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MINIMAX LOWER BOUNDS FOR ESTIMATION

Neyman-Pearson and the testing affinity

The Neyman-Pearson Lemma solves a problem for testing a Py, with den-
sity po(x), against a Py, with density p;(x). It finds a (randomized) test ¥ =
(v0,%1) for which [ p1eq is maximized subject to [ poy1 < . Equivalently,
it minimizes [ p1thy subject to the same constraint.

There are other plausible quantities to optimize. For example, we could
try to minimize

/ p1(2)%0() + po(x)r (z)

over all nonnegative 1 and 1 for which ¢g(z) + ¢1(x) = 1 for all . This
problem also has a simple solution because

p1(z)vo(z) + po(z)¥1(z) > po(z) A p1(x) := min (po(x), p1(z))

with equality when ¢;(z) = 1{z : po(z) < p1(x)}. That is,

min [ 1(@)vo(e) + m(@in (@) = [ Am

The quantity [ po Ap: is called the testing affinity between Py and Py. It
is sometimes denoted by ||Pg A P1]|;.

Estimators defining tests

Suppose we have a model P = {Py : § € O} where each Py is a probability
corresponding to some density pp(z) on a set X. We are interested in esti-
mating some function 7(#), where 7 maps © into some metric space (7, d).

For a minimax approach for each n > 0, we judge each estimator T' by
the value

M(©,n,T) := supgee Po{d(T', 7(0)) > n}
We seek a lower bound,
M(©,n) := inf M(8,7,T),
the infimum running over all estimators 7': X — T. (Also it would be satis-

fying to find some T that achieves the lower bound, but that is sometimes
more than we can manage.)
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Remark. The quantity M(©,n) is the minimax lower bound for the
loss function L, (6,t) = 1{d(t,7(0)) > n}, for (6,t) € © x T. The story
can also be told with other loss functions.

The search for a lower bound M(O,7) can be turned into a multiple
hypothesis testing problem by focusing on some finite subset ©¢ of ©. For
each estimator 7', define 7 : X — ©¢ by

@\T(m) = argmind(T'(z), 7(0)),
USISH)

with any convenient rule for breaking ties. If we choose the finite subset ©q
so that d(7(0),7(0)) > 2n for distinct 0 and 0’ is ©¢ then

d(T(z),7(0)) +d(T(z),7(¢')) >2n  forall 6 #6.

In particular, if d(T(z),7(0)) < n then d(T'(z),7(¢")) > n for all other ¢’
in g, which implies f7(x) = . Put another way

{z:d(T(x),7(0)) <n} C{x:0p(x) =0}  for each 0 € O.
Equivalently,

{z:d(T(x),7(0)) >n} D {x:0p(x) #60}  for each § € O
so that

M(©,1,T) = Sup Po{d(T,7(0)) = n} = max Po{0r(z) # 6}.

If we find a lower bound for maxgece, Po{#(x) # 0} that is valid for all maps
6 : X — ©g then it also provides a lower bound for every M(0,n,T).

Remark. Effectively the simplification replaces the loss function
L,(0,t) = 1{d(t,7(0)) > n}, for (§,t) € ©xT by aloss function 1{6 # t}
for (0,t) € ©g x Oy.

Two point comparisons

The easiest case occurs when O is a set of two points, 8y and 6, chosen so
that d(7(6p),7(61)) > 2n. The 6 then corresponds to a nonrandomized test
between 6y against 6.
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Theorem. For every estimator T' for 7(0),
2M(©,1,T) > sup{||Pg, APg,||; : 0; € © and d(7(0y),7(01)) > 2n}.

Proor Consider ©g = {6y, 61} for a pair with d(7(0y),7(01)) > 2n. Abbre-
viate Py, to IP; and pg, to p;. By inequality <2>,
23\/[(@, 77) Z 2 max (Po{/e\T 7é 90}, Pl {gT 75 01})
> Po{fr # 60} + P1{0r # 61}

= /po(x)l{/Q\T # 90} —l—pl(x)l{@\T #+ 91}
> /po Ap11{Or # 00} + po Ap11{0r # 61} = /po A p1.

We have equality at the start of the last line if pg < p; whenever 07 = 6;
and p; < pg whenever 07 = 6.
Complete the proof by taking a supremum over all such 6y and 6; pairs.

Example. For 6 > 0 write Py for the uniform distribution on [0,6]". Con-
sider estimation of 7(6) = 6. For x € R’} write M,(x) for max;<, x;, the
maximum likelihood estimator. For each r > 0,

Po{Mp(z) <0 —r/n} =Pyp{x; <0 —r/n for alli <n}
= (1 =r/(nb))"

— exp(—r/0) as n — 00

More precisely, for each € > 0 and each C' > 0 we can find an r, depending
on both € and C, for which

sup Pg{|M,, — 0| > r/n} <e.
0<o<C

We have an estimator that achieves the n~! rate, at least for © = (0, C].
To prove that n~! is the best rate possible, suppose T}, is another function
of x1,...,x, for which

M(O,a,T,) = sup Pp{|T,, — 0| > a} <e.
0<0<C
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How small could o be? Consider ©g = {1,1 + 2a}. Then
2e¢ > /Pl A P142a
= /(1 +20)7"1{0 < min; x; < max; x; < 1} dxy ...dz,
=(142a)™",
which forces

2a > log(1 + 2a) > n~'log(1/2¢).

We can’t do better than an n~! rate.

Total variation

The testing affinity is closely related to the total variation distance,
dry (Po,P1) := supy [PoA — P A

between Py and P;.

For a real valued function f on X remember that f*(z) := max(f(z),0)
and f~(z) := max(—f(z),0), which ensures that f = f* — f~ and |f| =
fr+f

Lemma. For probabilities Py and Py with densities py and p1,

drv (Po,P1) = 1—/290/\1?1 = /(po—p1)+ = /(po p1)” /\Po p1l-

Proor For each A C X,
Pod=Prd = [ 1{z € A}(pola) - pr(a))

The integral takes its maximum value, [(po—p1)™", when A picks out only the
nonnegative values for po(x) — p1(x), that is, when A = {x : po(z) > p1(x)}.
It takes its minimum value (most negative), — [(pg — p1)~, when A picks
out values where po(z) — pl( ) <0, that is, A = {z : po(x) < p1(z)}.

The integrals [(po—p1)T and f po—p1)~ are both equal to 3 [ [po — pi1]
because

/(po—p1)+—/(p0_p1)— :/(po—pl)zo
/(po—p1)++/p0_p1 /|P0—P1
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Finally, note that

1—/1170/\17?12/100—100/\101Z/(po—lm)Jr

because a — a A b = max(a — b,0) for all a,b € R.

Remark. The quantity [ |po — p1| is often denoted by [Py — Py, and
is called the L£!-distance between Py and P;.

Distances between probabilities

The testing affinity and the total variation distance for two probability dis-
tributions are seldom easy to calculate directly. (The uniform distribuion
from Example <4> is a rare exception.) Instead one usually works with
other measures of affinity ordistance, such as the so-called f-divergences.

Definition. Let f : (0,00) = R be convex, with f(1) = 0. For probabilities
P and @Q (on the same set) with densities p and q define

D¢(P,Q) = D¢(p,q) == /qf(p/q),

the f-divergence “distance” between P and Q).

I put “distance” in quotes because Dy is usually not a metric on the
set of probabilities. (The £! and Hellinger metrics are notable exceptions.)
However, Jensen’s inequality does show that D;(P,Q) > 0 with inequality
when P = Q.

The divergences come in pairs defined by an operation that preserves
convexity. Remember that each convex f mapping (0,00) into R can be
written as a countable supremum of linear functions f(t) = sup;(a; + b;t).
The function f* defined on (0, 00) by

fr(t) = tf(1/t) = sup;(ait + bi)

is also convex and f*(1) = f(1) = 0. It also defines a divergence,

Dy(P.Q) = / of*(pfq) = / 4(p/0)f(a/p) = Ds(Q, P).

Draft: 5 Nov 2014 Statistics 610 © David Pollard




The convexity of f ensures that the map P +— D;(P, Q) is convex. For
if P is a convex combination of P; and P, that is, P = a1 P} + asP», with
density p(z) = ai1p1(x) + agpe(x) then

Dy(PQ) = [[af (M0

< /a1Qf(P1/Q) + a2qf(p2/q)
= a1Dy(Pr,Q) + a2Ds (P, Q)

Convexity of @ — Dy«(Q, P) then ensures that D¢(P, Q) is separately con-
vex in each argument.

Some examples

(i) for f(t) = |t — 1] = f*(t),
D;(P.Q) = [ Ip-d =P~ Q.

(i) for £(t) = (1—VT)2 = f*(2),
Dy(P.Q) = / 41— V/pJg)? = / (VP — V@)

1/2
The quantity H(P,Q) = (f (f — ﬁ)2) is called the Hellinger
distance between P and Q.

(iii) For f(t) = tlogt,

Dy(P.Q) = / 4(p/q)log(p/q) = / plog(p/a),

which is called the Kullback-Leibler distance between P and Q. 1
denote it by KL(P, Q). Note f*(t) = —logt.

(iv) for f(t) =2 —1,
2 2
sisa [ 1o [

which is called the x? distance, sometimes denoted by x2(P, Q).
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Remark. In all cases I have ignored possible 0/0 difficulties. A more
precise treatment would pay more attention to contributions from the
set where ¢ A p = 0. See Liese and Miescke (2008, page 35).

The KL and Hellinger distances are particularly convenient for deal-
ing with independent observations. If p(z) = [[;<, gi(z:;) and g(x) =
Hign hz(xl) then KL(]), Q) = Zign KL(gu hl) and HQ(p7 Q) < Zign H2(9i7 hl)

See the homework for details.
Fano’s inequality

Suppose Og is a finite subset of © with #0¢ = N. One version of Fano’s
inequality asserts that, for each 6 : X — O,

_ log N —log2 — N7' Yy o KL(Py,Q))
P > }
max o{0(z) # 0} > log(N — 1)

where Q = N1 29660 Py. To simplify the average of KL-dstances it is
customary to use convexity of @ — KL(Py, Q) to show that

-1 9
N Zeeeo KL(Py, @) < N Z(,’t KL(Pp,P;) < emax KL(Py,Py).

RISSH

With an increase of log(N — 1) to log N one then has the simpler form of
Fano’s inequality,

log 2 4 maxg ¢ KL(Pg, P;)
log N

Py {0 >1-
max Po{0(x) # 0} =

To derive inequality <8> I use (a minor modification) of an elegant
method due to Aditya Guntuboyina (2011).

Put a prior 7 on 0. (For inequality <8> it will turn out to be the
uniform prior, which puts mass N~! at each point of ©g.) The prior defines
a joint distribution P for x and € under which § ~ 7 and = | § ~ Py. More
formally, for each real g on X x ©g,

Epg(x,0) =) We/pe(x)g(%@)-

Under P the z-coordinate has marginal distribution Q@ = ), 7Py with
density g(z) = >, mopo(x).
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The Bayes estimator 7(x) is chosen to minimize the Bayes risk,
P{r(z) # 0} =1-) mgPo{z : 7(z) = 6} = 1—/ > mopp(x)1{x : 7(z) = 6},
0 0
That is, 7(z) = argmax, mppg(x), so that the minimum Bayes risk is

Fi=P{r(x)#60}=1- /maxe (mopo(z)) .

It turns out that to be cleaner to write expectations in terms of an-
other probability distribution Q on X x ©¢ under which x ~ @ and 0 ~ 7w
independently. More formally,

Bog(e.) = Y, m [ ala)ge.).
Define p(x, 6) := p(z,0)/q(x) and A = {(x, ) : 7(x) = 6} then

1-7= [ Y moa(@)(e. 0)1{c s 7(a) = 0} = Bohla,6)1{(,6) < A)
[

and 7 = Egp(z, 8)1{(x,0) € A°}.
Define

o= QA= /q(:):) 3wl {r(x) = 0} = /q(w)WT(I).

Note well: For the special case where mp = 1/N for all N we have o = 1/N.

Aditya’s wonderful idea was to write Q as a weighted average of two
conditional distributions, Q = aQ(- | A)+(1—a)Q(- | A°). Abbreviating the
expected values with respect to the conditional distributions to E 4 and E 4¢,
we then have

1 -7 =aFsp(x,0) AND 7= (1 —a)Eacp(z,0).

The conditioning idea also works well with the average f-divergence be-
tween Py and Q:

A= mDs(Py, Q)
=, / q(x) f(po(x) /q(z))

=Eqf(p(x,0))
= aEaf(p(x,0)) + (1 — a)Eac f(p(,
> af(Eap(z,0)) + (1 — a)f(Eacp(z,

car (57 mar (1)
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For each fixed a € (0, 1), the function

Ta(t) = of (1;) F(1-a)f (1 ! a)

is convex in t. Aditya noted that the inequality

A > U, (F)

could be inverted (or approximately inverted), for various choices of f, to
deduce various lower bounds for 7.

The Fano inequality <8> comes from the choice f(t) = tlogt and 7 the
uniform distribution on O (so that = 1/N). For that case

U, (t) =tlog(t) + (1 —t)log (1 —t) —tlog(l — ) — (1 — t) log(cv)
> —log2+1log N —tlog(N —1).

In the last line T have used the fact that the function ¢tlogt+ (1 —t¢)log(1—t)
achieves its minimum value of —log2 at ¢t = 1/2. In particular,

A > —log2+log N —Flog(N — 1),

which rearranges to give <8>.
See homework 9 for an application of Fano’s inequality to the calculation
of a nonparametric minimax lower bound.

Notes

The tutorial by Csiszér and Shields (2004) contains a chapter on f-divergences.
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