THE MULTIVARIATE NORMAL DISTRIBUTION

0.1 Basic facts

Let Z_1, Z_2, \ldots, Z_n be independent N(0,1) random variables. When treated as the coordinates of a point in \mathbb{R}^n they define a random vector \mathbf{Z} , whose (joint) density function is

$$f(\mathbf{z}) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i} z_{i}^{2}\right) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \|\mathbf{z}\|^{2}\right).$$

Such a random vector is said to have a *spherical normal distribution*.

The **chi-square**, χ_n^2 , is defined as the distribution of the sum of squares $R^2 := Z_1^2 + \cdots + Z_n^2$ of independent N(0,1) random variables. The **non-central chi-square**, $\chi_n^2(\gamma)$, with noncentrality parameter $\gamma \geq 0$ is defined as the distribution of the sum of squares $(Z_1 + \gamma)^2 + Z_2 \cdots + Z_n^2$.

The random vector \mathbf{Z}/R has length 1; it takes values on the unit sphere $S:=\{\mathbf{z}\in\mathbb{R}^n:\sum_{i\leq n}z_i^2=1\}$. By symmetry of the joint density $f(\mathbf{z})$, the random vector is uniformly distributed on S, no matter what value R takes. In other words \mathbf{Z}/R is independent of R. This fact suggests a way to construct a random vector with the same distribution as \mathbf{Z} : Start with a random variable T^2 that has a χ_n^2 distribution independent of a random vector \mathbf{U} that is uniformly distributed on the unit sphere S. Then the components of the random vector $T\mathbf{U}$ are independent N(0,1)'s. In two dimensions, the random vector \mathbf{U} can be defined by

$$\mathbf{U} = (\cos V, \sin V)$$
 where $V \sim \text{Unif}(0, 2\pi]$.

0.2 New coordinate system

The spherical symmetry of the density $f(\cdot)$ is responsible for an important property of multivariate normals. Let $\mathbf{q}_1, \ldots, \mathbf{q}_n$ be a new orthonormal basis for \mathbb{R}^n , and let

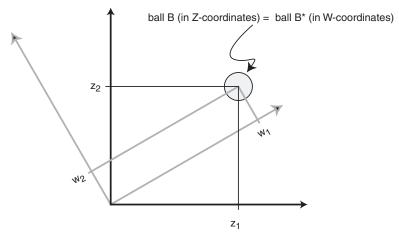
$$\mathbf{Z} = W_1 \mathbf{q}_1 + \cdots + W_n \mathbf{q}_n$$

be the representation for **Z** in the new basis.

<1> Theorem. The W_1, \ldots, W_n are also independent N(0,1) distributed random variables.

Draft: 22 Sept 2014

If you know about multivariate characteristic functions this is easy to establish using the matrix representation $\mathbf{Z} = Q\mathbf{W}$, where Q is the orthogonal matrix with columns $\mathbf{q}_1, \dots, \mathbf{q}_n$.



A more intuitive explanation is based on the approximation

$$\mathbb{P}\{\mathbf{Z} \in B\} \approx f(\mathbf{z}) \text{(volume of } B)$$

for a small ball B centered at ${\bf z}$. The transformation from ${\bf Z}$ to ${\bf W}$ corresponds to a rotation, so

$$\mathbb{P}\{\mathbf{Z} \in B\} = \mathbb{P}\{\mathbf{W} \in B^*\},\$$

where B^* is a ball of the same radius, but centered at the point $\mathbf{w} = (w_1, \dots, w_n)$ for which $w_1\mathbf{q}_1 + \dots + w_n\mathbf{q}_n = \mathbf{z}$. The last equality implies $\|\mathbf{w}\| = \|\mathbf{z}\|$, from which we get

$$\mathbb{P}\{\mathbf{W} \in B^*\} \approx (2\pi)^{-n/2} \exp(-\frac{1}{2} \|\mathbf{w}\|^2) \text{(volume of } B^*\text{)}.$$

That is, **W** has the asserted spherical normal density.

To prove results about the spherical normal it is often merely a matter of transforming to an appropriate orthonormal basis.

- <2> Theorem. Let X be an m-dimensional subspace of \mathbb{R}^n . Let \mathbf{Z} be a vector of independent N(0,1) random variables, and $\boldsymbol{\mu}$ be a vector of constants. Then
 - (i) the projection $\widehat{\mathbf{Z}}$ of \mathbf{Z} onto \mathfrak{X} is independent of the projection $\mathbf{Z} \widehat{\mathbf{Z}}$ of \mathbf{Z} onto \mathfrak{X}^{\perp} , the orthogonal complement of \mathfrak{X} .
 - (ii) $\|\widehat{\mathbf{Z}}\|^2$ has a χ_m^2 distribution.

Draft: 22 Sept 2014

(iii) $\|\mathbf{Z} + \boldsymbol{\mu}\|^2$ has a noncentral $\chi_n^2(\gamma)$ distribution, with $\gamma = \|\boldsymbol{\mu}\|$.

(iv)
$$\|\hat{\mathbf{Z}} + \boldsymbol{\mu}\|^2$$
 has a noncentral $\chi_m^2(\gamma)$ distribution, with $\gamma = \|\boldsymbol{\mu}\|$.

PROOF Let $\mathbf{q}_1, \dots, \mathbf{q}_n$ be an orthonormal basis of \mathbb{R}^n such that $\mathbf{q}_1, \dots, \mathbf{q}_m$ span the space \mathcal{X} and $\mathbf{q}_{m+1}, \dots, \mathbf{q}_n$ span \mathcal{X}^{\perp} . If $\mathbf{Z} = W_1 \mathbf{q}_1 + \dots + W_n \mathbf{q}_n$ then

$$\widehat{\mathbf{Z}} = W_1 \mathbf{q}_1 + \dots + W_m \mathbf{q}_m,$$

$$\mathbf{Z} - \widehat{\mathbf{Z}} = W_{m+1} \mathbf{q}_{m+1} + \dots + W_n \mathbf{q}_n,$$

$$\|\mathbf{Z}\|^2 = W_1^2 + \dots + W_m^2,$$

from which the first two asserted properties follow.

For the third and fourth assertions, choose the basis so that $\mu = \gamma \mathbf{q}_1$. Then

$$\mathbf{Z} + \boldsymbol{\mu} = (W_1 + \gamma)\mathbf{q}_1 + W_2\mathbf{q}_2 + \dots + W_n\mathbf{q}_n$$

$$\mathbf{\hat{Z}} + \boldsymbol{\mu} = (W_1 + \gamma)\mathbf{q}_1 + W_2\mathbf{q}_2 + \dots + W_m\mathbf{q}_m$$

from which we get the noncentral chi-squares.

0.3 Fact about the general multivariate normal

If Z is an $n \times 1$ vector of independent N(0,1) random variables, if μ is an $m \times 1$ vector of constants, and if A is an $m \times n$ matrix of constants, then the random vector $X = \mu + AZ$ has expected value μ and variance matrix

$$V = \mathbb{E}(X - \mu)(X - \mu)' = \mathbb{E}(AZZ'A') = A\mathbb{E}(ZZ')A' = AA'.$$

The moment generating function of Z is defined as

$$M_Z(s) = \mathbb{E} \exp(s'Z) = \mathbb{E} \left(e^{s_1 Z_1} \dots e^{s_n Z_n}\right)$$

= $\prod_{i \le n} \mathbb{E} e^{s_j Z_j}$ by independence
= $\exp(\sum_j s_j^2) = \exp(|s|^2)$.

The moment generating function for the random vector X is defined as

$$M_X(t) = \mathbb{E} \exp(t'X)$$

$$= \mathbb{E} \exp(t'\mu + t'AZ) = e^{t'\mu} M_Z(A't)$$

$$= \exp(t'\mu + t'AA't/2) = \exp(t'\mu + t'Vt/2) \quad \text{for } t \in \mathbb{R}^m.$$

Draft: 22 Sept 2014

In particular, the distribution of X depends only on μ and V. The random vector X has a $N(\mu, V)$ distribution. If V is nonsingular, the distribution has a multivariate density

$$f(x) = (2\pi \det(V))^{-m/2} \exp\left(\frac{1}{2}(x-\mu)'V^{-1}(x-\mu)\right)$$
 for $x \in \mathbb{R}^m$.

If V is singular, the distribution of $X - \mu$ concentrates in some lowerdimensional subspace of \mathbb{R}^m ; it is no longer determined by the density.

If γ is a $k \times 1$ vector of constants and B is a $k \times m$ matrix of constants then

$$\gamma + BX = (\gamma + B\mu) + BAZ$$

has a $N(\gamma + B\mu, BVB')$ distribution.

0.4 Independence

Suppose the $N(\mu, V)$ distributed random vector X is thought of as the concatenation of two subvectors: an $m_1 \times 1$ vector X_1 and an $m_2 \times 1$ vector X_2 , with corresponding decompositions

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

$$V = \begin{pmatrix} V_{1,1} & V_{1,2} \\ V_{2,1} & V_{2,2} \end{pmatrix} = \mathbb{E} \begin{pmatrix} (X_1 - \mu_1)(X_1 - \mu_1)' & (X_1 - \mu_1)(X_2 - \mu_2)' \\ (X_2 - \mu_2)(X_1 - \mu_1)' & (X_2 - \mu_2)(X_2 - \mu_2)' \end{pmatrix}$$

Then $V_{j,j} = \text{var}(X_j)$ and $V_{1,2} = V'_{2,1}$ is the $m_1 \times m_2$ matrix $\text{cov}(X_1, X_2)$. The joint moment generating function becomes

$$\begin{aligned} M_{x_1,X_2}(t_1,t_2) &= M_X(t) & \text{where } t' &= (t_1',t_2') \\ &= \exp\left(t_1'\mu_1 + t_2'\mu_2 + \frac{1}{2}t_1'V_{1,1}t_1 + t_1'V_{1,2}t_2 + \frac{1}{2}t_2'V_{2,2}t_2\right), \end{aligned}$$

which factorizes for all t if and only if $V_{1,2} = 0$. Factorization of the joint moment generating function for all t is the necessary and sufficient condition for X_1 and X_2 to be independent.

Joint normality is one of the rare situations where independence is equivalent to zero covariance.

0.5 Conditional distributions

Suppose X_1 and X_2 have a joint normal distribution, that is, the distribution of the column vector $[X_1, X_2]$ is multivariate normal. For each $m_1 \times m_2$ matrix B,

$$\mathbb{E} \exp(s_1'(X_1 - BX_2) + s_2'X_2)$$

$$= \exp(s_1'X_1 + (s_2 - Bs_1)'X_2)$$

$$= M_{X_1,X_2}(s_1, s_2 - Bs_1)$$

$$= \exp(s_1'\mu_1 + (s_2 - B's_1)'\mu_2 + \frac{1}{2}s_1'V_{1,1}s_1 + \dots).$$

If you write out all the terms in the last line you will get a quadratic in s_1 and s_2 . The joint distribution of $X_1 - BX_2$ and X_2 is bivariate normal with covariance matrix

$$cov(X_1 - BX_2, X_2) = V_{1,2} - BV_{2,2}.$$

If $V_{2,2}$ is nonsingular and we choose $B = V_{1,2}V_{2,2}^{-1}$ then the covariance matrix becomes zero. In that case $X_1 - BX_2$ and X_2 are independent. In particular, the conditional distribution of $X_1 - BX_2$ given X_2 is the same as the unconditional distribution of $X_1 - BX_2$, which is multivariate normal with expected value $\mu_1 - B\mu_2$ and variance matrix for which

$$var(X_1) = var(X_1 - BX_2) + var(BX_2).$$

That is,

$$X_1 - BX_2 \mid X_2 = x_2 \sim N(\mu_1 - B\mu_2, V_{1,1} - BV_{2,2}B').$$

Put another way,

$$X_1 - \mu_1 \mid X_2 = x_2 \sim N(V_{1,2}V_{2,2}^{-1}(x_2 - \mu_2), V_{1,1} - V_{1,2}V_{2,2}^{-1}V_{2,1}).$$

<3> **Example.** Specialize the last result to the bivariate normal case, where $m_1 = m_2 = 1$ and

$$V = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}.$$

The conditional distribution of X_1 given $X_2 = x_2$ is

$$N\left(\mu_1 + \frac{\rho\sigma_1}{\sigma_2}(x_2 - \mu_2), \sigma_1^2(1 - \rho^2)\right).$$

Draft: 22 Sept 2014

Standard distributions 0.6

Suppose

Z has a N(0,1) distribution

 S_k^2 has a χ_k^2 distribution S_ℓ^2 has a χ_ℓ^2 distribution

with all random variables independent of each other. Then, by definition,

$$\frac{Z}{\sqrt{S_k^2/k}}$$
 has a $t\text{-distribution}$ on k degrees of freedom (t_k)

and

$$\frac{S_\ell^2/\ell}{S_k^2/k}$$
 has an F-distribution on ℓ and k degrees of freedom $(F_{\ell,k})$

The picture shows the t_k -densities for k = 1, ..., 6 with the N(0, 1)density superimposed (dotted line). The height of the density at 0 increases with k.

