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1 VAN TREES

THE VAN TREES INEQUALITY

Introduction

Suppose p(zx,#) is a probability density indexed by a subset © of the real
line. For a real-valued statistic T" with EyT'(z) = 7(6), the information
inequality asserts that

7(6)2 dlog p(x,0) p(z,0)2
N0 where I,() = varg <89> = / 0(@.0) dzx.

The van Trees (VT) inequality, due to van Trees (1968, page 72), is a
Bayesian analog of the information inequality. (Actually it is just the in-
formation inequality applied to a cunningly chosen joint density.) Gill and
Levit (1995) have shown how the VT inequality can be applied to a variety
of statistical problems.

For a suitably chosen (prior) density ¢ on © and any real valued func-
tion ¥ on O, the one-dimension version of the VT inequality is

varg(T) >

=

o 2
2 (f $(0)q(0) d6>
/@EQ(T(.@) —(6))"q(0) db > T, + [ L,(0)q(0) db

Here I,(#) denotes the Fisher information function and I, = [ q(#)/q(0) dé.
For this note I consider only the case where 1 (6) = 6, so that the numerator
in <1> becomes 1:

/@ By (T (x) — 0)2q(0) df

1
>
I+ fﬂp(9)q(6’) do
Remark. In keeping with my convention of writing ¢ instead of 6 when

treating # as a dummy variable, I could have written <2> as an
integral with respect to t, replacing every 6 by a t.

Proof of the VT inequality
Create a new family of joint densities by treating 6 itself as random,
Yn(x,t) = q(t + h)p(x,t + h) forreX and t € ©,

where —§ < h < ¢ for some small d.
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2 VAN TREES

Remark. The definition makes sense only when ¢(t + h) is well defined.
Typically ¢ is chosen to be a smooth function with compact support:
it is assumed to be as differentiable as we need and it is > 0 only in
some small neighborhood of a particular §. Take ¢(t) = 0 outside the
neighborhood, so that ¢ is well defined and differentiable on the whole
real line, not just on ©.

Notice that -, is nonnegative and [ [y (x,t) dx dt = 1; it is a probability

density. To avoid confusion with Eg as an integral over just the x, write &,
for integrals with respect to both variables:

EnF(x,t) = // F(x,t)yp(z,t) dx dt.

For example,

G(h) ==&, (T(x) — 1))
// q(t+ h)p(x,t+ h)dx dt
// —s+h))q(s)p(z,s)dxds change of variable
=& (T(z) —t)) + h.

That is, G(h) — G(0) = h.
For the information inequality we needed to show that the function

p(xz,t+ h) — p(x,t)
p(z,t)

satisfied E;Ap(z,t) = 0 and

Ap(z,t) =

EiAp(z,t) (T(x) — 7(t)) = 7(t + h) — 7(¢) for each fixed t.
For the joint densities v, a similar role is played by

Dh(:l;‘, t) = F)/h(l‘,;))(; ’Z())(x, t) .

As before,

Dy ) = [ [ (nla.t) =0, t) dodt =110,
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but now

EoDp(z,t)(T(x) —t) = Ep(T(x) — t) — Eo(T'(x) — t)
= G(h) — G(0) = h.

Once again Cauchy-Schwarz gives
= |&oDp(z,t)(T(z) — t))* < (EOD}QL(x,t)) (SO(T(:U) — t)2) .
The second term on the right-hand side equals
[ a0 @) - 02 ar

which is the expression on the left-hand side of <2>.
Expansion of the quadratic D (z,t) gives

)2
€oDp (. 1)2 // (& 1)” 2y (2, 1) + ~o(x, t) dz dt

Yo(z, 1)
so that
t
14 &oDp(x,1)? //’Y’”” dz dt.
’yoa;t

With a similar expansion followed by Taylor for small |h| we have

/(‘”Jrh x—l—l—// xHh (x7t))2d$%1+h2ﬂ’p(t)

(

a(t+h? , ((Hh)*q()) a2
/ o dt_1+/ "0 dt ~ 1+ h?1,.

Combine the last three equalities to deduce, for small |k, that

q(t h t+h
14 &oDp(x,1)? // +h)p(et+h)”

x,t)
:/ tJ(rt)h) </ (Z(tm:)h) dx> dt
%/qt-i—h + B2L,(t)) dt
/qt+h dt+h2/wﬂp(wdt'
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4 VAN TREES

That is,

SoDh(x,t)2 q(t + h)2
e zﬂq—l—/ﬂp(t) dt.

Finally, note that the last term is changed by an order |h| quantity if we
reduce q(t + h)?/q(t) to q(t). In the limit as h tends to zero we get the
expression in the denominator of the right-hand side of <2>.
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