
1 van Trees

The van Trees inequality

0.1 Introduction

Suppose p(x, θ) is a probability density indexed by a subset Θ of the real
line. For a real-valued statistic T with EθT (x) = τ(θ), the information
inequality asserts that

varθ(T ) ≥
•
τ(θ)2

Ip(θ)
where Ip(θ) = varθ

(
∂ log p(x, θ)

∂θ

)
=

∫ •
p(x, θ)2

p(x, θ)
dx.

The van Trees (VT) inequality, due to van Trees (1968, page 72), is a
Bayesian analog of the information inequality. (Actually it is just the in-
formation inequality applied to a cunningly chosen joint density.) Gill and
Levit (1995) have shown how the VT inequality can be applied to a variety
of statistical problems.

For a suitably chosen (prior) density q on Θ and any real valued func-
tion ψ on Θ, the one-dimension version of the VT inequality is

<1>

∫
Θ
Eθ(T (x)− ψ(θ))2q(θ) dθ ≥

(∫ •
ψ(θ)q(θ) dθ

)2

Iq +
∫
Ip(θ)q(θ) dθ

Here Ip(θ) denotes the Fisher information function and Iq =
∫ •
q(θ)2/q(θ) dθ.

For this note I consider only the case where ψ(θ) = θ, so that the numerator
in <1> becomes 1:

<2>

∫
Θ
Eθ(T (x)− θ)2q(θ) dθ ≥ 1

Iq +
∫
Ip(θ)q(θ) dθ

Remark. In keeping with my convention of writing t instead of θ when
treating θ as a dummy variable, I could have written <2> as an
integral with respect to t, replacing every θ by a t.

0.2 Proof of the VT inequality

Create a new family of joint densities by treating θ itself as random,

<3> γh(x, t) = q(t+ h)p(x, t+ h) for x ∈ X and t ∈ Θ,

where −δ < h < δ for some small δ.
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2 van Trees

Remark. The definition makes sense only when q(t+h) is well defined.
Typically q is chosen to be a smooth function with compact support:
it is assumed to be as differentiable as we need and it is > 0 only in
some small neighborhood of a particular θ. Take q(t) = 0 outside the
neighborhood, so that q is well defined and differentiable on the whole
real line, not just on Θ.

Notice that γh is nonnegative and
∫∫

γh(x, t) dx dt = 1; it is a probability
density. To avoid confusion with Eθ as an integral over just the x, write Eh
for integrals with respect to both variables:

EhF (x, t) =

∫∫
F (x, t)γh(x, t) dx dt.

For example,

G(h) := Eh (T (x)− t))

=

∫∫
(T (x)− t)) q(t+ h)p(x, t+ h) dx dt

=

∫∫
(T (x)− s+ h)) q(s)p(x, s) dx ds change of variable

= E0 (T (x)− t)) + h.

That is, G(h)−G(0) = h.
For the information inequality we needed to show that the function

∆h(x, t) :=
p(x, t+ h)− p(x, t)

p(x, t)

satisfied Et∆h(x, t) = 0 and

Et∆h(x, t) (T (x)− τ(t)) = τ(t+ h)− τ(t) for each fixed t.

For the joint densities γh a similar role is played by

Dh(x, t) :=
γh(x, t)− γ0(x, t)

γ0(x, t)
.

As before,

E0Dh(x, t) =

∫∫
(γh(x, t)− γ0(x, t)) dx dt = 1− 1 = 0,
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3 van Trees

but now

E0Dh(x, t)(T (x)− t) = Eh(T (x)− t)− E0(T (x)− t)
= G(h)−G(0) = h.

Once again Cauchy-Schwarz gives

<4> h2 = |E0Dh(x, t)(T (x)− t)|2 ≤
(
E0D

2
h(x, t)

) (
E0(T (x)− t)2

)
.

The second term on the right-hand side equals∫
q(t)Et (T (x)− t)2 dt,

which is the expression on the left-hand side of <2>.
Expansion of the quadratic D2

h(x, t) gives

E0Dh(x, t)2 =

∫∫
γh(x, t)2

γ0(x, t)
− 2γh(x, t) + γ0(x, t) dx dt

so that

1 + E0Dh(x, t)2 =

∫∫
γh(x, t)2

γ0(x, t)
dx dt.

With a similar expansion followed by Taylor for small |h| we have∫
p(x, t+ h)2

p(x, t)
dx = 1 +

∫∫
(p(x, t+ h)− p(x, t))2

p(x, t)
dx ≈ 1 + h2Ip(t)∫

q(t+ h)2

q(t)
dt = 1 +

∫
(q(t+ h)− q(t))2

q(t)
dt ≈ 1 + h2Iq.

Combine the last three equalities to deduce, for small |h|, that

1 + E0Dh(x, t)2 =

∫∫
q(t+ h)2p(x, t+ h)2

q(t)p(x, t)
dx dt

=

∫
q(t+ h)2

q(t)

(∫
p(x, t+ h)2

p(x, t)
dx

)
dt

≈
∫
q(t+ h)2

q(t)

(
1 + h2Ip(t)

)
dt

≈
∫
q(t+ h)2

q(t)
dt+ h2

∫
q(t+ h)2

q(t)
Ip(t) dt.
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4 van Trees

That is,

E0Dh(x, t)2

h2
≈ Iq +

∫
q(t+ h)2

q(t)
Ip(t) dt.

Finally, note that the last term is changed by an order |h| quantity if we
reduce q(t + h)2/q(t) to q(t). In the limit as h tends to zero we get the
expression in the denominator of the right-hand side of <2>.
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