
1 multivariate normal

The multivariate normal distribution

0.1 Basic facts

Let Z1, Z2, . . . , Zn be independent N(0, 1) random variables. When treated
as the coordinates of a point in Rn they define a random vector Z, whose
(joint) density function is

f(z) = (2π)−n/2 exp
(
−1

2

∑
i
z2i

)
= (2π)−n/2 exp

(
−1

2 ‖z‖
2
)
.

Such a random vector is said to have a spherical normal distribution.
The chi-square, χ2

n, is defined as the distribution of the sum of squares
R2 := Z2

1 + · · · + Z2
n of independent N(0, 1) random variables. The non-

central chi-square, χ2
n(γ), with noncentrality parameter γ ≥ 0 is defined

as the distribution of the sum of squares (Z1 + γ)2 + Z2 · · ·+ Z2
n.

The random vector Z/R has length 1; it takes values on the unit sphere
S := {z ∈ Rn :

∑
i≤n z

2
i = 1}. By symmetry of the joint density f(z),

the random vector is uniformly distributed on S, no matter what value R
takes. In other words Z/R is independent of R. This fact suggests a way
to construct a random vector with the same distribution as Z: Start with
a random variable T 2 that has a χ2

n distribution independent of a random
vector U that is uniformly distributed on the unit sphere S. Then the
components of the random vector TU are independent N(0, 1)’s. In two
dimensions, the random vector U can be defined by

U = (cosV, sinV ) where V ∼ Unif(0, 2π].

0.2 New coordinate system

The spherical symmetry of the density f(·) is responsible for an important
property of multivariate normals. Let q1, . . . ,qn be a new orthonormal basis
for Rn, and let

Z = W1q1 + · · ·+Wnqn

be the representation for Z in the new basis.

<1> Theorem. The W1, . . . ,Wn are also independent N(0, 1) distributed ran-
dom variables.
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2 multivariate normal

If you know about multivariate characteristic functions this is easy to es-
tablish using the matrix representation Z = QW, where Q is the orthogonal
matrix with columns q1, . . . ,qn.

z1

z2

w1

w2

    ball B (in Z-coordinates) =  ball B* (in W-coordinates)

A more intuitive explanation is based on the approximation

P{Z ∈ B} ≈ f(z)(volume of B)

for a small ball B centered at z. The transformation from Z to W corre-
sponds to a rotation, so

P{Z ∈ B} = P{W ∈ B∗},

where B∗ is a ball of the same radius, but centered at the point w =
(w1, . . . , wn) for which w1q1 + · · · + wnqn = z. The last equality implies
‖w‖ = ‖z‖, from which we get

P{W ∈ B∗} ≈ (2π)−n/2 exp(−1
2 ‖w‖

2)(volume of B∗).

That is, W has the asserted spherical normal density.
To prove results about the spherical normal it is often merely a matter

of transforming to an appropriate orthonormal basis.

<2> Theorem. Let X be an m-dimensional subspace of Rn. Let Z be a vector of
independent N(0, 1) random variables, and µ be a vector of constants. Then

(i) the projection Ẑ of Z onto X is independent of the projection Z− Ẑ of
Z onto X⊥, the orthogonal complement of X.

(ii)
∥∥∥Ẑ∥∥∥2 has a χ2

m distribution.
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3 multivariate normal

(iii) ‖Z + µ‖2 has a noncentral χ2
n(γ) distribution, with γ = ‖µ‖.

(iv)
∥∥∥Ẑ + µ

∥∥∥2 has a noncentral χ2
m(γ) distribution, with γ = ‖µ‖.

Proof Let q1, . . .qn be an orthonormal basis of Rn such that q1, . . . ,qm
span the space X and qm+1, . . . ,qn span X⊥. If Z = W1q1 + · · · + Wnqn
then

Ẑ = W1q1 + · · ·+Wmqm,

Z− Ẑ = Wm+1qm+1 + · · ·+Wnqn,

‖Z‖2 = W 2
1 + · · ·+W 2

m,

from which the first two asserted properties follow.
For the third and fourth assertions, choose the basis so that µ = γq1.

Then

Z + µ = (W1 + γ)q1 +W2q2 + . . . +Wnqn

Ẑ + µ = (W1 + γ)q1 +W2q2 + · · ·+Wmqm

from which we get the noncentral chi-squares.
�

0.3 Fact about the general multivariate normal

If Z is an n × 1 vector of independent N(0, 1) random variables, if µ is an
m × 1 vector of constants, and if A is an m × n matrix of constants, then
the random vector X = µ+AZ has expected value µ and variance matrix

V = E(X − µ)(X − µ)′ = E(AZZ ′A′) = AE(ZZ ′)A′ = AA′.

The moment generating function of Z is defined as

MZ(s) = E exp(s′Z) = E
(
es1Z1 . . . esnZn

)
=
∏

i≤n
EesjZj by independence

= exp(
∑

j
s2j ) = exp(|s|2).

The moment generating function for the random vector X is defined as

MX(t) = E exp(t′X)

= E exp(t′µ+ t′AZ) = et
′µMZ(A′t)

= exp(t′µ+ t′AA′t/2) = exp(t′µ+ t′V t/2) for t ∈ Rm.
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In particular, the distribution of X depends only on µ and V . The random
vector X has a N(µ, V ) distribution. If V is nonsingular, the distribution
has a multivariate density

f(x) = (2π det(V ))−m/2 exp
(
1
2(x− µ)′V −1(x− µ)

)
for x ∈ Rm.

If V is singular, the distribution of X − µ concentrates in some lower-
dimensional subspace of Rm; it is no longer determined by the density.

If γ is a k × 1 vector of constants and B is a k ×m matrix of constants
then

γ +BX = (γ +Bµ) +BAZ

has a N(γ +Bµ,BV B′) distribution.

0.4 Independence

Suppose the N(µ, V ) distributed random vector X is thought of as the con-
catenation of two subvectors: an m1×1 vector X1 and an m2×1 vector X2,
with corresponding decompositions

µ =

(
µ1
µ2

)
V =

(
V1,1 V1,2
V2,1 V2,2

)
= E

(
(X1 − µ1)(X1 − µ1)′ (X1 − µ1)(X2 − µ2)′
(X2 − µ2)(X1 − µ1)′ (X2 − µ2)(X2 − µ2)′

)
.

Then Vj,j = var(Xj) and V1,2 = V ′2,1 is the m1 ×m2 matrix cov(X1, X2).
The joint moment generating function becomes

Mx1,X2(t1, t2) = MX(t) where t′ = (t′1, t
′
2)

= exp
(
t′1µ1 + t′2µ2 + 1

2 t
′
1V1,1t1 + t′1V1,2t2 + 1

2 t
′
2V2,2t2

)
,

which factorizes for all t if and only if V1,2 = 0. Factorization of the joint
moment generating function for all t is the necessary and sufficient condition
for X1 and X2 to be independent.

Joint normality is one of the rare situations where independence is equiv-
alent to zero covariance.
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0.5 Conditional distributions

Suppose X1 and X2 have a joint normal distribution, that is, the distribution
of the column vector [X1, X2] is multivariate normal. For each m1 × m2

matrix B,

E exp(s′1(X1 −BX2) + s′2X2)

= exp
(
s′1X1 + (s2 −Bs1)′X2

)
= MX1,X2(s1, s2 −Bs1)
= exp

(
s′1µ1 + (s2 −B′s1)′µ2 + 1

2s
′
1V1,1s1 + . . .

)
.

If you write out all the terms in the last line you will get a quadratic in s1
and s2. The joint distribution of X1−BX2 and X2 is bivariate normal with
covariance matrix

cov(X1 −BX2, X2) = V1,2 −BV2,2.

If V2,2 is nonsingular and we choose B = V1,2V
−1
2,2 then the covariance matrix

becomes zero. In that case X1 − BX2 and X2 are independent. In partic-
ular, the conditional distribution of X1 − BX2 given X2 is the same as the
unconditional distribution of X1 −BX2, which is multivariate normal with
expected value µ1 −Bµ2 and variance matrix for which

var(X1) = var(X1 −BX2) + var(BX2).

That is,

X1 −BX2 | X2 = x2 ∼ N(µ1 −Bµ2, V1,1 −BV2,2B′).

Put another way,

X1 − µ1 | X2 = x2 ∼ N(V1,2V
−1
2,2 (x2 − µ2), V1,1 − V1,2V −12,2 V2,1).

<3> Example. Specialize the last result to the bivariate normal case, where
m1 = m2 = 1 and

V =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)
.

The conditonal distribution of X1 given X2 = x2 is

N

(
µ1 +

ρσ1
σ2

(x2 − µ2), σ21(1− ρ2)
)
.

�
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0.6 Standard distributions

Suppose

Z has a N(0, 1) distribution

S2
k has a χ2

k distribution

S2
` has a χ2

` distribution

with all random variables independent of each other. Then, by definition,

Z√
S2
k/k

has a t-distribution on k degrees of freedom (tk)

and

S2
` /`

S2
k/k

has an F -distribution on ` and k degrees of freedom (F`,k)

The picture shows the tk-densities for k = 1, . . . , 6 with the N(0, 1)
density superimposed (dotted line). The height of the density at 0 increases
with k.
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