. The two approaches are equivalent: just replace g
by −g.

In this handout I will show, under broad assumptions, when sampling
from the Pθ distribution the τ̂n is close to τ(θ) with high Pθ probability if n
is large enough.

The idea is that, in the limit as the sample size goes to infinity, we learn
the whole function G(θ, .) excatly if we are sampling from Pθ. A simple
minimization would then give us the value τ(θ). If we know G(θ, ·) only
approximately (based on a finite sample size) then we can determine τ(θ)
only approximately.

median <2> Example. For z and t in R define g(z, t) = |z−t|−|z|. If G(t) = EP g(z, t) =∫
g(z, t)dP , show that G is minimized at a median of P . See Homework 1.

Remark. Here and elsewhere you should interpret
∫
g(z, t)dP as∑

j g(zj , t)P{zj} if P is a discrete distribution with atoms at z1, z2, . . .

and as
∫
g(z, t)p(z) dz if P is a continuous distribution with density p.

That is, the τ(θ) defined by equality <1> is equal to the median of
the Pθ distribution. Implicitly, this definition assumes that the median is
unique for the “population” Pθ.

For the sample the median is not unique when n is even. I intend to
ignore that small detail.

�

mle.pop <3> Example. Consider the case where T = Θ for some subset Θ of RL.
Suppose p(z, θ) is a probability density for each θ in Θ. Define g(z, t) =
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4 M-estimation

−`(z, t) where `(z, θ) = log p(z, θ). Write
•
p(z, θ) for ∂p(z, θ)/∂θ and

•
`(z, θ)

for ∂`(z, θ)/∂θ =
•
p(z, θ)/p(z, θ). Then

∂G(θ, t)

∂t
= −

∫
p(z, θ)

∂

∂t
`(z, t) =

∫
p(z, θ)

•
p(z, t)

p(z, t)
.

If we put t equal to θ then factors cancel, leaving

∂G(θ, t)

∂t

∣∣
t=θ

=

∫
∂

∂t
p(z, t)

∣∣
t=θ

=

(
∂

∂t

∫
p(z, t)

) ∣∣
t=θ

= 0.

The last equality comes from the fact that
∫
p(z, t) = 1 for every t.

That is, when g = −` we have τ(θ) = θ. The estimator θ̂n minimizes

n−1
∑

i≤n
log p(xi, t) over all t in Θ.

Equivalently, it maximizes the joint density

p(x1, t) . . . p(xn, t) over all t in Θ.

That is, θ̂n is the maximum likelihood estimator (MLE)
�

Remark. The quantity

G(θ, t)−G(θ, θ) =

∫
p(z, θ) log (p(z, θ)/p(z, t)) dz

is often called the Kullback-Leibler distance (or relative entropy)
between Pθ and Pt, often denoted by K(Pθ, Pt). It can be shown
using Jensen’s inequality that K(P,Q), for probability distributions P
and Q, is always nonnegative. If P and Q are given by densities p
and q, then it can also be shown that

K(P,Q) ≥ 1
2

(∫
|p− q|

)2

,

a result known as Pinsker’s inequality.

1.2 Probability facts
Mestimation::probfacts

The asymptotic theory for M-estimators depends mostly on three important
probability tools. The fourth result (Jensen’s inequality) in this Section is
there just for future reference.

Draft: 2Sept2013 Statistics 610 c©David Pollard



5 M-estimation

1.2.1 Law of Large Numbers
LLN

For independent random variables Y1, Y2, . . . each with the same distribu-
tion, the Law of Large Numbers (LLN) asserts that, in various probabilistic
senses

n−1
∑

i≤n
Yi → EY1 as n→∞.

1.2.2 Central Limit Theorem
CLT

If EY1 = 0 and σ2 = var(Y ) < ∞ then the Central Limit Theorem (CLT)
asserts that

n−1/2
∑

i≤n
Yi ∼̇N(0, σ2),

in the sense that the distribution approaches normality as n gets larger.
Similar assertions hold for random vectors. For example, if the Yi’s are
identically distributed random vectors with zero expected value and variance
matrix V = E(Y1Y

′
1) then

n−1/2
∑

i≤n
Yi ∼̇N(0, V ),

with N(0, V ) denoting a multivariate normal with zero mean and variance
matrix V .

1.2.3 Cauchy-Schwarz inequality
CS

If X and Y are random variables then

|E(XY )| ≤
√
E(X2)

√
E(Y 2)

Here is a quick proof, just in case you haven’t seen the inequality before.
Write a for

√
E(X2) and b for

√
E(Y 2) . Then

0 ≤ E
(
X

a
± Y

b

)2

= 1± 2E(XY )/(ab) + 1,

which rearranges to 2ab ≥ ∓2E(XY ).
Notice that the Cauchy-Scwarz inequality becomes an equality if and

only if either bX = aY or bX = −aY .
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6 M-estimation

1.2.4 Jensen’s inequality
Jensen

If Ψ is a convex function then

EΨ(X) ≥ Ψ (EX) .

For the special case where ψ(z) = z2 the inequality becomes E(X2) ≥
(EX)2, which is equivalent to the fact that var(X) ≥ 0.

1.3 Consistency
Mestimation::consistency

The Law of Large Numbers for each fixed t gives Gn(t)→ G(θ, t) as n→∞
under Pθ. Something a little more than pointwise convergence gives

τn = argmin
t∈T

Gn(t)→ argmin
t∈T

G(θ, t) = τ(θ)

in some probabilistic sense. For example, {τ̂n} is said to be (weakly) con-
sistent for τ(θ) if

Pθ{|τ̂n − τ(θ)| > ε} → 0 for each ε > 0 and each θ ∈ Θ.

1.4 Asymptotic normality
Mestimation::asynorm

Once we know that θ̂ concentrates near τ(θ) it makes sense to look at ap-
proximations to Gn(t) for t in a neighborhood of τ(θ).

The analysis in this subsection is carried out for a fixed θ. To avoid
the temptation to differentiate with respect to a fixed θ, I will temporariliy
omit it from the notation, writing P instead of Pθ and G(t) instead of G(θ, t)
and τ instead of τ(θ).

Remark. In fact the analysis works even if P is not one of the
distributions specified by the model. It matters only that the func-
tion G(t) = Eg(x1, t) =

∫
g(x1, t) dP has a unique maximum at τ .

Assuming that g is a smooth function of t, make a Taylor expansion of g
around τ .

TaylorTaylor <4> g(x1, t) ≈ g(x1, τ)+(t−τ)′
•
g(x1, τ)+ 1

2(t−τ)′
••
g (x1, τ)(t−τ) for t near τ .

Here
•
g(x1, τ) denotes the k×1 vector of functions ∂g(x1, t)/∂ti, for 1 ≤ i ≤ k,

and
••
g (x1, τ) denotes the k × k matrix of functions ∂2g(x1, t)/∂ti∂tj , for

1 ≤ i, j ≤ k, and ′ denotes transpose.
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7 M-estimation

Remark. I am using the • to denote differentiation instead of ′, which
gets confused with transpose. If you are not used to Taylor expansions
of vector-valued functions you could just assume k = 1.

If we replace x1 by xi then average over 1 ≤ i ≤ n approximation <4>
gives

Gn.approxGn.approx <5> Gn(t) ≈ Gn(τ) + (t− τ)n−1/2Zn + 1
2(t− τ)′Jn(t− τ)

where

Zn = n−1/2
∑

i≤n
•
g(xi, τ) and Jn = n−1

∑
i≤n
••
g (xi, τ).

You’ll see soon why Zn only needs the n−1/2 rescaling.
If we take expectations of both sides of <4>, ignoring the remainder

terms we get a Taylor expansion of G around τ ,

G(t) ≈ G(τ) + (t− τ)′E•g(x1, τ) + 1
2(t− τ)′E••g (x1, τ)(t− τ)

Compare with

G(t) ≈ G(τ) + 1
2(t− τ)′

••
G(τ)(t− τ).

The linear term, (t− τ)′
•
G(τ), vanishes because τ is the minimimizing value

for G.

Remark. Here I am assuming that τ lies in the interior of T , so that
minimization implies a zero derivative. Very strange things can happen
when τ lies on the boundary of T

Deduce that

zero.meanzero.mean <6> E•g(x1, τ) =
•
G(τ) = 0.

Similarly, the k × k matrix

J = E••g (x1, τ) =
••
G(τ)

must be at least nonnegative definite, that is

δ′Jδ ≥ 0 for all δ ∈ Rk,

otherwise there would be some direction along which G decreased below its
minimum.
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8 M-estimation

Remark. If there is some δ 6= 0 for which δ′Jδ = 0 the theory gets
more complicated. (The matrix J is then singular and does not have
an inverse.) Textbooks seldom mention that possibility. I’ll ignore it
too. That is, I’ll assume J is actually positive definite with δ′Jδ > 0
for all nonzero δ.

The LLN (see subsection 1.2.1) applied to each of the k2 entries of the
k × k matrix Jn from <5> gives Jn ≈ J , with an error of approximation
that goes to zero in some suitable probabilistic sense. The Zn is an average
of random vectors with zero expected values, by <6>, so the CLT gives

ZnZn <7> Zn ∼̇N(0, V ) with V = E•g(x1, τ)
•
g(x1, τ)′.

Approximation <5> can be rewritten as

Gn(t) ≈ Gn(τ) + (t− τ)′n−1/2Zn + 1
2(t− τ)′J(t− τ) for t near τ .

The quadratic on the right-hand side can be simplified by writing s
for t− τ and W for n−1/2Zn, leaving

1
2s
′Js+ s′W = 1

2(s+ J−1W )′J(s+ J−1W )− 1
2W

′J−1W

on the right-hand side. Positive definiteness of J ensures that the quadratic
is minimized when s = −J−1W . Assuming that the approximation of Gn
translates into approximation of its minimizer, conclude that τ̂n − τ ≈
−n−1/2J−1Zn, so that

limit.distnlimit.distn <8> n1/2 (τ̂n − τ) ≈ −J−1Zn ∼̇N(0, J−1V J−1)

with

J = E••g (x1, τ) and V = E•g(x1, τ)
•
g(x1, τ)′.

mle.sample <9> Example. Consider once more the maximum likelihood estimator from Ex-
ample <3>, where T = Θ ⊆ RL and g(z, t) = −`(z, t) = − log p(z, t). Re-
member that τ(θ) = θ and that I was writing θ̂n instead of τ̂n. Remember

also (cf. equality <6>) that Eθ
•
`(x1, θ) = 0.
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9 M-estimation

For this special case, the L× L variance matrix V (θ) equals

E•g(x1, τ)
•
g(x1, τ)′ = var

(
•
`(x1, τ)

)
=: I(θ).

The matrix I(θ) is called the Fisher information matrix.

The J(θ) = Eθ
••
` (x1, θ) also takes a special form. First note that

••
` (z, t) =

∂
•
`(z, t)

∂t
=

∂

∂t

•
p(z, t)

p(z, t)
=

••
p (z, t)

p(z, t)
− •p(z, t)•p(z, t)′/p(z, t)2.

Take expectations.

Eθ
••
` (x1, θ) =

∫
∂2p(z, t)/∂t2

∣∣
t=θ
−
∫
p(z, θ)

•
`(z, θ)

•
`(z, θ)′.

The first term vanishes—takes the second derivative outside the integral
sign then use the fact that

∫
p(z, t) = 1 for all t. The second term is

just the information matrix again. In summary, V (θ) = −J(θ) = I(θ).
Approximation <8> becomes

MLE: Zn = −n−1/2
∑

i≤n
•
`(xi, θ) ∼̇N(0, I(θ)) and

MLE.limit.distnMLE.limit.distn <10> n1/2
(
θ̂n − θ

)
≈ −I(θ)−1Zn ∼̇N(0, I(θ)−1) under Pθ,

a very famous approximation.
�

1.5 Asymptotic efficiency
Mestimation::efficiency

Classical (Fisherian) statistical theory assigns the MLE a very special role.
According to Fisher, the MLE minimizes the limiting variance amongst all
estimators. He called this property (asymptotic) efficiency. Modern the-
ory has shown Fisher’s assertion to be wrong unless hedged with further
restrictions. One such restriction is to consider only M-estimators as com-
petitors.

Remark. Actually Fisher usually didn’t include the word “asymptotic”.
I find that this omission leads to a lot of confusion between optimality
properties for fixed, finite sample size and optimality properties for the
limiting distribution.
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10 M-estimation

For this section suppose Pθ is specified by some density function p(z, θ)
on the real line. (The argument for discrete distributions is similar.)

Once again consider the problem of estimating τ(θ) = (τ1(θ), . . . , τk(θ)),
based on independent samples x1, x2, . . . from Pθ. Assume τ is a smooth

function of θ, so that the k × L matrix
•
τ(θ) with τij(θ) = ∂τi/∂θj is well

defined.
For each fixed δ in Rk, approximation <8> implies

n1/2δ′ (τ̂n − τ(θ)) ∼̇N(0, σ2(θ)) under Pθ

where

σ2δ (θ) := δ′J(θ)−1V (θ)J(θ)−1δ

J(θ) = Eθ
••
g (x1, τ(θ))

V (θ) = E•g(x1, τ)
•
g(x1, τ(θ))′.

The aim is to find a g to minimize the asymptotic variance σ2δ (θ).
The first step is to find a lower bound for σ2(θ) by considering the

behaviour of τ̂n for values of θ of the form

θs = θ + sγ for s ∈ R.

Here θ denotes some point of Θ that is fixed throughout the argument and γ
is a nonzero vector in RL. Notice that

∂

∂s
τ(θs) =

•
τ(θs)γ,

the product of a k × L matrix with an L× 1 vector.
Along the path defined by θs inequality <6> becomes

0 = Eθs
•
g(x1, τ(θs)) =

∫
•
g(x1, τ(θs))p(z, θs) for all s.

Notice the way θs appears in two places. Differentiate with respect to s.

0 =

∫
••
g (x1, τ(θs))

•
τ(θs)γ p(z, θs) +

∫
•
g(x1, τ(θs))

•
p(z, θs)

′γ

= Eθs
(••
g (x1, τ(θs))

) •
τ(θs)γ + Eθs

(
•
g(x1, τ(θs))

•
`(z, θs)

′γ

)
Put s = 0 then multiply both sides by δ′J(θ)−1 to deduce

constrainconstrain <11> δ′
•
τ(θ)γ = −Eθ

(
δ′J(θ)−1

•
g(x1, τ(θ))

•
`(z, θ)′γ

)
.
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11 M-estimation

The right-hand side is of the form Eθ(XY ) for random variables

X = δ′J(θ)−1
•
g(x1, τ(θ)) and Y =

•
`(z, θ)′γ.

Notice that

EθX2 = σ2δ (θ) and EθY 2 = γ′I(θ)γ.

Invoke the Cauchy-Schwarz inequality (subsection 1.2.3) to deduce that(
δ′
•
τ(θ)γ

)2
≤ σ2δ (θ) γ′I(θ)γ

That is,

σ2δ (θ) ≥

(
δ′
•
τ(θ)γ

)2
γ′I(θ)γ

for all γ 6= 0.

Replace γ by I(θ)−1/2β then choose β as the unit vector in the direc-

tion δ′
•
τ(θ)I(θ)−1/2 to maximize the right-hand side, leaving the lower bound

var.lowervar.lower <12> δ′J(θ)−1V (θ)J(θ)−1δ = σ2δ (θ) ≥ λδ(θ) := δ′
•
τ(θ)I−1(θ)•τ(θ)′δ.

1.5.1 Special case: τ(θ) = θ

When τ(θ) = θ the matrix
•
τ(θ) of derivatives becomes the identity matrix IL

and the right-hand side of <12> becomes δ′I(θ)−1δ. For the special case of
the MLE θ̂n the left-hand side of <12> also equals δ′I(θ)−1δ. That is, the
MLE achieves the lower bound, for every δ.

1.5.2 General case

When
•
τ(θ) is not the identity matrix it is not obvious to me how to find an

M-estimator that achieves the lower bound in <12>. But there is another
way to estimate τ(θ) that does give an asymptotic variance equal to λδ(θ).

By Taylor’s Theorem,

τ(θ + h) ≈ τ(θ) +
•
τ(θ)h for small h ∈ RL.
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12 M-estimation

In particular, for h = θ̂n − θ the approximation <10> for the MLE θ̂n gives

τ(θ̂n)− τ(θ) ≈ −•τ(θ)n−1/2I(θ)−1Zn

where Zn = −n−1/2
∑

i≤n
•
`(xi, θ) ∼̇N(0, I(θ)). Thus

n1/2
(
τ(θ̂n)− τ(θ)

)
≈ •τ(θ)I(θ)−1Zn ∼̇N(0,W (θ)) under Pθ,

where

W (θ) =
•
τ(θ)I(θ)−1I(θ)I(θ)−1 •τ(θ)′.

In consequence, n1/2δ′
(
τ(θ̂n)− τ(θ)

)
∼̇N(0, λδ(θ)).
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