Geometrizing Rates of Convergence I

David L. Donoho
Richard C. Liy

Department of Staristics
University of California, Berkeley

ABSTRACT
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1.1. Background

Let T be a functional of the unknown probability distribution 7 » and suppose we have a sample

X, X LLdF. I T is conunuous in one of the “w&k tcpologxw (e.g. Prohorov, Kolmogomv)

2’ RS . ‘_,,~_ Laud Ty . . !
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then T(F) can be estimated by T(F ) where F, is the empmcal disaibutdon F (x) = -Z](XS,, For

example, if T(F) = [WdF , where ¥ is continuous and bounded, then T'(F,) converges 1o T'(F). As an
added bonus, in this example convergence occurs at a rootn rage: AYXT(F) = T(F)) = 0,(1). i
On the other hand, many functionals of interest are not continuous in such “‘weak” topologies.
mtypicalcas&sarethosewhicharedeﬁnedintcnnsofzhedensi:yf raxherthanmedisu-ibution[-‘;
as examples, one could cite T (F ) = f£(0) (the density of F at 0), and T(F )= If 2, For such functionals,
one has no ‘“‘namral’’ estimate. Instead, one (for example) compures a kemnel density estimate fa
plugs it into an appropriate formula 1o gct an estimate T, of T(F) In general, such an estimate will

converge, as & — e, 10 T(F); however, the rate may be arbitrarily siow (Farrell 1967, Devroye and



Gyorfi 1985).

This sort of *‘slow convergence’® result does not deter practical use of such methods, which may
be justified theoretically by the fact that under supplementary regularity conditions on the unknown
dmsity,anappmpriamlynuwdsﬁmamrwﬂaminaweu-deﬁnedmofconvagem.ﬁm.fm exam-
ple, if F has a density f withtwocmﬁnnous,bw;ideddaivaﬁves.anappmpﬁaxdyumedkal;elsd-
mate of T(F) = f (0) can amain a **2/5"’ xaxcofconve-rgence: a¥(T, -T(F))=-'0,(l).

Thmmmmydiﬂ’érmzsﬁmamofmnpmameuicmncdomh,mdmeyaminavaﬁctyof
rates of convergence — depending on the functional bemg estumated, on the methoci of estimation and
ontheassumedregularityofF.IfFisverysmoom,inatimaﬁngf(O).omcananainmemn'“’by
m'smgmnmmmn‘“bymnddmsitymmwixhposixivekmel,andmmsclosemn'"‘by

L kdnddmsiq&mmwimspedﬂkzndsmomefuncdonﬂsomamimodam for estimat-
Coyands

ing the mode one amains 1~ by a kemel procedure (Venter,1967), but by special techniques under
pecial regulsrity one amains even faster rates - close w ™2 (Eddy, 1980). For integral functionals
such as the L, -nom [f?, one sees results, for example of Ahmad (1976), citing rates of n™"? for
kemei-based sﬁnﬁws.

The wide variety of cited rates and regularity conditions leads to the question whether a certain
rate of convergence is **optimal” for the given functional and regularity assumption. Several authors
have dewrmined optimal rates of convergence for functionals of a density: notably, Famrell (1972),
Wahba (1975), Meyer (1977b), Hasminskii (1979), Stone (1980), Hall and Welsh (1984), Hall and Mar-
ron (1987), Ritov (1986); see also the review by Kiefer (1982). The idea is to show, under cerain regu-
larity conditions on the unknown dcnsityf., that a certain rate of convergence cannot be exceeded uni-
formly for all f satisfying' the condition. This places a bound on the rate of uniform convergence,
which can then be shown to be attainable by exhibiting an estimator which attains this bound.

There are, in our view two main approaches for bounding rates of convergence for functionals of

a density: the *‘testing method”” and the *‘parametric method’”, respectively.
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Stone (1980) makes quite clear the basic idea behind the testing method. One constucts a
sequence (F |} of diswibutions in F that approach a fixed F e F. The sequence must be chosen so that
the hy-pothess Hy:F,, and Hy: Fy are hard to tell apart based on the best test using n -observations
X1v....Xs. Then T, — T(F) cannot usually be smaller than §, = IT(F.)-TFQI/2, uniformly in F;
otherwise the test that decides in faver of H; when IT, -~ T(F il <8, would reliably test A, against
Ho.

Stone appears to be the first 0 make a clear exposition of the tesing method; in rerospect,
though, the wark of Farrell (1972) may be seen as an instance of the lesting method (relying on a
different inequality at a key point, however: a close reading of Meyer (19773) should convince the

:,[

reader that Farreil’s method is based on testing).
Hasminskii’s bound on rates of convergence uses ideas from parametric theory. In brief, if F is
the class of all densities satisfying the given regularity condition, and Fois a particular distribution of
interest, one constucts a sequence of parameter families {Fa,) < F: the families all have Foa =F,,
Le. they ‘“‘pass through’® the point Fy. The idea is that the parameter 6 should be hard 1o estimate, for
large n. One does this by showing that £ - 1S 2 Jocally asympuotically normal family, and applying an
asympwouc minimax theorem in the spirit of Hajek-LeCam. One then establishes a link betwesn
estimating 0 and estimating T, i.e. anequanon ofdxefonnT(Fg_,) T(Fa)—c n™" 8; using this link

showsmaxbecauseexshardmsum Tcannotbeesumazcdazarateexccedmgn
The technique of Farreil (1967) is also based on parametric theory. Starting from the same setup
as the Hasminskii method, the parameter 8 is shown 0 be difficult o estimate via the Cramer-Rao ine-
quaﬁxyraxhcrmanalocalasymptodcminimm:bound.ﬁispmmisingidmappcamtohavebeen little
used, however. The note of Boyd and Steele (1978) and the unpublished manuscript of Farrell (1980)

are the only other apj)licaziom of this technique we have found.

(We shouid also mention that "“lesting” and *‘parametric” approaches to bounding rates of con-

vergence have been used in other problems - e.g. in esu'xhzm‘ng functionals of the spectral density of a
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saationary time series (Samarov, 1976). Also, in the problem of estmating an entre density (and not
just a single functional) new ideas arise; we mennon, in alphabetical order, key papers of Birgé (1983),
Bretagnolle and C. Huber (1979), Centsov (1962), Hasmmshx (1978), LeCam (1975) and Stone (1983).
However, in the present work we focus on bounds for functionals T(F') of a density, rather than on
functionals of spectral densities or on the entire densiry).

Both the *‘lesting’’ and ‘‘parametric’’ methods are powerful, and have produced very interestng
andiIlux'ninatingrsnhs.Ontheomuhand.memethodsarenotmﬂywsytouseorexplaintoothers.
They depend, for one thing, on proper choice of testing alteinatives (Fi.) or of parameter families
{Fe,) to get interesting results. Often, one employs a permrbation argument. For example, in the

parametric approach, one invents a *‘perturbing’” function g and applies a recipe such as

Foa(t) = Folt) + 8 cy g((t = 1o¥s$,)

where ¢, and s, are ‘‘normalizing factors’. The factors can be adjusted subject 0 the constraints of
kecpingFo,eF.ofkeepix_xgehardmm.andofprserﬁngthelinkbetweensﬁmaﬁonofeand
T. Within these constraints, one adjusts the factors to give the strongest possible conclusions on estima-
tion .of T. Because of—thewchniqnerequired.om gets the impression that rates of convergence are iso-
lawd.magicalqmnﬁﬁcf&whosevalmhomydedmedaﬁamemasemmuw'aﬁermamofvirmoso

calculation.

1.2. The New Approach

This paper presents an alternative to the Farrell/Stone/Hasminskii (F/S/H) procedures for bounding
rates of convergence. This alternative is conceptually simple, can be explamed to graduate students in
midcareer, and gww, according to section 6 below, bounds at least as strong as F/S/H. In contrast
F/S/H, which require that one invent a sequence of testing alternatives or parameter families, and by a

process of trial and error find normalizations leading to the most pessimistic conclusions, the procedure
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we_discuss here involves solving a_clearly-stated optimization _problem. There may be guesswork

invoived in solving the problem, but trial and error is not central o the approach at a conceptual level,
as it is in the Farrell/Stone/Hasminskii methods,

mpmqmwepmposeistoevalua:ethemodulusofthefuncdonalofimexcstinﬁe
Hellinger metric. This modulus is, of course, the generalized rate of change of T over Hellinger e-
neighbarhoods of a distribution 7 in F:

b(e) =sup (IT(F)-T(Fyl! tHF Fo)<e, FFqye F)

where the Hellinger disance 4 (F,G) is defined (assuming f and g are densides of F and G respec-

uvely wr.L some dominating measure Y

HF G) = [ 2 - g"ay

With this modulus in hand, the lower bound is easy to get one just plugs 2~ into the modulus, get-
ting b (n~"3),

For example, as we see in secton 3 below, if F is the class of unimodal den.s;itim énd
T(F) = mode(F), then at an appropriate £, b(g) =4 &5 + 0(e¥). Thus b(n~'?) = n~¥5 is 2 bound
onmemmofmﬁfonnconvergcmeofwdmatmsofthemode.

The sense in which b(3~'%) provides a bound is the waditional local minimax one. That s, for
any estimate T, of T, the difference T, - T cannot be much smailer than b (n~2) uniformly in a small

neighborhood of F, in F. For example, we conclude in section 2 below that

T, -TF
lim inf inf _ sup Ep2—T&)

2>2C >0 1.1
sem n ey T ey 126 o)

where N 5(F ) denotes a Hellinger 8-neighborhood of F o in F. In words, (1.1) says that *“for any estima-
tor T,, there is an F near Fy, at which IT, =T(F)I has a significant chance of being as big as

b(n~2)"". This lower bound holds quite generally and requires, for example, no linearity assumptons
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on the functional T.

of coufse, a bound of this kind would be quite useless if one could not compute b (¢). In sectons
3 . § below we compute the modulus for 5 different functonals of inerest, gewing quite explicit and
conaewamwers.m}Iﬂbmspacescucdneoftthcmngerdistancemaksmispossible.lngenml.
we find moduli of the form b(g) = ¢’, 0 < 7 < 1, and so the expression b (~'"%) translates into o).

We are generally able to explicitly compute the F, solving IT(F o) - T(Fol =b(e). This F is a
kind of least-favorable distribution; it changes T the most without going more than g away from £ in
Hellinger distance. Inspection of F, often shows the "mson;' that certain rates occur.- For exampie, in

evaluatng the modulus ot'I'(F)--f(%) for a decreasing density, the rate b(e) = e¥° is seen 0 come

E,@; from the relation between the height of a right triangle figure and the Hellinger norm. In evaluating the
q ) \©

T(?ﬁ,)
o)

modulus of T(F) = the mode of F, the rate b(e) = ¢** derives from the relation between the width of a
pmahdicmandtheﬂclﬁngernamofmeﬁgmkinscib&nmmofconvugmtiein_wixh
simple intuitive facts of analysis.

Of course, even though a bouﬁd is con;pu:able. it would be of lintle use if it gave results less
powerful than those supplied by the Farrell procedure and its competitors. In section 6 we show that,
under mild conditions on the modulus, the strongest conclusion amtainable from the Farrell, Stone, or
Hasminskii procedures is at best O (b(n~%). In a sense, the user who pushes one of these procedures
to give the sharpest conclusions is simply trying to compute b(r~"?), 10 within constant factors, without
knowing that he is rying to do so. Our geometric approach seems clearer conceptually.

An interesting feanmre of our approach is the use of the modulus of continuity of the functional T.
In several branches of applied mathematics the modulus plays a key role: in numerical analysis it
governs the difficulty of numerical integration; in complexity theory, it govems the expense of approxi-
mate algorithms; in inverse problems, it govemns the difficulty of recovering a functonal from inexact
remote sensing data. Here we have shown that the modulus contfols the rate at which a functional can

be estimated in a statistical problem.
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A second key feature of our approach is the use of Hellinger distance. Of course, the work of
LeCam (1970,1973), and Beran (1977,1978) has exhibited Clearly the crucial role of Hellinger distance
to understand efficient estimation in paramerric settings. The work of Levit (1974,1975) and the little
textbook of Pitman (1979) contribute as well o our feeling that Hellinger distance is the right way to
understand efficiency. This paper shows that Hellinger distance helps understand nonparametric
efficiency as well. OurdebtmLeCam,wBexan.andtnPiunan,buteSpeciaﬂyLeCam,winbeclm.

13. 5(n""%) and the information inequality

We have tlked so far about‘ram only, and not constants. If ’we consider the application of
b(n7?) 10 classical problems, 'h'oweva, it appears that 5(n ) is correct not just as w0 rate, but act-
aﬂyumconsnnrs—pmvidedwedividebyZ(i.e.useb(u‘m)IZ). To bégin.mpposewemintaesmd
in estimating the parameter 6 € R of the paramewic family F = (Fq}. Let b(e) be the Hellinger
modulus of the functional T defined for Fg & F by T(Fg) = 0. If the family (Fg} is quadratic mean

differentiable in LeCam’s sense, we can interpret a result of Beran (1977 as-saying that

Jim 2 = Urae 2 (12)
where /ey, is the usual Fisher information for the parameter 0 at 8 = 0. In short the Fisher informa-
tion is *‘encoded’” in the modulus b(e): it determines the slope of 5(g) at € = 0.

Levit (1974,1975) has defined a notion of mfoxmanon for nonparametric estimation of reguiar °
functionals. For such functionals, the moduius b(g) ‘‘encodes’ the information as well. For example,
consider the linear functional T'(F) = [¥ dF where W is a bounded continuous function; to simplify
Mmarters suppose f‘? dF = 0. Levit’s definition of mMeﬁc information about T gives in this case

1
[¥2ar
On the other hand T is Frechet differentable in Hellinger norm; leing F = (all distributions) and

Iimis =

computing the modulus, one gets
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. b(e)
= (Ip s
im, S = ™ a3
AgaintheLevitinfomaﬁonisamdedmmemodulusb(e).
In a sense, b(€) generalizes traditional notions of information. To see this, we need notions from

asympuotic decision theory. Let I(¢) denote a loss function: 2 monotone increasing functon of I¢ ! start-

ing from [(0) = 0. Now local asymptotic minimax (L.A-M.) theory justifies the claims of Irpuer and

—~_

I i 0 measure ‘‘information’’, by showmg they place a bound on the difficuity of estimation - a so-

called L.AM. lower bound. Let [T,}bgasequemeofesﬁmamrs: this bound says

lim inf Ep 1(=TE)
e FaNgF9 T (D2
where Z is a standard Gaussian random variable, and J is either [ryu, oF I1. ., depending on the func-

Y2 E I(Z) (1.4)

tional T considered (parametric or regular nonparametric). (For more information, see Levit
(1974,1975), Millar (1981)). We emphasize that this bound applies for all estimate (T,). Equality can
hold in this expression if (7,} is efficiemt (ie. locally asymptotically minimax), although perhaps only

in a limiting sense, as\gj,—-) 0. < !

Now using (1.2) and (1.3), we can write (1.4) using b (n™"?) rather than (n 1%

.M
T(F) ¢-
lim inf | oup 7 (-3—(.—m)5-)zzz<z> (1.9

_ Intheprsempapcweshowtha!anmequahrylikcmnholdsforn&rlygrbitiatyﬁmcdomls,
and for all sorts of nonregular rates. Our Corollary 2.3 below implies (under mild condition on b(g)) the

general inequality

t=0 n—m FaNgFy T('-_W)Tz-

This relation covers nonregular functionals such as the density at a point, the mode, and integral func-

tionals such as [f2 It covers nonregular rates, as b(n~"?) need not be O (™). In density estimation
we will see rates n~3, n~V4, and n ' popping out of b (n~'?).

We can summarize the last few paragraphs as follows. In the classical setting of parameter esu-

mation, the ‘‘amount of information about © in n observations” is n Jr,.,. In the setting of
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* nomparameric estimation of 3 egulr funcionl T the informason amount is n . In ech case the
claim to represent information comes from the fact that the corrﬁponding intrinsic difficulty of estima-
tion is (# /)2, in the sense that the L.AM. “information inequality’” (1.4) holds. Now (1.2), (1.3),
(1.5) and (1.6) show that b (n~“y2 agrees with (n [)™? in regular cases while providing the same sort
of ‘‘information inequality’’ in much more general semtings. Because of the level of generality, unfor-
tunately, we are unable to give pretty formulas for the constants on the right-hand side of the inequality
(1.6); we are also unable. i say that the bound may generally be armined (but see secton 7). Neverthe-
less (1.6), viewed as a nonparametric L.AM. lower bound, represents the most general answer we know

o the question ‘*How much information about the functional T is contined in n observations (n

large)?”’

1.4. On ‘“Best Constants’’, I
We have proposed a general technique of determining rates of coavergence which seems also o
give correct constants in the classical cases where those constants are known. Is it pcssx‘ble' that the

method gives the best constants in other cases?

For this we have no answer. We have focussed in this paper on easy resuits of a geometric char-
acter. Guiding our thinking all along have been general results such as those of Donoho (1985), which
suggwmatmpologyandgeomctrydcmineanax’nablemaforfuncﬁonals,andofcomscthebasic

9 ______ work of LeCam (1975) and Birgé (1983) showing that geometry determines optimal rates for estimating
an entire density. It seems to us_thax a general formula for precise consmnts is a long way off. In this
regard an enigmatic comment which Lucien Birgé made w0 us is apropros. Asked why rates of conver-
gence was such a technical subject, Birgé scoffed. Refering to global density estimation ‘xmher than
functional estimation, he said (in free tanslation) *‘one can easily see what the rate of convergence
ought to be - the geometry gives you that quite easily. It is only when you want the precise values of

the constants that difficult technique is called for.”
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However, in view of section 1.3, it seems that b(n~"2)/2 is as good a starting place for obtaining
precise constants as any. In section 9.4 below we are able to show that, for root-mean-square error,
something close o b(n~“2y2 holds as a lower bound in great generality. Indeed, in section 9.4 below

we get the lower bound

- < -
5 NEp (T, = T(FQ)* 2 b(n" Y4
valid for a wide range of exponents ¢ in moduli b(e) = Ae*, and for » > no(¢.b). Perhaps the right

hand side can be improved to b(n~'2)2 using **difficult technique’’.
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2. Preliminaries
Let T be a functional of interest; for example T (F) = f (0) (density at zero) or T(F) = sz, Typi-
cally it makes no sense to discuss estimation of T without a priori assumption about the unknown dis-
| wibution F (regularity conditions). Let F denote a class of distributions satisfying a given regularity
condition (e.g. F = (F : f(f 7 < 16)). |

We define the modulus of T at Fy € F by

br@® =sw(ITF)-TFYl: HFFo<e FFye F)

This is the ordinary modulus of conunuity with respect o the Hellinger distance. Typically, b(e) = ¢#
where 1 2 p > 0. When T is Frechet differentiable in Hellinger norm, one has b(g) = & so the closer p

istol.mc“smoodxer"Tis(axFQ).‘
- d:ﬁew’/wﬁ“b(i

We will need the following terminology:

. b(e)isregularif-g-b(%e-)e—)=0(1)ase—>0.formchc>O.

* b(e) is regularly increasing if, for each co>1,thereisac; > 1 with

Co < lim inf ———— 2.1

* b(e) is Holderian if for some p > 0

b(e) =c & +o(e”).

As indicated above, the Holderian case is the usual one; a Holderian modulus is both regular and regu-

larly increasing.

Theorem 2.1.  For any estimates (T.). and for each § > 0,

c e - 1 29
IT. - 12y, -~ , 2
hmmfmfhgzg_o) P,.: (1T, ~=TF)I >b(c n 2} > 3 e for each c >0 2.2)

A~ee T,
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We will see that this thearem bounds the raie of convergence of T, to T. The theorem depends

crucially on a lemma due to LeCam. [mia*{: b
{ N

Lemma 2.2. (LeCam)  Suppose that H(F F o) < a/Nm . Then the minimum sum of type I and type I

errors of any test between F and F o based on n observations is not better than (1 - a*2n )“=e""'2.

z

In short, diswibutions within about O (1/¥a ) of a fixed diswribution F, in Hellinger distance are
dificult 1o distinguish from Fo by means of hypothesis tests. The expression h(n~"?) therefore
represents the largest difference T(F) - T(Fo) attainable when F and F, are not distinguishable by the
best test.

Thcfoxmalproofoftheommz.lismmershmt.andwegiveixhere.ﬁxee (0.2); assume (only
to simplify notation) that there is a diswribution F, with H(Fo.F ) =¢ and T(Fo ~ T(Fo) = b(e). Let
X jpeeXy Lid. F, F unknown, and let the estimate T, of T(F) be given. Consider the satstic S, for

testing the hypothesis Hg : F = Fg against Hy : F = F,, defined by

Su=T-"T(F0)v
and the test that rejects Hg if S, > b(eV2. '

From LeCam’s lemma we know that for this test

Type I error + Type I error 2 (1 - e%2)*

so that
max (Type I, Type II) 2 (1 - €¥2)*12 .
By definition ' '
Type I = P,-O{T,. = T(Fq) > b(e)2)
and
£ o Fe
Type Il = Ppl(T. -T(F ) S -b(E)N2)

F-%u Pr{(IT, -T(F)l 2b(ey2) 2(1 -2 12.

z/
- ,/1,,,}
i

¥
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This bound is valid for any statistic T, and for any ¢ € (0.2).

Now given ¢ > 0, for n large enough, c/¥a < 2, and so the bound applies with & = ¢ /¥ . Also,

for fixed § > 0, eventually F 7 € Ng(Fy). It follows that for all large enough n,
—_— c

Pr(IT, = T(F)!I bz’-"?)z
lT.;fNi:?& F[ I ())(’l /]

Zlgf(pon}f::} Pr{IT, =T F)l > b(c n~2)7)

21 -c¥2n)yn.
The result (2.1) now follows from a1a- c2/2n)“ - e"z’z.

Let us see how theorem 2.1 bounds the rate of uniform convergence. Let [(¢) be a loss functon:
dp(vien -
nonnegative (I(¢) 2 0), symmetic d(=~t) =1(), “and mcxmsmg (l(t)sl(t +h) for ¢, 2 >0). For

example, put [ (¢) = ¢2, The sequence (3, ) bounds the raze of convergence if

Definition
T, -TF)
lxmmfx;_zf o)E’ 1[—'8———-1>0 (2.3)
3 N ) I )
for every nonzero loss funcdon. . { C Sla E Xy ’T"/__g— 70
- F ) \ S0
= 6 D 4

Because every nonzero loss function is bounded from below by a multiple of some indicator functon

T1111 5 a)s (2.3) holds with §, =b(n"? if

lim inf inf ., Pr UL =TF) >a b(x™3) > 0. (2.4)

A s T Fa

for each a >0. Now if b(e) is regularly increasing, then by (2.1) we can find ¢, >0 with

b(c//Va' Y2 >a b(n™"? for all large enough a; then (2.2) will imply (2.4). We have proved

Corollary 2.3.  Ler b(e) be regularty increasing. Then b(n™"?) bounds the raze of convergence.
MarkeV %

This notion of rate bound has been used by Samarov (1976,1977) and Hasminskii (1979). Stone

(1980) uses a more demanding noton of rate bound, which requires in addition to (2.2), something like
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e e s T - - =1.
lim Lim inf nghsgxl%d Pr (IT. ~T(E) >8b(™P)) =1 2.5)
For linear functionals at least this result can be proved following the sketch given in Stone (1980), by
using Fano’s lemma. We omit this exercise. Farrell (1972) uses an apparently different nodon of rate

bound which, however, is equivalent to (2.3).
. We now turn to the evaluation of b(g) in some interesting cases. Note [0 the reader: Below we
generally prove only the simplest and least technical resuits in the running text; most proofs are given

in secdon 10.
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3. Estimating the mode
Here let F = U » (All distributions with unimodal densides}. Let T(F) = (rightnost) mode of
F.Let Fgy be a distributon with unique mode m, and with a density having two continuous derivatives

at m, with f¢(m) < 0. — so that f is as in figure 1.

| ~F .
AT K

e

o | ’

.~ // . ! l

r NS
m @ bHeg)
Figure 1

3,

~———

Theorem 3.1 (Extremal Function) The distribusion F & U mazimizing T(F ) - T(Fo) subject io

H(F o o S € has the density
cff (x) zsm(s0)
fe=1c3f (m) m<x<Sb(e) b
cif x) . x> b(e) ) " C ©
where c? satisfies ' y Y

cHFm)+ (1-FB@E)) +BE -m) f(m)=1.

Instmzheexmaldcnsi:yhasavuyﬂaxmp.cxxcndingdumodalinmalfo:aslongaspos—
siblcwdwrighl.andthetebypulﬁngdzmodewmeﬁghx.

"It is not hard using this extremal function to derive an expression for the modulus:

Theorem 3.2. (Modulus)  Under the assumption of this section

br(e) = AP + 0 ()
where Ay = A((f o(m)Sf o' (m)). - r

N
&
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The **2/5°" result is due to the contributions of regions A and B w the Hellinger distance + the-
contributions from (—e,m) and (m + b(g),) being relatively unimportant Roughly speaking, A + B
make up the discrepancy between a parabola and a constant If the constant is chosen cormrectly, on a
short interval of length b(g), the ro.ot-m&n square difference between these will be only O (b(g)*?).

Thus pulling the mode to the right by b(e) need only cost O (b (e)*?) in Hellinger distance.

Plugging n~"2 into this expression one obwins this

Corollary  For no estimator T, can the rate of convergence exceed n~Y3 uniformly throughout any

neighborhood of U.

Hasminskii (1979) originally obtined the rate bound 2~** via his ‘‘parameric’’ argument
RaulnofVm(l%ﬂshowthatn‘"’isanainablcbyanm-wghbasﬁmamr.Omappmach,by .
exhibiting the least favorable distribution F ., shows the kind of *‘stretch’ of the mode that causes the

rate 10 OCCIK.
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4. Estimation of a density at-a point
In this section, we smdy density es;u'man'on under various ‘‘smoothness assumptions’’. This is his-
torically one of the most studied problems in nonparamewic estimadon. See also Farrell (1972) and

Stone (1980).

4.1. Decreasing density
For our first example, let F be

D = (All distribudons with support [0,) and decreasing densities on {0,0)}.
A typical member of D is the exponential distribution with density ¢, x 0, Let T(F) =f(%), the

dmsityaxx:l/Z.Lafohaveapcsitivedenxityax1/2withacontinuousdexivaxiveat1/2 that is

~ strictly negative,

Theorem 4.1. (Extremal Function) The distribution F, € D maximizing T (Fo) - T(F¢) subject to

H(F F o) S € has the density

i) ¢*f ox) x &[22 +w)
z) =
czfa(—;- +w) x € [UL1R +w)
where c2, w satisfy Py ntes
Tt 9’ .
1 1 1 TS
CZ(FQ(E)-#{I—FO(E+w)}+-wfo(-2—+w))=l c -

oz +w) = foz) = b

‘As shown by figure 2, the exwemal function makes a downward jump, f 0(%) - b(e) at 1/2; the flar

SPOt is necessary to preserve monotonicity of fe



Theorem 4.2. (Modulus)  Under the assumptions of this subsection,

br(e) = A2 + 0 (%)

where Aq = Az(f(%)f'(-;-)); For example, if fox) = V3 =z for 0S x S VI then A, = 22199

The **2/3"" results here derives from the contribution of the ‘‘wiangie’ A 1w the distance
H(Fo.F o). - the contribution from xe(l/2, 2 + w) being relatively unimportant Roughly speaking,
this wiangle has sides b(e), b(eVf o{1/2), and it contributes O (b(e)*?) w0 H(FoF ). Thus, permrbmg
by the downward jump changes T(F) by an amount 5(e); at the (small) cost of only = b(€)*? in Hel-

~ linger distance.
Corollary  The minimax rate for estimating a decreasing density at a point is no better than n~\3.

‘I'hisresnkisduea'iginaﬂytoKiefu(l982).whonsdat=sﬁngmmt(‘lcaﬂsthisaBayaargu-
ment). That this rate is artainable follows from results of Prakasa Rao (1969).

42. Decreasing density with smoothness constraint
The extremal function of Theorem 4.1 may be considered unrealistic because it makes a jump at
lﬂ.mdomnﬁgiltmdinarﬂyéxpecxf bhaveabo@dedduivmive.ComidumenD,=(feD.fabs.

comt.,, f°2—c ae.) The extremal function for the new family will have to satisfy 0 2 f,’ 2 —c.
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Theorem 43. (Extremal Function)  The distribution F, angining b (€) has the density

rcff'o(x) x &(w;,wq)
fe=<fo(%)-b(£) V25xSwy
1 1 w;Sx 12
(f°(-f) -b@)+cx - 3)

(see figure 3) where
K1+ Folw) = Fowd) # vz = X/ 3) = 5@ + (o 3) = b(E) + cl oo} - wiyz =1
cHfowa) = f ) - b(e)

Y olw) = (Fd3) = b(E) + vy - 3

So instead of a jump at 172, the extremal function has a sieep line segment just to the left of /2. While
this segment may make the result more plausible or pleasing, however, it does not change the rates

involved — only the constants.

Theorem 4.4. (Modulus)

br(e) = A%™ +0(e®)
where A, =A3(C‘fo‘fa dﬂdAg < A,

Thus bounding the derivative explicitly will not improve the rates, but instead only constants, in

the modulus. Kiefer (1982) contains discussion related to this effect.



4.3. Density under integral smoothness

Quaiita:ive conditions on the density — such as monotonicity — are unrealistic in many sima-
tions. If so, one can use smoothness constraints involving norms on derivatives of the density o form
the class F.

Let /(F) denote the Fisher information of F;
1(F) = 4f((F 2y

and let I, be the st of distibutions with /(F) S c. Let fo € I, have £o(0) > 0, and let T(F) = £ (0).

Here we, un[omxnﬁxdy. have 10 settle for a result that is approximate, not exact.

Theorem 4.5. (Extremal Function) The extremal density f, :au.v‘xc:

VFez) = (1 = 2N x) + V& + €78k (z) + 0 (€D

-eslx §

where h(x) = cqe

In short, the worst perturbation 10 £ is of the form k, in the sense of changing £ (0) a lot without

changing much in Hellinger distance (figure 4)."

3
£5

Figure 4

Theorem 4.6. (Modulus)

br(e) = N2 f o(0Kc - I(F)"**¥e + O (e).
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Corollary  The minimax raze for 1, is not better than n=""*

This class does not seem 0 have been studied before; the bound is new.
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S. Integral functionals
Functionals such as [f2 and even I(f) = 4J(f )%f are important in statistical theory. The possi-
bility of estimating them nonparametrically opens new avenues in development of confidence intervals

and estimates of risk - see Donoho (1985)

'I'hefollowinggivwamodelresxm.fa'themnctionalT(F)=J:fz.LaF=Lsa{f :If’sCz}.

Theorem 5.1 (Modulus of £

br(e)sCe.

In short, the modulus of the functional is linear , giving the possibility that the functional may be
estimated at the **ordinary’” 2~'2 rate under enough regularity (‘[f’sbound).

A parallel result holds for the functional T(F) = I(F). L F=1,(C) = (f : [(F)2 s C?).

Theorem 5.2. (Modulus of / (F))

brey sC e.

This suggests that the Fisher information might be estimable at a root-n rate if f'2 has two weak
derivatives il.l a quadratic mean.

Theorem 5.1 and 52 dcxive'from an abstract result which suggests that L,(C) and I(C) are the
“‘natural” regularity classes for these flmcnonals. The key point is that [f2 and /(F) are both strictly
convex functionals of 2 they both have Gateaux differentials. Thus, for [f? the differential is the
functional A/ (k) = 4 [f3?h; and for I(F) = 4)'(f’f’)" the differential is A, (k) = (-8)[(f{*)"h. If the
differentials are really good approximation o the behavior of the functionals, then we expect that

TG)-T(Fo =2 "= f§) + 0(H (G Fy) and so that

br®) = supy,, by ()



=g snpj.h% lfo(h)
=g Il,ol.;

here A, 1. denotes the norm of the linear functional Argie 1A le =supiyi1g Ar (R).
In short, if F = (f : 1A, . S C}, then we expect

brg) s Ce

for these functonals. Theorem 5.1 is exactly of this form: we recognize ff’ as %lkfol. in this partic-

ular case. Similarly, in Theorem 52 we recognize J’(f“z)’z as %lk,oli’. We conjecture that
4y I+ < C is the minimal regularity condition necessary o have a result of this form.

The abstract resuilt we referred to is:

Theorem 53.  Let T(F) =J(f') where J is a stricily convex functionai. Suppose that J(ar) is
defined whenever J(r) is, for each a > 0, (i.e. suppose dom(J) is a cone with vertex 0). Suppose also
thar (f12 . Aple SC)is a convex set. Then if ¥ = (F : IA; . SC), T is Lipschitz over F in Hel-

linger norm, with constant C

br(e)sC e

For both our applications, the cone condition on dom(J) is easy to verify. For _sz it just means that
f(azf)z is defined whenever Ifz is. The comvexity of the regularity class (fY2: A l. £ C) comes

from a computation:

for  [FA 1 i3=[f% and

for  fFrmyr gk = fpvayn
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In each case |A, I+ is a convex functional of f 2.
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6. Comparison with other lower bounds.

In this section we show that b (n~"2) always gives rate bounds as sharp as those provided by the
Faell, Stone, and Hasminski procedures. - Inuitively, the reason is that tiese other procedures all give
bounds 0 (3,) where 8, = T(F\,)~T(F,) and Fy, and Fy are chosen subject 1o particular con.
straints. Each procedure’s constaints impiy that £, and F, can only be partally distingnished by a
'est on n observations. But, due 10 a dictim of LeCam’s (LeCam, 1973), the lack of a perfect test will
then imply that H(Fl,;,Fa) S ¢~Nn for an appropriate ¢ > 0. Accordingly §, < b(c/Va). For reguiar
b, this means §, = O (b(n~3). Thus a sequence {3, } derived as a bound on the tate of convergence

by these other methods will not tend w0 zero essentiaily more slowly than &(n =iy

6.1. Good but not perfect tests
Let F;, be a sequence of distributions converging (in some sense) to a fixed dismibution Fg Let

P, denote the product measure on R* with marginal F,, and P,, denote the product measure with

ia

P ,
marginat F,. Below we need the likelihood rato L, = P We also need o quantify the probability

On
ofmroftheb&tmbetwml’o, and P, ,. We define

TP oL 15) = infs-Pon(S) + Py, (S°). (6.1)
nisthemixﬁmumsumoftypelandtypenermrsofanytesxbetweenh, and P . If § achieves the
infimum in (6.1) the test which achieves r decides P, if § is wue and P, otherwise.

For sequences of product measures (Poa) and (P, ), we say that there is no perfect test between

(Pos) and (P ,) if there is a > 0 with

PoaP1a) > foralln > n, (6.2)

Note that there is an implied positive constant @ here which must bound the sum of errors for

every n > no. We also say that there is @ good test berween (Pos) and (P, ) if there is B > 0 with
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1=-B>nPoalia) foralln > ny . (6.3)

Again note that this bounds the sum of errors uniformly in 2. LeCam (1973) announced the result “*.....
if there is a good bus not perfect test between ... [(Pon) and (P1,)] then [nV2H (FoF,,)] stays
bounded away from zero and infinity’’. The result was not explicitly given in LeCam’s paper; we give it
here. '

Lemma. (LeCam) If there is no perfect test berween (P,,) and (P, ,) then for cy = co(@)

H(FoF1,) Scoin n > ne (6.4)
If there is a good test besween (P,,) and (P, ,) then for ¢, = c(B)

HF oF10) 2 cyin for aill n > ne (65)
mpwfm&omhwqmﬁﬁabawemmeﬁdﬁngcafﬂnitypsl—%ﬁ and 15 it is given in the
appendix.

Theorem 6.1  If there is no perfect test berween (Py,) and (P 1) and if b is regular, then

T(F1a)~TFQ=0(®R"?) (6.6)

As indicated above, this will be a basic wol in establishing that the b(n~“?) bound includes other

known bounds.

6.2. Stone’s Procedure

Theorem 6.2 The bounding sequence (8,) in Stone's method is of the form

8, =(TF,) - TSFO))IZ. where (F,,) satisfies the constraint E,o‘ Hog L, 1 < ¢ for some constant

co < o. This constraint implies that there is no perfect test between (Pgo,) and (P,,). Consequently,
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the sequence 8, < b(c\/Nn )2 for some ¢\ > 0; if b is regular, 5, = O (b(n"\?)),
The theorem is proved by *‘walking through’* Stone’s method, which has these steps:

[S1] Define a family (F,,} converging to F, in such a way that
Epa‘llogL,l <Cg<ce 6.8)

where L, is the likelihood ratio defined earlier.
[S2] Show that (6.8) implies there is no perfect test between (Poa) and (P,), for
some Q@ = a(cgq).
[S3] Thus the test x, = “‘accept F, if T, is nearer to T(F,) than w T(F,); reject
in favor of F,, otherwise’’ has a sum of type I and type I errors of at least a.
Define
8 = (T(F1a) ~TF)N2 (6.9)
andput § = (T, - T(Fy) <§,). Then
Type I + Type Il
=Pp (T, ~T(FQ < 8,) + Pp (T, - T(F) >-5,)
= Pr(S) + Pp (5)
2 ﬂPO-Pl.u) >a

[S4] Using max(a,.b) 2 ave(a .b) = sum(a D)2, conclu&e from {S3] that

l;{fP.(rllg:‘vxmJ Pe{IT, = T(F)I >34,)} (6.10)

2 x;:fmf}:gw Pe(IT, = T(F)I > §,)

> o2
from which it follows that
. e a
hmmfmstlgpo)PF(lT,—T(F)l>8.}>7. : 6.1

s T

At this point, 5, has become a candidate for bounding the rate of convergence; it satisfies (2.3)
when [(¢t) =7(1t1 > 1}, To extend (23) to ail loss functions /, it is enough to show that it holds for
L.@)=1{lt] >c}, ¢ >0. This requires conswructing a family (F,,] with T(F ) -T(Fy)) 22 ¢ §,
satisfying (6.8) with some value co f T is linear thxs is rather easy to do). The crucial observation to

make is that any sequence (3,) proposed as a rate bound by Stone’s method sarisfies (6.9) where
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(Fia) satsfies (6.8). At this point, we invoke

Lemma (Stone): IprhllogL.l <C<e

TPoaP1a) > @ = (def - 1)

This lemma, in conjunction with (6.8), (6.9) and theorem 6.1, implies that §, = O (b (n~2)).

Stone (1980) actally uses a more demanding definition of rate of convergence than the one we
are using. This means that an extra set of conditions on {5,) must be checked. However, the sequence
{8, ) being checked always arises from (6.8), (6.9); so it must be O (b(n~"?)). Stone’s approach will

never announce a rate bound essentially stronger than b (n~'2).

63. Farrell’s Procedure

Theorem 6.3. The bounding sequence (3,) in Farreil's method is of the form
8, = (T(F,.) =~ TF N2 where (F1.) satisfies the constraint Eph L2<cy< oo, 'The constraint
implies that there is no perfect test between (P 0s) and (P,,). Consequently, 8, < b(c INIT Y2 for some

¢y >0; if b is regular 5, = O (b(n~2).

Farreﬂ'smethoiasoﬂginaﬂymd.usaadiffumnodonofmofcomugmthaxwedo.
To make discussion simpler, we begin by discussing a *‘modified - Farrell’® procedure, adopted to our
notions. ' |

Our W-Fm procedure is very similar to Stone’s procedure. The key diffgrencc between
the two comes at the beginning:

[F1] Choose (F,,} «F so that

Ep, Li<co<e (6.12)
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[F2]  Show that (6.12) implies there is no perfect test between (P,,) and (P, ), for
some a = a(cy).

This is done by using the following resuit of Meyer (1977a):

Lemma (Meyer) IfEp L} <C <o

TP onl18) > @

where Q is the root of

a-ar .
a

The steps after [F2] are identcal o those of Stone’s procedure. Thus, one ends up with a rate bound of
the form §, = (T(F,,) - T (F N2 where there is no perfect test between (P, ) and (Por). By theorem
6.1, 5, = 0(b(n~"?)). The key difference between Stone’s procedure and the modified-Farrell pro-
cedure is thus that Stone bounds £ Ilog L, | while Farreil bounds E L2 Either bound rules out the
existence of a perfect test; the choice between the two should be based on ease of verifying the condi-
uon.

Farrell’s original procedure for bounding rates is much less transparent than either the Stone or
modified-Farrell approaches. This has to do with the notion of rate bound he employs, which is basi-
cally equivalent, but leads to more complex arguments. To avoid cluntering up the exposition, we leave
mepmoffordleoriginalFan'ellprocedm'etotheappmdix.However,weshouldsaythatheﬁrsttwo

steps are exaciy (F1] and (F2] given above: these contain the core inequality underlying the method.

6.4. Hasminskii’s Procedure
Hasminskii (1979) has inroduced what in the authors’ opinion is the technically most ambitious
(and potentially the most informative) method of obmining lower bounds. It is Based on parametric

rather than testing ideas. Our main result is :
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Theorem 6.4, The . bounding sequence (i,) in Hasminskii's. method is of the form

ta = T(F1.) = T(Fo), where (F ) satisfies the constraint

1
log L, —=p N(Z cocd).
This constraint implies there is no perfect test of (Po,) versus (P ,). Consequenty, t, < b(cy n™'?) for

some ¢, > 0; if b is regular then 1, = O (b(n"V?%).
To prove this, we 'walk through’ Hasminsldi's»procadme. The steps are:

{H1] Inooduce a sequence (F,,]) of distributions and define the parameter family
(Fon) with © = [0,1] via
Fha(l-O)Fo-i-GFl_. 6.13)
(other choices of Fy, and © are possible).
[H2]  Check that the family satisfies the LeCam local asymptotic normality condition
foa(Xi)
£ ety
where Z - N(0,1), ¢, is a fixed positive number, and op (1) is uniform in
_ 8 e [0,1].
[H3] Checkdmtheﬁmcﬁonalislinmﬂyrelaxedwthepammewrevia
 T(Fea)-TF =10 (6.14)

= €8 Z + 3 (o + 0, (D)

(It would suffice to have an approximate linearity
T(Foa) =T(Fo)=16,(0+0(1))).
[H4] Invoke a Hajeék-LeCam style asymptotic minimax theorem to get

it;fm.axP.{lé.-el>5}>C>0 ' (6.15)

f&aﬂsuﬁcicnﬂysmall&.andaﬂn > ne.
[H5] Use [H3] w conclude that
ﬁmm{infmgxP{lT.-T(F)I 2.4,81>C>0

Tl
for all sufficiently small §, and all 2 > ,.

Hasminskii’s method actnally gives an explicit constant C .

To see why this method can at best imply the bound b (n~Y?) on the rate of convergence, consider

the implications of the L.A.N. condition for the choice of (Fy,}. Step [H2] implies that under P, the
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log likelihood ratio L, satisfies
logL, =coZ - %C% +0,(1) (6.16)
where Z - N(0,1). Thus log L, is essentially normal with mean —;-co and variance c3. If it were

ex.acx.ly normal, then we would have

Epu lHog Ly | <¢cj <o 6.17)

Epo_.l.,.2 <cy< 6.18)

where, for example, ¢, < \[ '3:"’0' and ¢, can be taken as the second moment of 3 lognormal distibu-

ton with parameters (-;-co. ¢d. It would then follow by either Stone’s lemma or Meyer’s lemma that

there is no perfect test berween (Pos) and (P, ).
To handle the approximate normality (6.16) we couid apply a condition such as (6.17) or (6.18)
after guncation of log L, . Instead we prefer to use a direct argument based on (6.16) which was shown

10 us by Lucien LeCam.

Lemma (LeCam) /flogL, = N o)

P oxL 1) = E(max(l,e** %))
where Z is N(0,1).

Combining this lemma with (6.14) and theorem 6.1, we again see that «, = O (b(n~13)),

6.5. Remarks
[a] In every case we have seen that any choice of (F,,) consistent with the methods of Farrell,
Stone, or Hasminskii cannot yield a rate bound that is stronger than b (n™Y2). Of course, in any partcu-

lar choice of (F,,} the resuiting bound can be much weaker; the user of these methods might not hig
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on a combination that yields b (n~'/%) 1o within constants.

[b] The key analytc tools of this section are the three lemmas of Stone, Meyer, and LeCam giving
bounds on x in terms of constraints on L,. We remark that other lemmas of this form are possible. For
example, Samarov (1977) has a lemma showing that E log? L, < ¢ implies P, .P,,) > a for some
a=a).

(€] Lucien LeCam has shown us a general argument that can replace all such lemmas. In order for
P onP1a) = 0, he says, we must have L, —», = in Py, -probability. Therefore any constraint on L,
hat oeps |

P{L,>c)<l-¢
for some ¢ > 0, for all n, implies the existence of @ > 0, @ = a(c .£), such that ®(Py, P ,.) > .

By Markov’s inequality, consuaints Ep L2<cq Ep,, llogL,) <coand so forth all constrain

P (L, <c) in this way; so LeCam remarks that without any caiculation one can see that they rule out

the existence of perfect tests.
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7. Attainability of the geometric lower bound
In examples of section 3 and 4, we know that the rate of convergence b(e) is artainable: that
there exist estimates T, with

liminf inf P,{IT, -TF) SC b(n?)=1
C—e NFyY

In fact, they are anainable by quite simple estimates — kemel estimates, for exampie. Adoptng the ter-
minology of Stone (1980) we say that if b(n~2) is amainable, it is the optimal rate of convergence for
T (over the class F).

We do not have a general argument showing that b(n~Y?) is always amainable. Of course, in
every case where the Farrell procedure has been applied and found to give attainable rates of conver-
geace, b(a~?) is amainable, and therefore optimal, What we are able to do for estmates of functionals
falls short of what Birgé (1983) was able w do for estimates of the entire density. Birgé showed that
one could give geometric lower bounds on the risk of density estimates and one could have a
geomerrically-defined estimator which atained the lower bounds within a constant factor. Thus Birgé
estblished that the ‘‘geometric’” rates were in fact optimal.

Nevertheless, in the spirit of Bifge‘ we can give a geomewic procedure for getting artainable rates.
The procedure is to0 compute the modulus in a “‘weak’" topology. For example, let |F - G | g dgnote

the Kolmogorov-Smirnov distance

IF =Gl =sup, IF(t) - G()l

Then define the modulus over KS distance:

bs(F Fo)=sup (ITF)-T@FY! : IF -Fyl <S¢, F Fye F)

This is a geometric quantity in the same spirit as the Hellinger modulus, which, in this section and sec-

tion 9, we denote by (e).
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By the inequality

IF -Gl SLI(F,G)SH(F,G)‘M—-HZSZH(F,G)
we have the upper bound:

bis (8:F F o) 2 by (2&:5F F )

We say the modulus bxs (€:F o,F) holds uniformly in a neighborhood of F o if

b (&:F F)

Fevgro DeFol) € <

“for e < gq.

Theorem 7.1.  [f the modulus bes holds uniformly in a neighborhood of F, and if bes(€) = €# for

some 0 < p <1 then the rate sequence

bes(n™1?)
is anainable.

Proof. We use a minimum distance procedure as in Donoho and Liu (1987). Let 15, be minimum
distance estimate, i.e. any element of F such that

1

IFy ~F, 1 Smin IF, =G| +—
GeF n

mn.byanapplicaﬁonofﬂ:etriangieimqnality:

Py =FISIFy,-F 1l +IF, ~F]I

Now by definition, IF, ~ £, 1 S IF, - F | +-’-ll-so

IF, ~FI1S2IF, ~F| +%=e,,

say. Thus

IT(F,) = T(F)! S b(esiF)
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Because b(e.F ) holds uniformly,

ITE,) =TF) S C b(egiFo)
and because ¢, = Op(n"?)

IT(F,) = TF) = Op(b(n~2)

Corollary Sgppo:e that the modulus bxs holds uniformiy and that
0<a <bs(n™ )by (n™V%) < b < o=, for ail n > ng Then by(n™"?) is the optimal rate of convergence

for the funcrdonal T .

Unformnately, often bgy is much much larger than by. For example, consider the problem of

estimating the mode in section 3.

Theorem 7.2.  Let Fo be as in secrion 3. The eeast favorable diswibugon within

(G : IG = Fol S &)U has the density

. <) X Swy, orx> Wi
fex) = {f (wo). wy<x Sb(e)
(wa) C b(E)<x Sw,

Such thar

ws>b(E)>wid>wy>w,

= Pr(wiwal) + Wy - w))f (W) =¢

= (W3 = w)f (wp) + Py ([waws]) = 22

= Pr([wsb @)D + (b(E) ~ wa)f (wy) = 2¢

Prb(e)wd) ~ (we = b(e))f (W) =€
The modulus

brs(€) = Ae!” + o0 (e¥?)
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Thus, our Heilinger lower bound says the optimal rate of convergence is not better than n~'5, but the

Kolmogorov upper bound says it is not worse than 2-$, The optmal rate is n~1/3,
Consider now the problem of section 4.1 stimaﬁnguwdensityf(-%-) over the class F =D of

locreasing densiti

Theorem 7.J3. Let Fo be as in section 4.1. The e-least favorable distribution within

(G : IG = Fol S €)(\D has the densiry

(x) XSwy, orx>w,

fdx)= 4f (wo) wi<xsS12
(w:) l/2<x$w‘

Such that

We>wy>L25>we>w,
Pr(wywal) = (wy = Wx)f(wz_) =t
(112 = w)f (w3) = Py (Iwa, Li2]) = 2¢
PyAU2w3]) = (ws = 122)f (wy) = 2¢
 a=walf W) - Py (wswD = e
The modulus of T(F) = £ (3) is

brs (€) = V=4 (172)e*? + 0(e'?)
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Thus aithough our Hellinger lower bound says the optimal raxc of convergence is not better than =73,
the Kolmogorov upper bound says the optimal rate of convergence is not worse than n~"4, The optimal
rae is n~\3,

These two exampies point out that there is an ‘‘anainability gap’ in our geometric viewpoint.
The Hellinger lower bound is quite often the optmal rate, but we have no geometric way of showing
this rate w0 be attainable.

A more detiled study of the ‘*anainability gap’* is possible if we consider specific functionals.
Let T(F) = [f* Then by section 5, by(e) S VCi& if F=Ly(C)) = (f : [f* < C,} while, by Danoho
(1985), bes(e) S Coe if F=TV(Cy = (f : Variation (f) S C,). Thus if F = Ly(C,)NTV(C,), the

modulus bge holds uniformiy,

R .
ese)  Ca < .0

W@ - VC;

and we can conclude that n~'? is the opumal rate of convergence over F.

On the other hand, it appears that the 2™ rate is attainable over bigger classes. Ibragimov and
Hasminskii (1978, Thearem 2) show that if F admits uniformly n~"4~*consistent estimates of a den-
sity (global L error), then one can estimate T at a 2“?-rate, as follows. Let £, be an esmate of the

- density using the initial n/log(n) observations, and let 5, be the empirical distribution of the remaining
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1 . . e
n(l-hg(n))wmmmmmemnmmlf If aF vy

T i) = [fo dF,
This 7, is not just uniformly »'2 consistent for T throughout F; Ibragimov and Hasminskii show it is .

even efficient in the L A M. sense.

Now the assumption that F admit n~*~®.consistent estimates of a density essentially means that
F consists of functions with "1/2" derivative. This is somewhat bemer than our requirement, as
feTV(Cy) requires "1"-derivative. Thus one can do somewhat better than our purely geometric
approach indicates.

Nevmhcl&s,neimerbygeome:ricmmsnabyhaxdanalysishasitbeencs:abﬁshedmax
b(n‘“’)isdxcopﬁmalmofcbnvergencefaﬁf’overh(C):thiswoulquujxeshowingmatffzcan
be estimazed at a root-n raw only assuming [f® < e ie. with no smoothness assumptions at all. We
wondzifthisisanaampleot‘atme“anainabﬂixygap".whmthepomeuicHellingu'proccdmeis
over-optimistic.

If so, it is interesting to speculate on the'r&sons why the geometric bound is not amainable in
functional estimation problems. Birgeé (1983) considered the esnmanon of the entire dcx;sity and showed
tha:geomcu'ygivuopdmalmbmmascmememﬁredgnsiqisasnaighdcmmdﬁmﬁmalofme
dmsity!%enwehavetosﬁmaxeanubimnonﬁmﬁmﬁonalofdledmsity,(mode,meof:ail

deczy....)ixpuhapsissurpﬁsing:haxthepomeu'yshouldyieldmeopdmalmm.mitoﬁendm!
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8. Parametric and Semi-parametric Cases
In this section, we briefly discuss the applications of b(n~"?) to classical models. We do not aim

for the best possible results; only for a convincing sketch.

3.1. b(g), Fisher Information, Cramér-Rao

Let F = (Fg} be a parametric family and let T(F ) = 8 be the functional of interest. We say that
(Fg} is well-paramerrized (at 8y), if on an open interval (—¢,r) containing 8, H(Fq,Fy) is decreasing in
] for 8 < 84 and increasing n 8 for 0 > 8y, and if for 19l >¢,
H(Fof o) > max (H(F _Fo.HF,Fqo)}. A well parametrized family does not curve back on itself; we
assume the family (F,)} is well-parametrized.

The classical farmula for Fisher’s information assumes that Fy has a density at f, and that

7
VFs(x) has a 6-derivative .. Then sy log e

g1
i
- SRR
£ e <

L Fisher =4J'(§é-v7§)2. I 4 (8.1)

Using only the modulus b(e) we can also define an information number: let the Geomerric Infor-

mation be defined by

1 -2 1 b! )
(4' 1 Gaomenric ) =hmsup z . 32 .
e=0 €

Note that, unlike Fisher information, Geometric information can always be defined (it may be o).
In nice encugh situations the two are equal We say that (F o} is differentable in quadratic mean

(DQM) at 8 = 0 if Fg has a density f 4 and if there is a function ng € L(R) with

JF? -7 —anpt=0(8? .

Theorem 8.1  If {Fy} is well-paramerrized and differentiable in quadratic mean at 0 = 0,

IGM = IFisher
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ad=0
On the other hand, in less nice situations, the two notons of information differ.

Theorem 8.2  [f (Fy)} is well-parametrized and Is,,.,, can be defined

IGacmaric 2 Irisher -

Which is the ‘‘right’’ notion of information? Wark of Pitman (1979) shows that /g meoic iS the
right quantity for use in the information inequality, and that /f;,,, has meaning only in the case where
IGaomeoic = IFisher. Actually, Pitman did not define /g .. ; rather, he wark with a quantity he called

sensitivity, defined by

L XN IO-—Ool
Thisisthexa(cofchangeofigaxe=eoasmmsmedinHeningerdisxance. Now note that, for a weil

parametrized family, and for all § small enough

inf H(FoFs) subjectto 18-85l =3

is just
infe subjectio b(e)28.
Therefore
. 4
So = lim inf ———— | 8
o= in il 355 @

From which it follows, comparing with 382

45 g ® G eomatric 8.4)
Now Pitman proved a number of interesting properties of So; however because of his discursive style,
few mathematical swtisticians seem to have regarded this work as other than a textbook. Nevertheless,
reading chapter 3 of his book carefully, and piecing together discussion in sections 2, 3 and 9 of that

chapter, one gets (via 8.4) a proof for theorems 8.1 and 8.2 above, More interestingly, Pitman sketches .
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a new derivation of Cramér-Rao in which /g moi , rather than IFisher » Dlays the key role. Underlying
this is an apparently new inequality, non-infinitesimal in namure, that Pitman derives in passing. We use
it several places below and think it derives special notce.

Pitman’s Inequality. Let T, be a statistic with finite variance under F, and £, Then

(Er,To = Ep T )? HYPou P 14)
2Varg Ty +Varg T,) =~ 1 =H*Po,P.,)

8.5)

The inequality says that if }12(1’0,.?,,) is small, then cither Ep T, is close o EgT., or
Varg T, + Varg T, is large. It is analogous in some respects w the Hammersley-Chapman-Robbins
inequality (see Lehmann, 1983). Using this inequaliry one gets the following

Geometric form of Crame‘:.'-Rao. If Varp T, is continuous at =0 and if the bias

B(6) =0 - E, T, is differentiable at 8 = 0, then

’ 2
.Q"'_B.@l. < Va'rFOT. . . (8.5)

"[Gmi:

Usual treatments of Cramér-Rao_ involve fry.,,; but they require additional assumptions on the family

- {Fe) - assumptions swong enough 0 insure differentiability in quadratic mean and hence

IGeomesic = IFiser- In short, the Cramér-Rao inequality is *‘really” AbOUL [Gaomeonc - WhICK is a quantity
defined by the modulus alone.

Our proof of (8.6) goes as follows, without loss of generality, assume there is a subfamily (£} of

F, parametrized so that H(FoFo) =€, IT(F) - T(Fo)l = b(e). Put 8,=T(F,) for shart, and rear-

range (8.5) getting

1-H?
4 H?

(8¢ — 89 + B (8,) — B (8¢))? < —l-(Var,.- T, + Varg T,)
2 e 0

Now

(8 — 8o + B (8e) — B (89))* = (8 — 80)* (1 + B’(80) + 0 (1))
as € — 0, by differentiability of 5. Also )



1
) E’ (Var;lT, + VdrpoT‘) = VarpoT.
by contnuity of Vare T,. So if we can show
-H
4 Hz B n IGM
then, combining the last three displays, we will have proved (8.6). Now

8.7

hmsuv(e -90)2

HXPorPei)=2-2(1 - %H’(FO.F,))“, so that, by the binomial formula

Hz(Po,,Pu) =n ez+ on &).
\Iow recalling how 8, was defined, and using (8.2)

(8 ~ 80)° b¥(e) 1
insp =g = limsw <=5 e '
so that
B - 60 1-42 11
4¢ H}/Zz 16-.-- n’

which completes the proof of (8.7), and so also of (8.6).

' 82. Misbehavior of Fisher Information

Classically, there are two problems with Fisher information. (1) What to say if it evaluates o 0?
(2) What to say if it evaluates 10 o?

When /p,, is zero, several things could happen. First, the parameter may not be identifiabie.
Second..thepaxametcrmaynotacmaﬂybecsnmableaxamot—n rate. In both cases, 5(g) explains the
simation clearly. If the parameter is not identifiable, then b(g) -» 0 as € — 0. If a root-n rate is not
possible, then b(e)/e — o= as € — 0. There is a third possibility, where /54, =0 but a faster than
root-a raie is possible. Let Fy be uniform on /0,1 + 8]. By the formula we have given above,
Iriner = 0. However, by calculation, 5(e) = ¢%. While /rue = 0 suggest that a root-n rate is impossi-

ble, 5(r~?) = n™!, which suggess that a n~* rame is possible. And, in fact the I/n-rate is achievable,
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using the sample maximum T, = max (X|,.......Xx). We note that in this case /g pmemic = = suggesting,
as it should, that a faster than n~'2 rate is possible.

When [ryu, 18 infinite, [ meow iS also infinite, and so b(€) = o(e). This suggests that a faster
than root-n rate is possible. While the information bound Var T.z;l—1=0isnotincorrect.itisnot
very informative either. It does not indicate whether the right rate might be n™' or something else
entirely. On the other hand, the b (2~"?) bound is stll valid, and suggests what the optimal rate might
be.

In short, in cases where the Fisher information gives a confusing or incorrect pictwre, the
Geometric information more accurate; and the modulus is generally much more informative than either
noton of information.

Ouwr conclusion was foreshadowed by LeCam (1973), who showed that Hellinger distance is the
key 10 understanding rates of convergence in both regular and non-reguiar cases. We quote -

It is a familiar phenomenon that, when © is the real line, a number of well-worn regularity res-

trictions imply the existence of estimates 8, such that n~¥%(8, ~'0) stays bounded. Another fami- -

liar phenomenon occurs if Pgis .Lhc uniform distribution on [0,9]. Thcre the usual esdmateé are
such that 2~'(8, - 6) stays bounded.

“In both examples the factors 2~'2 or n carrespond to a certain natural rate of separation of the

measures {Pg, ) which can be described in terms of Hellinger distance.

“Leuing h(s.t) = H(p, o). the two factors 2~ and n correspond now to the same rate. In both

cases the statement is that n~'2k(8,,6) smys bounded in probability.””

LeCam is saying here that Hellinger distance provides a sort of universal scale on which to measure
estimation errors - a scale on which all parameter estimation problems have the same rate soructure. An
unpublished resuit of LeCam’s, mentioned in Birgé (1983), taiks al.aout lower bounds for errors and

again shows that Hellinger distance provides a universal scale.
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Definition. The parameter family [Fq) is (a b )-continuously parametrized if for each a b >0, for

e&hemmdmhe>0,mmm9,Mae<H(Fe°,Fg)<b e.
The purpose of the definition is to rule out essentially discrete parameter problems.

Theorem (LeCam) Let (F,) be (@ b )-continuousty parametrized. Then
izx.:fsx'xp n E,.HZ(FT..F,) >C(ab)
where C = C(a b) depemir only on a and b and not on the problem.

The theorem shows that for all continuously parametrized problems there is a ux.u'versal lower
bound on risk on the Hellinger scale —indcpendemoftheparﬁcularpmblcm. LeCam (1975) has also
esenﬁaﬂyshownmatinﬁniwdimmsionalpaamemrseu.maeexistsdmamrsm
n E H¥Fp Fo) < om.

Against this background, b (1) may be viewed as a way of converting statements in the unjver-
sal, Hellinger scale into smtements in the scale of the original parameter set. This is why b6(n~1?) is

effective when the optimal rate of convergence is other tham n-V2

83. b(e) and the least informative families of Levit-Stein

An important notion underlying Levit’s work defining information for estimation of functionals is
that of a least informative family of distributions. The idea also arises in much recent work on semi-
parametric estimation, see Bickel (1982), and Begun, Hall, Huang, and Wellner (1984). In both areas,
workers ace the ideas back to Stein (1956). One is mterested in T(F) and has a priori knowledge that
FeF;,buFis mﬁmte-dxmcn&onal. How 10 caiculate the information about T(F)? Stein’s idea was
that the information about T at Fo should be the least uﬁomanon about T in any l-dimensional
parametric famxly passing lhrough Fo. The family solvmg the minimum problem is called least informa-

tive.
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Levit (1974,1975) was apparendy first to formalize Stein’s notion of semi-parametric information.
He gave this definidon

Iteis = inf (Iriper (Fo) : (Fo) € F, Foloao=Fo, T(Fe)=T(F +8, (Fg) DQM at 8 =0} .

Note the condition that F 4 be differentiable in quadratic mean.

This quandty is generally the right one in cases where n~Z-consistent estimation is possible.
Indeed, Levit (1974,1975) gave L.AM. lower bounds using (1 /.., )~"? (compare (1.4) in section 1.3).
Thus the minimax risk is not generally better than (n /)~ there are constructions showing that often
this risk may be anrained.

It can be understood from the point of view of b(g); in fact in calculating b(g) in a regular
semiparamewic case, one is calculatng /p., in a hidden fashion. To begin with, recail the definition of
Geometric mfmmanon
- lim sy 2©

e-0 2e
this applia equally well in the semiparamerric case, where now F is an infinite dimensional set of pro-

(I Geomemic )-1/2

babxhna. and T is a functional of interest, This emphas:zes the underlying unity of two situations thar

are commonly considered quite dxffmm. Our first fact about this situation is elementary.

Theorem 8.3

IGeomesic S Itpvis -
Our second fact emphasizes the udlity of Geometric information. We say that a sequence (T,]} of esd-

mators is asymptotically unbiased up to order =2 if the local bias

B. =p ET, - T(F)l

s .
has B, = o(n7'"%). We say that a sequence (T, } of estimators has stable variances at F if

Ve = Nﬁu& WVarg T, - Var;oT, ]

has v, = 0 as 7 — oo. These two conditions impose some swbility on the asymptotic diswibution of



Theorem 8.4  If (T,] is asymprotically unbiased to order n~2 and has stable variances, then

1
lim inf  sup -TF»2
» -olEfF-Nﬂo) " EF¢' (F)) Im

This is a sort of information inequality for functionais and semiparametric models. It indicates that
I Geomenic Teasures information rigorously; it is proved via Pitman’s inequality.

-When are /i, and JGemeee €qual? The following condition seems narural and geomerric. Note
that in examples of sections 3 and 4 we were able 1o identify precisely the least-favorable disributions
Fe satisfying 1T(F) - T(Fo)l = b(e) and H(F Fg) =¢e. So Suppose we are in a case where such
least-favorable distributions exist, and suppose in addiion that 5(e) is 2 continaogs stricdy increasing
.func:ion of ¢ (for & small enough). (We have seen many examples where these conditions hold.) When
they hold, 5(e) has a continuous inva.se b~!, and we can re-parametrize, producing £, = F, .1 This
family satisfies T'(Fq) = T(Fy) + 8, for 0 > 0.

We claim that in regular cases this least-favorable family (Fo) is exactly Stein’s least-informarive
family. That is, suppose that the familyl.’, (recall we have only defined it for 8 > 0 so far) can be
“‘continued”” to negative 0 so that £, is (two s..idedly) differentiable in quadmx: mean.

Theorem 85  Under this assumption,

IGeomeric = e
and F g is Stein's least-informative family forT.

In short, computation of b(é) and the associated least-favorable family F, contains the Stein-Levit cal-
culation in a hidden fashion, in regular cases.

An example may help. Let T(F) = F (0), the distribution function evaiuated at 0. Let F = {al/
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distribudions }; b(e) can be calculated explicitly (Liu, 1987). It turns out that b(e) =T(F; where F7? is
the solution w

max T(F) subject to H(F Fg<e.
The least-favorable family F; has a density given by

. {(1 + @ ofx) x50
Fe@) =10 - prr o) x>0
with a and B smooth functions of e.
& %a

F— = — ——

Q

F'igun_7
Now T(F3) = [(1 + aj’ - 1] p, where p = T(F o) = F0), and one has therefore
b€ leaa=V3p(T=p)
so that
Gamaric = (p(1 =p))™ .

One can also solve the optimization problem

min T(F) Subject o H(F Fg Se;
call the soludon F;. Now

_ o fJa-vren x50
fl(x)g (l+5)2f0(-t) x>0
. where v and § are smooth functions of .
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Define now the family G, by G.=F; if >0 and = F; if € <0. One can check that
-Y(0) = &’(0) and —3°(0) = B’(0); it follows straight forwardly that G, is (two-sidedly) differentiable in
quadraﬁ'c mean at e=0. Now T(Go=((1+aP’~-1]p fore>0and =/(1~-y>-1]p fore<O;
from smoothness and monotonicity of a and ¥ and the matching derivatives at 0, we can reparametrize
G, gening [Fq) defined for @ in an interval about zero and sarisfying T(Fg) =p + 0. Fg is a least-
informative family for this problem. Indeed, one simply checks that /rue = (1 - p))™% then from the
inequality /Geomeric S Jiowis S Irisher a0d the fOrmula fgmeoie = @ (1 = p))~}, one knows one has found
a DQM family with Jripe = [ .-

This family arose from extending (F,) and reparamerrizing it; so the least favorable family in
this case generates the least informative family.

By theorem 8.4 we may conclude that no essentially unbiased estimator of the c.d.f. F at the
point zero can have variance essentially smaller than (8 p(1 - p))~, uniformly over a Hellinger neigh-
borhood of Fo. Of course, the usual estimator £, (0) attains this and is in this sense efficient.

This example is rather homely; it probably can be replaced by one using a semiparametric model
of current interest; we leave this o the reader. The calculation of b(e) in thelsymmcuic location model

(Donoho and Liu, 1985) may be of interest here.

8.4. Finite Sample Resuits.

We have seen that the modulus b (g), through the qUANLty /G.omoi, Zives information about the
difficuity of classical estimation problems. Is there Vother information “‘encoded” in the modulus, about
higher order terms? For example, is b(n2)/2 a *‘better”” bound than (1 [gemewic)~2, 0 which it is
first order equivalent?

If so, we would expect a result saying that for all unbiased estimates T,

VVary, 2 b(r~%y2 . ®8.7)
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Such a result cannot be hoid in general. At the N (8,1) model, exact calculation gives

b(e) = V-8 log (1 - €%2)
so that

2
b(n~®2=n"2 4+ "8 +0(n~¥?%) .

Thus for large #, b(n~"2y2 > Vn ; since at the N(8,]1) model Var X = I/n, (8.7) cannot hold for

T, =X.
A geometric picture helps explain why b(n~2)/2 is incorrect at third and higher order terms.
Let (Fq} be a DQM family at every 0, and let a(84,81;{P4])) be the arc length between 8, and 8,

along the curve f, in L.

- e‘ .
W8y (Pol) = [NI<=NFoll d 0 )
Note that @ is a2 mewic on Fg, and that
(86,8,)

i —— ] .
o sy HE 3 F o) ®9

for smooth farnilies. Now define, in analogy w0 b(g),

a(e) =sup (18, - 8ol : a(80,8) < €}
Because of (8.9), -ZJ(% — 1 as ¢ = 0, so the two are first order equivalent. On the other hand,

a(B08y) 2 H (F o, Fo,) (8.10)
because a is the distance from f% 1o ‘\/fg‘ following a path in F, while H is the distance from 1/fg°

to \{fgl along a straight line segment - ¢ \/f% +(1-1) ‘\/fgl - 3 geodesic of L,(R). As probability
distributions must lie on the sphere [ (fo)* =1, a path in F must always be longer than a line seg-
ment, hence (8.10).

A consequence of (8.10) is that we always have

a(e) Sb(e),
so that a (n~"?)/2 is a strictly smaller lower bound than b (n~2y2.
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On the other hand, we have the formula

a (n-lﬂ)lz = (ﬂ I)-llz

when F g is a location family. For in this case ”3% VFell = constant =& T, and so

@(80,01) = (89 - 6,) 2 VT .
Consequently, in the location family case

b(n 2 > (nIy\2
formepmelygeomcm'cmsonzhatpamsresn-icwdmmemitsphmianmlongcrmangeodcsics.
A demailed analysis shows that even if the family vF7 is part of a geodesic on the sphere, b(n~Y2)2 and
(n I)"'7 differ by a term ¢ 2~*2, where the coefficient is due to curvamre of the sphere in which v
lies. |

We thus see that curvanire effects associated with the Hellinger viewpoint prevent b(n~2y2 from
ymwmmmmmmmmwhmmﬁwumum
mefmmb(u'“*)agimmfamaﬁm&mmﬁmmdsmmChawidevmiuybfcm



.53 -

9. Discussion -

9.1. Computing the modulus

We should not leave the impression that the Hellinger moduius is always easy to compute. The
exampies where we have had success all had the following swructure: T was a nice functional of f Y2
and the regularity class F was also nicely expressed in terms of f!2. The reason for this, narurally, is
that Hellinger distance is just the L, - distance between square roots-of densities. Thus if everything can
be nicely written in terms of f'2, one may end up with an optimization problem in Lx(R), and so all
the wols of classical analysis become available. In the proofs of theorems 4.5 and 4.6, for example, the
extremal functions are solutions of an ordinary dxﬁ'aenual equadon, linear and with constant
coefficients; the solutions are quite easy using Fourier analysis.

Unformnately, when the functional of interest is highly nonlinear with respect o the square root
of the density, one can not expect (0 obtain more than bounds on the modulus. Of course, lower
‘bounds are always available. A specific | family (F,} of distributons in F indexed by € with
H(F ¢ F o) = £ gives a lower bound:

bE)2IT(FY -T(F I
by definiton.

It may tarn out that it is much easier w0 work with (say) L, or L, distance than with Hellinger
distance. In such cases, the modulus in one of those other distances may furnish a bound on the Hel-

linger modulus. Thus, suppose one can compute the L ,-modulus of T. By the standard inequality

H¥F.G)SL(F.G)S2H(F.G) 9.1

(LeCam, 1986 page 48) one has the bounds

b @® 264(E), by(2e)26,() - 9-2)
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Examples in Liu’s thesis (Liu, 1987), show that by using the remarks of the last two paragraphs -
.one can get useful information even in problems where the Hellinger modulus is not computable. The
examples fall in the area of “‘ill posed’’ estimation problems. For example, let G be a scale mixture of

cxponenu'éls

G@) =[ E(t/s) dF (s) (9.3)

where E(tf)=1-¢7,¢ 20, and F is the mixing distribution. Suppose we have data Y oot Yy idd.

G and want to recover the mixing distribution. The problem is discussed in Jewell (1982).

Lt T(G)Y=F(l). Laa F = (G : G is a scale mixture of exponentials ). The problem of recovering

F is so highly ill-posed that in fact by (¢) goes 1o zero slower than any power of &

b(e)
4

for each r >O.Itfollowstha:noordinaxymofconvergmcen"ispossibleinmispmblan.if“raxe"

- oo as -0

isinc:ptm'intheloalminimaxsense.ﬁmmovuyofamixingmasmeF without a-priori-
information on F is essentially the hardest possible estimation problem.

We remark that T is a nonlinear functional of g% we iiave no way of'compuu'ng the modulus in
Hellinger rnemccxactly We can exhibit, for each r > 0, 2 sequence (F{] € F which shows that the
~ Ly-modulus of T is not O(e”). It then follows from (9.2) that the Hellinger modulus is not O (),

either.

9.2. Using Other Metrics

Are there other metrics than the Hellinger in which it would be interesting 10 compute the’
modulus? We have just seen an example applying the L,-modulus. One might suppose, in view of the
importance of 1t to the lower bound procedures and the relation Li(F.G)=2-2n(F.,G), that b,

would be just as useful as by. Indeed by (n'%) dees bound the rate of convergence (just use (9.2) and
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Corollary 2.3). However, from the inequalities (9.1) and (9.2) one can also see that by, may be much

smaller than by. Thxs may be connected with the fact that L,(P,,.P,,) bears no simple relation with

L (FaaF1.4) Or at least nothing as simple as what holds between the Hellinger distance HPoal1a)

aMH(FO.a-Fla)-

In this respect one thinks of the Kullback-Leibler number X (F ;;F ) = flog-;g-fo. which sarisfies
1
K(Pufo,-) =n K(FlavFOa) . (94)

Define the Kullback-Leibler modulus

bre(e) = sup(IT(F) = T(Fo)l : K(FiFo) 2-€%) .

We claim that if by (e) is reguiarly increasing then by (n~Y?) bounds the rate of convergence of est-
mates T, © T. Indeed, consider what we call **Samarov’s method”” for bounding rates of convergence:

one proceeds exactly as in the Stone or modified-Farreil methods, only constraining Ep on 108 L, rather
than Epu Hlog L. | or Epo‘ L? as Stone and Farrell do. This method gives a sequence (3.} bounding - '
the rate of convergencs; suppose that the constraint in place when defining (3, } was EPo,. log L. < cq.

Now notice that

Ep,, 10g L, ==K (P14 Po,)
and so from (9.4) we see that

KF ,Fo)2~cyn .

b (Nco/a Y2 = sup (8, : 8, = (T(F 1) ~T(Fo)y2 and Ep,, log L. <co) 9.3

Thus by (%) does bound the rate of convergence (assuming every sequence {§,} does; but this is
essentially equivalent 10 by being reguiarly increasing). And by shows exactly what rate bounds are

possible with Samarov method.
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For another example of this kind, consider the x*-discrepancy

(f1-fo?
X F = [

Define the x2-modulus

b&) =sup (ITF) - TFYI : PF.Fo) S e) .

This modulus is closely connected with the modified-Farrell’s method. First, there i.é the idendry

1+x2(Pl,,Po,)=E,°‘ L?.

Second, there is the approximate relation

CP1aPon) =8 YF 0 Fon) (9.6)

which can be derived by calculating formally and dropping “*high order terms™. We do not go into
daans.bmmconjecmtha:mecamaimEpuL}<cocanbeshownmimplymat
X(F1aF o) S Vel + €VA , 1 > no(e). (This would cerainly be wue, of course, if precise equality held
in (9.6)). If the conjecture is wue then one has mnlts for b, analogous 1o those of brr: bl;(n“’z) pro-
vides 2 bound on the rate of convergence, and 'bf(m)/z would be bigger than any §,
amtained from the modified-Farrell’s method with constraint £p L <,

These remarks suggest that the user of the Samarov or modified-Farrell meﬁ:od who makes the
cleverest choice of family (F1,} is basically computing bg or bz; up to constants. This observation
couldbeuscfulincase‘bn orbz;happmtobemytocomputeinaproblem where by is hard 10
compute.

Because of the ease of many calculations for the Hilbert space L 4(R), one might suppose that the
L rmodulus could be of use in calculating rates of convergence. This would particularly be true if the

functional of interest is linear in terms of f rather than in terms of £ 2,
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As an example, suppose we are interested in the functional f(f W2 Analysis of this functional
in terms of f'2 leads rather quickly to com-putan'ons, owning to the fact that f®) is nonlinear in f 2.
On the other hand viewed as a functional of f, J'(f ®%)2 is smrictly convex and has support functional
A (R)=2[f®Rr®. If f has 2% derivatives in L, then integration by pans gives
Mg () =(=1* 2 [ f® h. Thus by the same sort of argument as in Theorem 5.3, on the set F = L(C)
of densities with 2k derivatives in L,, [ (f )2 < C, we have b () s VC ¢ .

To make use of this in establishing a rate bound, we need inequalities between Hellinger and L,
distance. In general, no such inequalities exist, but (as for example Birgé (1984) has noted) at a specific
f o, and over a compact set, we can get such mequahues.

For example, let F = L},(C) the set of densities supported on [0,1] with 2k derivatives in L,,
[ sC, and bonndm'y conditions f%**X0) = f*¥X(1) =0 (! =0,.k). At Fye F that is

bounded away from zero and infinity, wemﬁdwnmmA(F@,B(F&. with, forany Foe F

A HWF Fo)SLFFo)sB H({F Fg).
It then follows that
by (=) S by(e) S by (— 9
L,(B) H (€) "2(.4)' o.n
This comment is dready interest for the functional J'(f"")z, as it shows that by(e) =& when
F =L3,(C)). This suggests that [ (f®)* might be estimable at root-n rate for f € F. Acmally, the
atainability argument
of section 7 shows that if F = {f : f®) e BV(C,)} then bgs(€) < C, € and so a root-n rate is atain-
able if f has f®) e BV, without any assumption of compact support or boundary condition at all.
It follows that 22 rate is optimal on BV (C )L 24(C ).
The L, modulus is also of interest for determining case where the optmal rate is not n~"*.
Indeed, suppose that we are interested in the functional J'.(f"")z, but now we know only that f has

k <m <2k derivatives in L, [ (f®* < C. To bound the modulus, one ends up with the optimization
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problem
sup 2]'!'(&) R
subject to
F
frse
{1 Ja"ysc
[h=0

Thisisaproblemofmaximizingaﬁmctional subject to two quadraric constxaimsandalinm_requality
constraint. By passing 10 the Fourier domain, one gets the problem

sup2i"ja)2‘f}7

subject 0

jﬁ"sz‘
] Jo™ #%sc
A0)=0 .

-

From this pomt on, as in- our proof of theorem 4.5, 4 .6, one applies the method of Lagmnge Multipliers
to calcularc

22k
61,1:8 k

Esmbhshmgmeqnam)v(97)overl. (C)atanappmpnaxefothmgxm

ek

bye)=e *

93. Relation to Robustness

There are still other kinds of discrepancies to use in computing the modulus, Using certain ones,

wegetmsxghmabommerobme:sofrmmanmswchasncpmpemes.
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Suppose we use the Prohorov metric Prok(F,G) = inf (3 : Fi§% < GI(S1+8 for all S} where
§% is the set of points at most § away from some point in S. Let F = (all distribudions ), and compute
bproa (€). If bproa(€) = O as ¢ — 0, Hampel (1968) says that T is qualitatively robust, in the sense that
changes in the underlying distribution which are small in Prohorov distance cause small changes in T.
More generally, Donoho and Liu (1985) say that T is qualitagvely robust with respect to |l-
perturbations if the modulus of 5 in H-discrepancy, b,(e), goes 0 zero as € — 0. Thus functdonals T
with by (€) = 0 as € — 0 are qualitatively robust with respect 10 Heilinger permurbations. Suppose we

use the Gross-Errors discrepancy

GrossErrors(F | ,F ) = inf (e : (1 - EFo[S] < F\[S] forail §)

If bGroatrmors(€)/e = 1" a3 € - 0, and if ¥* < =, Hampel (1968) says that T has a finite gross-errors

sensiivity ¥ ; e-perturbations of F, cause only a correspondingly small change in T':

IT{(1-e)f g+ e)-TFPI S ¥ +o()e.

More generally, Donoho and Liu (1985) say that T has a finite H-sensitivity of F, if it is locally u-

Lipshitz at £y, or, what is the same thing

by(eve - ¥ as € —=0.

Of course, this use of the modulus differs from that of previous sections because we are taking
= {all distributjons ). Most of the functionals we have been interested in are not qualitatively robust
in this sense - arbitrarily small perturbations of F (even in Hellinger distance) can make them quite

large. Only for ‘“*regular functionals’ do these notions make sense. On the other hand, in regular cases
there are some interesting connections: the Hellinger sensitivity of a regular functional is Y = (%l y 2,
Where I = IGM'

In short, the modulus is invoived in understanding rates of convergence and robustness. It arose

in robustness first; we have borrowed the name *‘b (€)"" from robustness where it originates in the work
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of Hampel (1968). Interestngly, the first work we know of computing b(eg) was in Huber’s (1964)
work whaehecompumthe modulusofthe medxanoqumEmrsnexghbomoodsandshowsmat

uwmedian'ubiasminimax;however,hedosnotdcﬁnememoduluscxpliciuy. »

9.4. On ‘‘Best Constants’’, I
Section 8 shows that b (n~'2V2 holds as a lower bound on root-mean-square-error in the classical
cases; onemightwond:rifb(n""’)lz plays a similar role in general. We have as yet no resuit to this

effect. However, by applying Pitman’s inequality, we get

Theorem 9.1  Ler b(e) be Holderian with exponent ¢ € (0,1]. Then for any sequence of estimators

(T,] we have for n > no(b .q) the inequality

5 VE T -TEN 26672 4q)

where §(q) is effectively compusable. Also, E(q) > /4 for q € (0.1].

The range 0°S ¢ <1 covers the 17,274, 2='3 2~%% and 12 raies of convergence which often

occur.
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10. Proofs:

*‘There are good reasons why the theorems should all be easy and definitions hard. ........ a sin-
gle principle can masquerade as several difficult results; the proofs of many theorems invoive
merely stripping away the disguise. The definitions, on the other hand, serve a twofold purpose:

they are rigorous replacements for vague notions, and machinery for elegant proofs’’

Michael Spivak

Proofs of Theorem 2.1.

Proof of (2.2)
Without loss of vgenaality. le¢ F, be a dismibuton such that dy(F,F.,)=n""% and-
b(a™®) = IT(F.) = T(Fo)!. Then, for any estimator T, for estimating T (F), let’s consider a testing

statistic Z, for testing the hypothesis Hq: F o against the hypothesis 4, F, such that

Z. =T, -T(Fyl

and H, will be rejected when Z, > b(n~"2y2.

From lemma 2.2 we know that
Type I error + Type II error 2 (1 - 71;)“
which implies
Type I error 2 (1 - -}'-)"/2
or
Type II error 2 (1 - %)‘/2
equivalently, they are saying

Pr (1T ~T(Fl >b(n™2)2) 2 (1 - %)“/2 @
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or

Pr 1Ty = TFDI Sbx™%2) 201 - Loz 22)
Since
Pr,(1Tu = TFQI Sb(™312) S Py, (1T, = T(F,)l > b(n=22) 23)

Therefore, from (2.1), (2.2), (2.3), it is clear that

i S Pr(IT, ~T(F)I > b(ni3y2) 2 (1 - :‘)-rz

. Ty, FaNgpg
and conseguently,
. . . - | -i2 'l/
h‘x‘n_.mfll{:fhfvxg'd Pe(ITy, -TF) > b Y2} 2e7ir2
Proof of (2.3)

Wemusemesimﬂarargumemasinthepmviopmof.butusingadiffmmtcsdngstadsdé
(for each 5)

Zg, = IT, = T(Fy)l

and H, will be rejected when Z;; > b(—su?)/Z. .
. n

lim inf inf _ swp | Pr (1T, = TG)1 > b(=S2y2) 2 4.
n

A= T, FeN

As § tends 10 zero, we shall have

s 3
ix_m'ohin_._mflgfhﬂ ,)PF“T'-T(F)'>b(.n‘—’2)/2}2U2'

Proof of (2.4)

Forcachc,uscthetcsu'ngsmtisdc
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Zop = ITa = T(Fo)!
and reject Hy when Z., > b(c n~Y2y2. Then, follow the same argument as in the proof of (2.3). It

follows

R ——pan

e _ c > ,c?
“’““‘f‘}‘f,ﬂ“%&”“'n T(I-')l>b(——-nm)/2}-e 2>0.

Which gives (2.4).

Proof of Theorem 3.1

see Liu (1987).

Proof of Theorem 3.2

see Liu (1987)

Proof of Theorem 4.1

see Liu (1987)

Proof of Theorem 42

see Liu (1987)

Proofs of Theorem 4.5 and 4.6
Let r =fY2, ry=f4? be square root of desities. The optimizaton problem of finding the

extremal function f . is to b(i)

‘ 2 def! 4
max f(0) - f4(0) 5.t
1F)yscC
jr2=l
dy(f fo) <€

Since for any desity f with 0 < dy(f f o) = 8 S € we have the following representation
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-64 .
rafl2=4r,+B 4
whemA=(1-z) 3:\/51-5- [hre=0 and [h%=1
2 ’ 4v 0 > .
Using this representation, we can see that

£ (©0) = £o(0)

=(A32-1)r30)+24 B ro0) A(0) + B2 %) .

1. Since A, B are positive. Therefore, to maximize A

h(0).
Moreover, since
JGP=[(A%F2 +24 B ¢y & + 82 42
=-ﬁ‘zi1°+2.43)'r'o;i+32j1£2
=ATzlo-2ABfFoh+B’fliz.
2
[R=z (A= arrge2a 8 [rn)
=27 (3C -+ air424 8 V)
= Cx%).
Thus.mepmblemnowbecomato

max h(0) (= hg(0)) ..
[r2 < Cy5)
Jr?=1
Ih re=0
r20,

After solving this problem, and we will show that hs(0) increases as § increases. Thus,

obuined in this way.

<

((Af Ap %
= 2-2 an.d,“:

Srv’, b = (-9,

= fo(0)) is equivalent as to maximize

b(e) will be
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(D Upper bound To simplify the computation, let’s relex the othogonal constraint, positivity con-
swaint, and the unitary constraint for a while in order to get an upper bound for the above optimi-

zation problem. Now we want 10 solve

max Ah(0) S.L.
[ R s Cxd)
[rs1.
Furthermore, since for any solution h, of problem (), A = (h; + h9)/2 where ha(x) = hy(-x) is
also a sloution of problem (I). So there is no loss of generality 10 assume the solution of probiem
(D) is symmetric. Now, if we wansform the ai.aove problem into frequency domain by Fourier

transformation, then the problem becomes o

max fg s.L.
Ja? 1812509
[1g12s1
g isreal .
By. considering the Lagrange multipliers, we have

J@)=-fg+[A+pno)g?-Rr+puCys).
Let s be any real valued function with Isi, 2= 1. Since

ﬂ%‘lh.ﬁf:((h-umzﬂg-l). (4.1)

Thus, by setting (4.1) to zero, we must have

R S
T 20 rpd)
=t

T A+B @

Using inverse Fourier wansform, we can see that the solution for problem (1) is

8

~Cyixi

h=Cqe for some positive numbers C, C, .

By setting

jh2=1 and
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[R=cxs),
we have

Co=C{®)
C,=C{* %"

Plugging in the formula r = A 7, + B h, we have
Q)= f(0) - fo0) (4.2)
=A%~ 1)r§(0) +24 B ro0) h(0) + B2 A%(0) .
From Vaxima (a symbolic calculation package developed by MIT), we get
(8)=VZFo0) (4 C* = I)¥ 512 + (VeC=Ty2) 5+ 0 (™) . 4.3)
Theﬁrszordertcnngiv«theinfonnaﬁonthaz(A)incrmas&inm.Heme,wegctanupper

bound for b(e) when §=¢
(II) Lower bound Let

(A@) ro+B(e) h)
e TA@ re+ B @RI -

Then, we can get a lower bound for b(e) which is

() re® + (2 h @) - 740 ' @4
= —Gl-z- (4% - 1) £ (0) + 24 B ro(0) h(0) + B2 A3(O)))
+ (% - 1) £40).

Now, since

1
(A +B8)
- 1
A*+B24+24 B
1
A’+B*+2A B [ryh [ I
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where G = IA(g) ro + B(e) A 1; and since

A+BP=1-2e+4+0(D
A?+B2=1+0(8d.

:I'hercforc, it is clear that
1 .
—C-;-i-=1+0(£") with ¢ 2 1/2. 4.5)
By combining (4.2) - (4.5) in (I) and (II), we have that

b(e) =2 fo0) (4 C' = IV e¥2 + O (e) ,

where C’ = -AI-C, and /(f) s C; with the approximate extremal functon as specified in the theorem.

Proofs of Theorem 5.1 and Theorem 5.2
It is straight forward to show that the conditions of Theorem 5.3 are satisfied. Then, by applying

Theorem 5.3 the resuits follow.

Proofs of Theorem 7.2 and 7.3

See Liu (1987).

Proof of Theorem 8.1

We first formaily state the conclusion reached in the text near (8.****)

Lemma [f {Fy) is well paramesrized

. b _ 18 = 8ol
mSP e SIS T FEFY

To prove Theorem, recall that if (Fg) is differentiable in quadratic mean then

[ NFs = \Fa, — (8 = 89) Me)* = 0((8 - 80)")

so that by two applications of the triangie inequality
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N[ OFe =7 - [ @80 me 1 = 016 = 1)

H(FoFo) = (8 - 60) \/(Me,)” + 0 (10 - 90')
Now ne = —\/f—g almost everywhere, so that we have

HFoF )= (- 89 -;- T +0(18 ~ 8,1

Proof of Theorem 8.2
By hypothesis, /5, can be defined, so

fi? - ri

M= T e %*/7? lomg,

By Fatou’s lemma

'_’.o fﬂozf('—m) =‘1Fu.
But H¥(F 4.F 3 )/(8 ~ 8,) = = [ ¢, so we conclude

. (0 - 8)? <4
g HYFoF )~ Trie

As the family is well-parametrized, the lemma above implies that the LHS of this display is

Geomerric

Proof of Theorem 8.3
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By the definition of /g,omeic 2rms Of a limit superior, there exrots a sequence F, in F, converg-

ing to F,, with the property

T(F)-T(Fo — lim s b(e) _ 2
HF: Fo T0 € Viowmms

Put 8; = T(Fy), 80 = T(Fq), & = H(Fy.F o), for short.
Using Piunan’s inequality,
2 l- an.k 1
(Er, Ta —Ep, T,) —713:— pS -Z-(Var;-k T, = Varg, T,) (11.4)

where we put H2, = H¥P,,.P,,) for short
Now the left hand side of this inequality is larger than

2B, B —80° 1-HZ,

11B
(8 ~ 8q) 4 et H2 et (11.B)

(1-

Now B, = 0 (n~Y?) by hypothesis: thus 3, =28, aO.Pickasedmnceg. — 0 such that §,/g. — 0

(e.g. g» =V, will do). Exwract subsequences (kn ), (nn) so that

- -2
100 n3'? g, 28 212" gu_

say. Then

z;.‘_ w, =0

ei_ ng, —0.
2 t%. 2 2 2y B
Now by the product formula H,.,,=2—2(1-?) ,and so H;, = neg + o(nep). By the proper-

ties of the sequences (ky ), (N},

1-HZ , 1
—— = (1, + 0(nm))"
Hi el "
asm — oo,
Now

-1

23» € 4

e L IR SRS S o(er)) B,)?
(9;‘-'90)) 1 ('——-.fc.o : + 0(gg)) Ba)

1-
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By the properties of (%, ), (n,,],

EgB. =0
and so
a 28, o
- -3 5 1.
(B - 8g)
Finally, l;y' construction of 8, and e, |
(8 ~ 89)? 1

4 8% = fc..-...', ..
Putting these pieces together in equations (1 L.A), (11.B)

1 1 1
(1 +o(1))? Toe T TO0S S -Z-(Varp.-T._ +Varg T, ).

Now Var,k.T,\_ 2 Vary OT,,_ = Vp /n, and so

%(er..T._ +Vare L, ) S Varr T, -v, 12n .

Of course, Sy, T, 2 7220 Ly 13y, 0 and 50 we have established the Theorem,
Geometric

Proof of Theorem 8.4
Fix § > 0. Let the family (Fo) be a family used in the definition ofLevitinfmmationandneaﬂy
ataining the infimum lhce.so:hatT(F,):T(Fq)-t-t. (Fe) DQMandfru.'

@ =0,(Fg)) Sltewie + 8.
As (Fg} is DQM, we have by theorem 8.}

bETI.(Fa)

Ly

Now for any family (Fe) <F, bEeTF)2 b(,T,(Fs}). Therefore
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Proof of Theorem 8.5

Under the assumpdon of the theorem, there exists a parameter family (F,} sadsfies

b(eT F) = b(eT,[Fo)). It follows that

eI . bel.(Fa)
e umse '

hmsup e-=0 €

e=0
The left hand side is just 2\IG.emeric- 1he right hand side, because {Fq] is assumed DQM, is just
U\Trme. Hence IGumeic = Funer- BUL 38 [iris S Irune (8 = 0,(Fg}) we have Itois £ [Geomaric- 1D

this case, since by Theorem 83 we know /i 2 /Geomenc always, /i = [Geomanic -

Proof of Theorem 9.1
For ease of exposition, assume that there is, for exch & we require, a distibution F, with
HEFF)=¢and b(g) = T(Fp - T(Fq). Let the statistic T, be given; we need its fractional bias ¥,
defined by
Ave (1Eg(T,)-TF)I)b(E) =Y.

where hére and below averages are over the two-point set F € (Fof ). It follows from the arithmetic-

geometric mean inequality that if (@ + b2 = ¢ then -;- (a* + b% 2 ¢2. This implies

Ave ((E¢(T,) - T(F)P) 27bXe) . . 9.1
(Ef (To) = Ep (T 2 b%(e) (1 - 2% . 92)
By Pitman’s inequality
1 1-HE
Ave (VarsT,} 2 y 7 (Er(Ta) — E"'z(T' ))2 . : (9.3)
Now clearly

Ave MSE 2 Ave Bias? + Ave Variance ,

so using (9.1) and (3.2)

1-H?
Ave MSE 27 26%0) + ¢ —== b¥e) (1= 20 9.4)
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Put e =4l ~; the right-hand side of (9.4) is a function of Y.e.e, and b (e); call it AMSE., Then

AMSE = b%e) (¥ + e (1-2v%.

9.5
Ifys -;- then by factoring the ¥-polynomial ¥ + ¢ (1 ~ 2 ¥)?) we have
- 2 e
AMSE = b%(e) ((1+4 ¢) ((y Tt (l+4e)2)} 9.6)
which implies thar
min AMSE = 1:4 = b%e); ©.7

the minimum being amained ar y= lf:e. On the other hand, for y2 1/2, we have the boung

AMSE 2 b*(e)/4. Combining (9.:4) and (9.7) we have

[4
Ave MSE > Toas bXe)

=2 (1-H) b2
By the product rule for Hellinger distance H,,

HimHYP P, )=2-2(1 - e,
and we have A

Ave MSE > f— C1+2(1- 2%y pZe) |

Now let g =.62.andlae=4a/n.8upposeb(c)=-4 e! +0(e?). Then
b*(Nain ) = g* b3 (n=12) & o (n ) .
Define

B@) = (-1+2(1 -2y g9

and note that §3(q) — &(g) = (22~ 1) a?. Now the lemma below shows thar with g = 62,

§%a) 2 811) = 28. So for 1 > ne(g.5), £, (q) > 279 8, and the o (3™) tem in (11.+*+*%) is smaller

than ('042—9) b*(Vain ); consequently
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Ave MSE 2 '113 b2(Nain) .

Now for fixed 8, and all n > 7,(8), e = Va/n < 3, so that F € Ns(Fo), and so for n > max (n¢.11)

Supyéa.'o) MSE 2 Ave MSE Z‘i.l-é- bz(Ja/n)

which completes the proof.
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