
Minimax lower bounds for estimation

0.1 Neyman-Pearson and the testing affinity

The Neyman-Pearson Lemma solves a problem for testing a P0, with den-
sity p0(x), against a P1, with density p1(x). It finds a (randomized) test Ψ =
(ψ0, ψ1) for which

∫
p1ψ1 is maximized subject to

∫
p0ψ1 ≤ α. Equivalently,

it minimizes
∫
p1ψ0 subject to the same constraint.

There are other plausible quantities to optimize. For example, we could
try to minimize∫

p1(x)ψ0(x) + p0(x)ψ1(x)

over all nonnegative ψ0 and ψ1 for which ψ0(x) + ψ1(x) = 1 for all x. This
problem also has a simple solution because

p1(x)ψ0(x) + p0(x)ψ1(x) ≥ p0(x) ∧ p1(x) := min (p0(x), p1(x))

with equality when ψ1(x) = 1{x : p0(x) < p1(x)}. That is,

min
Ψ

∫
p1(x)ψ0(x) + p0(x)ψ1(x) =

∫
p0 ∧ p1.

The quantity
∫
p0 ∧ p1 is called the testing affinity between P0 and P1. It

is sometimes denoted by ‖P0 ∧ P1‖1.

0.2 Estimators defining tests

Suppose we have a model P = {Pθ : θ ∈ Θ} where each Pθ is a probability
corresponding to some density pθ(x) on a set X. We are interested in esti-
mating some function τ(θ), where τ maps Θ into some metric space (T, d).

For a minimax approach for each η > 0, we judge each estimator T by
the value

M(Θ, η, T ) := supθ∈Θ Pθ{d(T, τ(θ)) ≥ η}

We seek a lower bound,

M(Θ, η) := inf
T

M(Θ, η, T ),

the infimum running over all estimators T : X→ T. (Also it would be satis-
fying to find some T that achieves the lower bound, but that is sometimes
more than we can manage.)
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Remark. The quantity M(Θ, η) is the minimax lower bound for the
loss function Lη(θ, t) = 1{d(t, τ(θ)) ≥ η}, for (θ, t) ∈ Θ× T. The story
can also be told with other loss functions.

The search for a lower bound M(Θ, η) can be turned into a multiple
hypothesis testing problem by focusing on some finite subset Θ0 of Θ. For
each estimator T , define θ̂T : X→ Θ0 by

<1> θ̂T (x) = argmin
θ∈Θ0

d(T (x), τ(θ)),

with any convenient rule for breaking ties. If we choose the finite subset Θ0

so that d(τ(θ), τ(θ′)) ≥ 2η for distinct θ and θ′ is Θ0 then

d(T (x), τ(θ)) + d(T (x), τ(θ′)) ≥ 2η for all θ 6= θ′.

In particular, if d(T (x), τ(θ)) < η then d(T (x), τ(θ′)) > η for all other θ′

in Θ0, which implies θ̂T (x) = θ. Put another way

{x : d(T (x), τ(θ)) < η} ⊆ {x : θ̂T (x) = θ} for each θ ∈ Θ0.

Equivalently,

{x : d(T (x), τ(θ)) ≥ η} ⊇ {x : θ̂T (x) 6= θ} for each θ ∈ Θ0

so that

<2> M(Θ, η, T ) = sup
θ∈Θ

Pθ{d(T, τ(θ)) ≥ η} ≥ max
θ∈Θ0

Pθ{θ̂T (x) 6= θ}.

If we find a lower bound for maxθ∈Θ0 Pθ{θ̂(x) 6= θ} that is valid for all maps
θ̂ : X→ Θ0 then it also provides a lower bound for every M(Θ, η, T ).

Remark. Effectively the simplification replaces the loss function
Lη(θ, t) = 1{d(t, τ(θ)) ≥ η}, for (θ, t) ∈ Θ×T by a loss function 1{θ 6= t}
for (θ, t) ∈ Θ0 ×Θ0.

0.3 Two point comparisons

The easiest case occurs when Θ0 is a set of two points, θ0 and θ1, chosen so
that d(τ(θ0), τ(θ1)) ≥ 2η. The θ̂ then corresponds to a nonrandomized test
between θ0 against θ1.
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<3> Theorem. For every estimator T for τ(θ),

2M(Θ, η, T ) ≥ sup{‖Pθ0 ∧ Pθ1‖1 : θi ∈ Θ and d(τ(θ0), τ(θ1)) ≥ 2η}.

Proof Consider Θ0 = {θ0, θ1} for a pair with d(τ(θ0), τ(θ1)) ≥ 2η. Abbre-
viate Pθi to Pi and pθi to pi. By inequality <2>,

2M(Θ, η) ≥ 2 max
(
P0{θ̂T 6= θ0},P1{θ̂T 6= θ1}

)
≥ P0{θ̂T 6= θ0}+ P1{θ̂T 6= θ1}

=

∫
p0(x)1{θ̂T 6= θ0}+ p1(x)1{θ̂T 6= θ1}

≥
∫
p0 ∧ p11{θ̂T 6= θ0}+ p0 ∧ p11{θ̂T 6= θ1} =

∫
p0 ∧ p1.

We have equality at the start of the last line if p0 ≤ p1 whenever θ̂T = θ1

and p1 ≤ p0 whenever θ̂T = θ0.
Complete the proof by taking a supremum over all such θ0 and θ1 pairs.

�

<4> Example. For θ > 0 write Pθ for the uniform distribution on [0, θ]n. Con-
sider estimation of τ(θ) = θ. For x ∈ Rn+ write Mn(x) for maxi≤n xi, the
maximum likelihood estimator. For each r > 0,

Pθ{Mn(x) ≤ θ − r/n} = Pθ{xi ≤ θ − r/n for all i ≤ n}
= (1− r/(nθ))n

→ exp(−r/θ) as n→∞

More precisely, for each ε > 0 and each C > 0 we can find an r, depending
on both ε and C, for which

sup
0<θ≤C

Pθ{|Mn − θ| ≥ r/n} ≤ ε.

We have an estimator that achieves the n−1 rate, at least for Θ = (0, C].
To prove that n−1 is the best rate possible, suppose Tn is another function

of x1, . . . , xn for which

M(Θ, α, Tn) = sup
0<θ≤C

Pθ{|Tn − θ| ≥ a} ≤ ε.

Draft: 5 Nov 2014 Statistics 610 c©David Pollard



4

How small could α be? Consider Θ0 = {1, 1 + 2α}. Then

2ε ≥
∫
p1 ∧ p1+2α

=

∫
(1 + 2α)−n1{0 ≤ mini xi ≤ maxi xi ≤ 1} dx1 . . . dxn

= (1 + 2α)−n,

which forces

2α ≥ log(1 + 2α) ≥ n−1 log(1/2ε).

We can’t do better than an n−1 rate.
�

0.4 Total variation

The testing affinity is closely related to the total variation distance,

dTV (P0,P1) := supA |P0A− P1A|

between P0 and P1.
For a real valued function f on X remember that f+(x) := max(f(x), 0)

and f−(x) := max(−f(x), 0), which ensures that f = f+ − f− and |f | =
f+ + f−.

<5> Lemma. For probabilities P0 and P1 with densities p0 and p1,

dTV (P0,P1) = 1−
∫
p0∧p1 =

∫
(p0−p1)+ =

∫
(p0−p1)− = 1

2

∫
|p0−p1|.

Proof For each A ⊆ X,

P0A− P1A =

∫
1{x ∈ A}(p0(x)− p1(x)).

The integral takes its maximum value,
∫

(p0−p1)+, when A picks out only the
nonnegative values for p0(x)− p1(x), that is, when A = {x : p0(x) ≥ p1(x)}.
It takes its minimum value (most negative), −

∫
(p0 − p1)−, when A picks

out values where p0(x)− p1(x) < 0, that is, A = {x : p0(x) < p1(x)}.
The integrals

∫
(p0−p1)+ and

∫
(p0−p1)− are both equal to 1

2

∫
|p0−p1|

because∫
(p0 − p1)+ −

∫
(p0 − p1)− =

∫
(p0 − p1) = 0∫

(p0 − p1)+ +

∫
(p0 − p1)− =

∫
|p0 − p1|
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Finally, note that

1−
∫
p0 ∧ p1 =

∫
p0 − p0 ∧ p1 =

∫
(p0 − p1)+

because a− a ∧ b = max(a− b, 0) for all a, b ∈ R.
�

Remark. The quantity
∫
|p0 − p1| is often denoted by ‖P0 − P1‖1 and

is called the L1-distance between P0 and P1.

0.5 Distances between probabilities

The testing affinity and the total variation distance for two probability dis-
tributions are seldom easy to calculate directly. (The uniform distribuion
from Example <4> is a rare exception.) Instead one usually works with
other measures of affinity ordistance, such as the so-called f-divergences.

<6> Definition. Let f : (0,∞)→ R be convex, with f(1) = 0. For probabilities
P and Q (on the same set) with densities p and q define

<7> Df (P,Q) = Df (p, q) :=

∫
qf(p/q),

the f -divergence “distance” between P and Q.

I put “distance” in quotes because Df is usually not a metric on the
set of probabilities. (The L1 and Hellinger metrics are notable exceptions.)
However, Jensen’s inequality does show that Df (P,Q) ≥ 0 with inequality
when P = Q.

The divergences come in pairs defined by an operation that preserves
convexity. Remember that each convex f mapping (0,∞) into R can be
written as a countable supremum of linear functions f(t) = supi(ai + bit).
The function f∗ defined on (0,∞) by

f∗(t) = tf(1/t) = supi(ait+ bi)

is also convex and f∗(1) = f(1) = 0. It also defines a divergence,

Df∗(P,Q) =

∫
qf∗(p/q) =

∫
q(p/q)f(q/p) = Df (Q,P ).
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The convexity of f ensures that the map P 7→ Df (P,Q) is convex. For
if P is a convex combination of P1 and P2, that is, P = α1P1 + α2P2, with
density p(x) = α1p1(x) + α2p2(x) then

Df (P,Q) =

∫
qf

(
α1p1 + α2p2

q

)
≤
∫
α1qf(p1/q) + α2qf(p2/q)

= α1Df (P1, Q) + α2Df (P2, Q)

Convexity of Q 7→ Df∗(Q,P ) then ensures that Df (P,Q) is separately con-
vex in each argument.

Some examples

(i) for f(t) = |t− 1| = f∗(t),

Df (P,Q) =

∫
|p− q| = ‖P −Q‖1 .

(ii) for f(t) = (1−
√
t )2 = f∗(t),

Df (P,Q) =

∫
q(1−

√
p/q )2 =

∫
(
√
p −√q )2 .

The quantity H(P,Q) =
(∫ (√

p −√q
)2)1/2

is called the Hellinger

distance between P and Q.

(iii) For f(t) = t log t,

Df (P,Q) =

∫
q(p/q) log(p/q) =

∫
p log(p/q),

which is called the Kullback-Leibler distance between P and Q. I
denote it by KL(P,Q). Note f∗(t) = − log t.

(iv) for f(t) = t2 − 1,

Df (P,Q) =

∫
p2

q
− 1 =

∫
(p− q)2

q
,

which is called the χ2 distance, sometimes denoted by χ2(P,Q).
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Remark. In all cases I have ignored possible 0/0 difficulties. A more
precise treatment would pay more attention to contributions from the
set where q ∧ p = 0. See Liese and Miescke (2008, page 35).

The KL and Hellinger distances are particularly convenient for deal-
ing with independent observations. If p(x) =

∏
i≤n gi(xi) and q(x) =∏

i≤n hi(xi) thenKL(p, q) =
∑

i≤nKL(gi, hi) andH2(p, q) ≤
∑

i≤nH
2(gi, hi).

See the homework for details.

0.6 Fano’s inequality

Suppose Θ0 is a finite subset of Θ with #Θ0 = N . One version of Fano’s
inequality asserts that, for each θ̂ : X→ Θ0,

<8> max
θ∈Θ0

Pθ{θ̂(x) 6= θ} ≥
logN − log 2−N−1

∑
θ∈Θ0

KL(Pθ, Q))

log(N − 1)

where Q = N−1
∑

θ∈Θ0
Pθ. To simplify the average of KL-dstances it is

customary to use convexity of Q 7→ KL(Pθ, Q) to show that

N−1
∑

θ∈Θ0

KL(Pθ, Q)) ≤ N−2
∑

θ,t
KL(Pθ,Pt) ≤ max

θ,t∈Θ0

KL(Pθ,Pt).

With an increase of log(N − 1) to logN one then has the simpler form of
Fano’s inequality,

<9> max
θ∈Θ0

Pθ{θ̂(x) 6= θ} ≥ 1−
log 2 + maxθ,tKL(Pθ,Pt)

logN

To derive inequality <8> I use (a minor modification) of an elegant
method due to Aditya Guntuboyina (2011).

Put a prior π on Θ0. (For inequality <8> it will turn out to be the
uniform prior, which puts mass N−1 at each point of Θ0.) The prior defines
a joint distribution P for x and θ under which θ ∼ π and x | θ ∼ Pθ. More
formally, for each real g on X×Θ0,

EPg(x, θ) =
∑

θ
πθ

∫
pθ(x)g(x, θ).

Under P the x-coordinate has marginal distribution Q =
∑

θ πθPθ with
density q(x) =

∑
θ πθpθ(x).
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The Bayes estimator τ(x) is chosen to minimize the Bayes risk,

P{τ(x) 6= θ} = 1−
∑
θ

πθPθ{x : τ(x) = θ} = 1−
∫ ∑

θ

πθpθ(x)1{x : τ(x) = θ}.

That is, τ(x) = argmaxθ πθpθ(x), so that the minimum Bayes risk is

<10> r := P{τ(x) 6= θ} = 1−
∫

maxθ (πθpθ(x)) .

It turns out that to be cleaner to write expectations in terms of an-
other probability distribution Q on X × Θ0 under which x ∼ Q and θ ∼ π
independently. More formally,

EQg(x, θ) =
∑

θ
πθ

∫
q(x)g(x, θ).

Define p̃(x, θ) := p(x, θ)/q(x) and A = {(x, θ) : τ(x) = θ} then

1− r =

∫ ∑
θ

πθq(x)p̃(x, θ)1{x : τ(x) = θ} = EQp̃(x, θ)1{(x, θ) ∈ A}

and r = EQp̃(x, θ)1{(x, θ) ∈ Ac}.
Define

α := QA =

∫
q(x)

∑
θ
πθ1{τ(x) = θ} =

∫
q(x)πτ(x).

Note well: For the special case where πθ = 1/N for all N we have α = 1/N .
Aditya’s wonderful idea was to write Q as a weighted average of two

conditional distributions, Q = αQ(· | A)+(1−α)Q(· | Ac). Abbreviating the
expected values with respect to the conditional distributions to EA and EAc ,
we then have

1− r = αEAp̃(x, θ) and r = (1− α)EAc p̃(x, θ).

The conditioning idea also works well with the average f -divergence be-
tween Pθ and Q:

∆ :=
∑

θ
πθDf (Pθ, Q)

=
∑

θ
πθ

∫
q(x)f(pθ(x)/q(x))

= EQf(p̃(x, θ))

= αEAf(p̃(x, θ)) + (1− α)EAcf(p̃(x, θ))

≥ αf(EAp̃(x, θ)) + (1− α)f(EAc p̃(x, θ)) by Jensen’s inequality

= αf

(
1− r
α

)
+ (1− α)f

(
r

1− α

)
.
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For each fixed α ∈ (0, 1), the function

Ψα(t) = αf

(
1− t
α

)
+ (1− α)f

(
t

1− α

)
is convex in t. Aditya noted that the inequality

<11> ∆ ≥ Ψα(r)

could be inverted (or approximately inverted), for various choices of f , to
deduce various lower bounds for r.

The Fano inequality <8> comes from the choice f(t) = t log t and π the
uniform distribution on Θ0 (so that α = 1/N). For that case

Ψα(t) = t log (t) + (1− t) log (1− t)− t log(1− α)− (1− t) log(α)

≥ − log 2 + logN − t log(N − 1).

In the last line I have used the fact that the function t log t+(1−t) log(1−t)
achieves its minimum value of − log 2 at t = 1/2. In particular,

∆ ≥ − log 2 + logN − r log(N − 1),

which rearranges to give <8>.
See homework 9 for an application of Fano’s inequality to the calculation

of a nonparametric minimax lower bound.

0.7 Notes

The tutorial by Csiszár and Shields (2004) contains a chapter on f -divergences.
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