Chapter 2 Multivariate normal distribution

2.1 Basic facts

Let Z_1, Z_2, \ldots, Z_n be independent N(0, 1) random variables. When treated as the coordinates of a point in \mathbb{R}^n they define a random vector \mathbf{Z} , whose (joint) density function is

$$f(\mathbf{z}) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i} z_{i}^{2}\right) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \|\mathbf{z}\|^{2}\right).$$

Such a random vector is said to have a *spherical normal distribution*.

The **chi-square**, χ_n^2 , is defined as the distribution of the sum of squares $R^2 := Z_1^2 + \cdots + Z_n^2$ of independent N(0,1) random variables. The **non-central chi-square**, $\chi_n^2(\gamma)$, with noncentrality parameter $\gamma \ge 0$ is defined as the distribution of the sum of squares $(Z_1 + \gamma)^2 + Z_2 \cdots + Z_n^2$.

The random vector \mathbf{Z}/R has length 1; it takes values on the unit sphere $S := \{\mathbf{z} \in \mathbb{R}^n : \sum_{i \leq n} z_i^2 = 1\}$. By symmetry of the joint density $f(\mathbf{z})$, the random vector is uniformly distributed on S, no matter what value R takes. In other words \mathbf{Z}/R is independent of R. This fact suggests a way to construct a random vector with the same distribution as \mathbf{Z} : Start with a random variable T^2 that has a χ_n^2 distribution independent of a random vector \mathbf{U} that is uniformly distributed on the unit sphere S. Then the components of the random vector $\mathbf{T}\mathbf{U}$ are independent N(0,1)'s. In two dimensions, the random vector \mathbf{U} can be defined by

 $\mathbf{U} = (\cos V, \sin V) \qquad \text{where } V \sim \text{Unif}(0, 2\pi].$

2.2 New coordinate system

The spherical symmetry of the density $f(\cdot)$ is responsible for an important property of multivariate normals. Let $\mathbf{q}_1, \ldots, \mathbf{q}_n$ be a new orthonormal basis for \mathbb{R}^n , and let

$$\mathbf{Z} = W_1 \mathbf{q}_1 + \dots + W_n \mathbf{q}_n$$

be the representation for \mathbf{Z} in the new basis.

<1> **Theorem.** The W_1, \ldots, W_n are also independent N(0, 1) distributed random variables.

> version: 18Sept2013 printed: 18 September 2013

If you know about multivariate characteristic functions this is easy to establish using the matrix representation $\mathbf{Z} = Q\mathbf{W}$, where Q is the orthogonal matrix with columns $\mathbf{q}_1, \ldots, \mathbf{q}_n$.

A more intuitive explanation is based on the approximation

$$\mathbb{P}\{\mathbf{Z} \in B\} \approx f(\mathbf{z}) \text{(volume of } B)$$

for a small ball B centered at \mathbf{z} . The transformation from \mathbf{Z} to \mathbf{W} corresponds to a rotation, so

$$\mathbb{P}\{\mathbf{Z}\in B\}=\mathbb{P}\{\mathbf{W}\in B^*\},\$$

where B^* is a ball of the same radius, but centered at the point $\mathbf{w} = (w_1, \ldots, w_n)$ for which $w_1\mathbf{q}_1 + \cdots + w_n\mathbf{q}_n = \mathbf{z}$. The last equality implies $\|\mathbf{w}\| = \|\mathbf{z}\|$, from which we get

$$\mathbb{P}\{\mathbf{W} \in B^*\} \approx (2\pi)^{-n/2} \exp(-\frac{1}{2} \|\mathbf{w}\|^2) \text{(volume of } B^*).$$

That is, **W** has the asserted spherical normal density.

To prove results about the spherical normal it is often merely a matter of transforming to an appropriate orthonormal basis.

<2> **Theorem.** Let \mathfrak{X} be an *m*-dimensional subspace of \mathbb{R}^n . Let \mathbf{Z} be a vector of independent N(0, 1) random variables, and $\boldsymbol{\mu}$ be a vector of constants. Then

(i) the projection \$\hfrac{2}\$ of \$\mathbf{Z}\$ onto \$\tilde{X}\$ is independent of the projection \$\mathbf{Z} - \hfrac{2}\$ of \$\mathbf{Z}\$ onto \$\tilde{X}[⊥]\$, the orthogonal complement of \$\tilde{X}\$.

(ii)
$$\left\| \widehat{\mathbf{Z}} \right\|^2$$
 has a χ_m^2 distribution.
Draft: 18Sept2013

Statistics 610 © David Pollard

(iii) $\|\mathbf{Z} + \boldsymbol{\mu}\|^2$ has a noncentral $\chi_n^2(\gamma)$ distribution, with $\gamma = \|\boldsymbol{\mu}\|$. (iv) $\|\widehat{\mathbf{Z}} + \boldsymbol{\mu}\|^2$ has a noncentral $\chi_m^2(\gamma)$ distribution, with $\gamma = \|\boldsymbol{\mu}\|$.

PROOF Let $\mathbf{q}_1, \ldots, \mathbf{q}_n$ be an orthonormal basis of \mathbb{R}^n such that $\mathbf{q}_1, \ldots, \mathbf{q}_m$ span the space \mathcal{X} and $\mathbf{q}_{m+1}, \ldots, \mathbf{q}_n$ span \mathcal{X}^{\perp} . If $\mathbf{Z} = W_1 \mathbf{q}_1 + \cdots + W_n \mathbf{q}_n$ then

$$\mathbf{Z} = W_1 \mathbf{q}_1 + \dots + W_m \mathbf{q}_m,$$

$$\mathbf{Z} - \widehat{\mathbf{Z}} = W_{m+1} \mathbf{q}_{m+1} + \dots + W_n \mathbf{q}_n,$$

$$\|\mathbf{Z}\|^2 = W_1^2 + \dots + W_m^2,$$

from which the first two asserted properties follow.

For the third and fourth assertions, choose the basis so that $\mu = \gamma \mathbf{q}_1$. Then

$$\mathbf{Z} + \boldsymbol{\mu} = (W_1 + \gamma)\mathbf{q}_1 + W_2\mathbf{q}_2 + \dots + W_n\mathbf{q}_n$$
$$\widehat{\mathbf{Z}} + \boldsymbol{\mu} = (W_1 + \gamma)\mathbf{q}_1 + W_2\mathbf{q}_2 + \dots + W_m\mathbf{q}_m$$

from which we get the noncentral chi-squares.

2.3 Fact about the general multivariate normal

If Z is an $n \times 1$ vector of independent N(0, 1) random variables, if μ is an $m \times 1$ vector of constants, and if A is an $m \times n$ matrix of constants, then the random vector $X = \mu + AZ$ has expected value μ and variance matrix V = AA', and moment generating function

 $\mathbb{E}\exp(t'X) = \exp(t'\mu + t'AA't/2)$

In particular, the distribution of X depends only on μ and V. The random vector X has a $N(\mu, V)$ distribution. If γ is a $k \times 1$ vector of constants and B is a $k \times m$ matrix of constants then

$$\gamma + BX = (\gamma + B\mu) + BAZ$$

has a $N(\gamma + B\mu, BVB')$ distribution.

Draft: 18Sept2013

Statistics 610 © David Pollard

Standard distributions $\mathbf{2.4}$

Suppose

Z has a N(0,1) distribution

 S_k^2 has a χ_k^2 distribution S_ℓ^2 has a χ_ℓ^2 distribution

with all random variables independent of each other. Then, by definition,

$$\frac{Z}{\sqrt{S_k^2/k}}$$
 has a $t\text{-distribution}$ on k degrees of freedom (t_k)

and

$$\frac{S_{\ell}^2/\ell}{S_k^2/k}$$
 has an *F*-distribution on ℓ and *k* degrees of freedom $(F_{\ell,k})$

Statistics $610 \odot David Pollard$